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Abstract

» Short critical introduction to deep learning
» Importance of Big Data

» Importance of unsupervised learning
» Disentanglement methods try to find independent factors

» In linear case, independent component analysis (ICA)
successful, can we extend to a nonlinear method?

» Problem: Nonlinear ICA fundamentally ill-defined

» Solution 1: use temporal structure in time series, in a
self-supervised fashion

» Solution 2: use an extra auxiliary variable in a VAE framework
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Deep Learning

Success of Artificial Intelligence

» Autonomous vehicles, machine translation, game playing,
search engines, recommendation machine, etc.

» Most modern applications based on deep learning
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Deep Learning

Neural networks

» Layers of “neurons” repeating linear transformations and
simple nonlinearities f
xi(L+1) = F(O_ wy(L)x;(L)), where Lis layer (1)
J
with e.g. f(x) = max(0, x)
Deep neural network
» Can approximate “any” non-
linear input-output mappings
P Learns by nonlinear regression
(e.g. least-squares)
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Deep Learning

Deep learning

» Deep Learning = learning in neural network with many layers

> With enough data, can learn any input-output relationship:
image-category / past-present / friends - political views

» Present boom started by Krizhevsky, Sutskever, Hinton, 2012:
Superior recognition success of objects in images

T BLEAE
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» Nonlinearity: E.g. recognition of a cat is highly nonlinear

> A linear model would use a single prototype
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Deep Learning

Characteristics of deep learning

» Nonlinearity: E.g. recognition of a cat is highly nonlinear

> A linear model would use a single prototype
But locations, sizes, viewpoints highly variable

M

» Needs big data : E.g. millions of images from the Internet
» Because general nonlinear functions have many parameters

» Needs big computers : Graphics Processing Units (GPU)
» Obvious consequence of need for big data, and nonlinearities

» Most theory quite old : Nonlinear (logistic) regression
» But earlier we didn’t have enough data and “compute”
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Deep Learning

Importance unsupervised learning

» Success stories in deep learning need category labels
» |s it a cat or a dog? Liked or not liked?

» Problem: labels may be

|

> Difficult to obtain r"h wiom

» Unrealistic in neural modelling i

»> Ambiguous

» Unsupervised learning:
» we only observe a data vector x, no label or target y
» E.g. photographs with no labels

» Very difficult, largely unsolved problem
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Independent component analysis ICA as principled unsupervised learning
Difficulty of nonlinear ICA

ICA as principled unsupervised learning

» Linear independent component analysis (ICA)

xi(t) = Za,-jsj(t) foralli,j=1...n (2)
j=1

> x;(t) is i-th observed signal at sample point t (possibly time)
> a; constant parameters describing “mixing”
» Assuming independent, non-Gaussian latent “sources” s;
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ICA as principled unsupervised learning

» Linear independent component analysis (ICA)

xi(t) = Za,-jsj(t) foralli,j=1...n (2)
j=1

> x;(t) is i-th observed signal at sample point t (possibly time)
> a; constant parameters describing “mixing”
» Assuming independent, non-Gaussian latent “sources” s;

» [CA is identifiable, i.e. well-defined: (Darmois-Skitovich ~1950; Comon, 1994)
» Observing only x; we can recover both aj; and s;
» |.e. original sources can be recovered
» As opposed to PCA, factor analysis
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Independent component analysis ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Unsupervised learning can have different goals

1) Accurate model of data distribution?

» E.g. Variational Autoencoders are good
2) Sampling points from data distribution?

» E.g. Generative Adversarial Networks are good
3) Useful features for supervised learning?

» Many methods, “Representation learning”

4) Reveal underlying structure in data,
disentangle latent quantities?

» Independent Component Analysis! (this talk)
> These goals are orthogonal, even contradictory!
» Probably, no method can accomplish all (Cf. Theis et al 2015)

» In unsupervised learning research, must specify actual goal
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Independent component analysis ICA as principled unsupervised learning
Difficulty of nonlinear ICA

|dentifiability means ICA does blind source separation

Observed signals:

Wil iy AN

Principal components:

L VR i O L A A

Independent components are original sources:

LY e
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Independent component analysis ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Example of ICA: Brain source separation

Temporal envelope (arbitrary units) Fourier amplitude (arbitrary units) Distribution over channels  Phase differences
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(Hyvérinen, Ramkumar, Parkkonen, Hari, 2010)
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Independent component analysis ICA as principled unsupervised learning

Example of ICA: Image features

(Olshausen and Field, 1996; Bell and Sejnowski, 1997
¥ 7 N I e ",

Features similar to wavelets, Gabor functions, simple cells.
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Independent component analysis ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Nonlinear ICA is an unsolved problem

» Extend ICA to nonlinear case to get general disentanglement?
» Unfortunately, “basic” nonlinear ICA is not identifiable:
» If we define nonlinear ICA model simply as

xi(t) = fi(s1(t),...,sn(t)) foralli,j=1...n  (3)

we cannot recover Origina| SOUrCES (Darmois, 1952; Hyvirinen & Pajunen, 1999)

Mixtures (x) Independent estimates

Sources (s)

-0.6 0.4 -02 0 2 ) 2
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Independent component analysis ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Darmois construction

» Darmois (1952) showed impossibility of nonlinear ICA:
» For any xi, x2, can always construct y = g(x1,x2)
independent of x; as

g(£1,82) = P(x2 < &alx1 = &1) (4)

A. Hyvérinen Nonlinear ICA



Independent component analysis ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Darmois construction

» Darmois (1952) showed impossibility of nonlinear ICA:
» For any xi, x2, can always construct y = g(x1,x2)
independent of x; as

g(£1,82) = P(x2 < &alx1 = &1) (4)

» Independence alone too weak for identifiability:
We could take x; as independent component which is absurd
» Maximizing non-Gaussianity of components equally absurd:
Scalar transform h(x1) can give any distribution

Mixtures (x) Independent estimates

Sources (s)
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Independent component analysis ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Temporal structure helps in nonlinear ICA

» Two kinds of temporal structure:

i, A ] ] I
A w””u”\rf‘”““ M, /,vv‘wv P »WMWM
v'

Autocorrelations Nonstationarity
(Harmeling et al 2003) (Hyvarinen and Morioka, NIPS2016)

» Now, identifiability of nonlinear ICA can be proven
(Sprekeler et al, 2014; Hyvirinen and Morioka, NIPS2016 & AISTATS2017):.

Can find original sources!
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Independent component analysis ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Trick: “Self-supervised” learning

» Supervised learning: we have
> “input” x, e.g. images / brain signals
> ‘“output” y, e.g. content (cat or dog) / experimental condition
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Independent component analysis ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Trick: “Self-supervised” learning

» Supervised learning: we have

> “input” x, e.g. images / brain signals

> ‘“output” y, e.g. content (cat or dog) / experimental condition
» Unsupervised learning: we have

» only “input” x
> Self-supervised learning: we have

» only “input” x

» but we invent y somehow, e.g. by creating corrupted data, and

use supervised algorithms

> Numerous examples in computer vision:

» Remove part of photograph, learn to predict missing part
(x is original data with part removed, y is missing part)
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Permutation-contrastive learning
Time-contrastive learning

Nonlinear ICA . .
Auxiliary variables framework

Permutation-contrastive learning (Hyvarinen and Morioka 2017)

» Observe n-dim time series x(t) 1
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Permutation-contrastive learning
Time-contrastive learning

Nonlinear ICA . .
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Permutation-contrastive learning (Hyvarinen and Morioka 2017)

» Observe n-dim time series x(t) 1 Y
» Take short time windows as new data m
y(t)

y(t) = (x(t),x(t - 1)) n il
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Permutation-contrastive learning
Time-contrastive learning

Nonlinear ICA . .
Auxiliary variables framework

Permutation-contrastive learning (Hyvarinen and Morioka 2017)

Real data Permuted data
» Observe n-dim time series x(t) 1 AN A
» Take short time windows as new data WL i i
() (1)
y(t) = (x(t), x(t — 1)) i i

» Create randomly time-permuted data

y (1) = (x(t),x(t"))

with t* a random time point.
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Permutation-contrastive learning
Time-contrastive learning

Nonlinear ICA . .
Auxiliary variables framework

Permutation-contrastive learning (Hyvarinen and Morioka 2017)

. . . Real data Permuted data
» Observe n-dim time series x(t) 1 Al o
» Take short time windows as new data m o
Y oy
y(t) = (x(t),x(t — 1) ol R
(x(2). ) gl i
» Create randomly time-permuted data I : Feature extractor: h{x(t)) |

y*(£) = (x(£),x(t")) o Y
W Al

with t* a random time point. lé(y(t)i) h:(y*(ti))
» Train NN to discriminate y from y* " V:\'u —
. . Logisti
» Could this really do Nonlinear ICA? I cge regreSS'on* |
Real data y vs. permuted y*
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Permutation-contrastive learning
Time-contrastive learning

Nonlinear ICA Auxiliary variables framework

Theorem: PCL estimates nonlinear ICA with time dependencies

» Assume data follows nonlinear ICA model x(t) = f(s(t)) with

» smooth, invertible nonlinear mixing f : R” — R”
> independent sources s;(t)

> temporally dependent (strongly enough), stationary
> non-Gaussian (strongly enough)
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» Assume data follows nonlinear ICA model x(t) = f(s(t)) with

» smooth, invertible nonlinear mixing f : R” — R”
> independent sources s;(t)

> temporally dependent (strongly enough), stationary
> non-Gaussian (strongly enough)

» Then, PCL demixes nonlinear ICA: hidden units give s;(t)
» A constructive proof of identifiability
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Permutation-contrastive learning
Time-contrastive learning

Nonlinear ICA . .
Auxiliary variables framework

Theorem: PCL estimates nonlinear ICA with time dependencies

» Assume data follows nonlinear ICA model x(t) = f(s(t)) with

» smooth, invertible nonlinear mixing f : R” — R”
> independent sources s;(t)

> temporally dependent (strongly enough), stationary
> non-Gaussian (strongly enough)

» Then, PCL demixes nonlinear ICA: hidden units give s;(t)
» A constructive proof of identifiability

» For Gaussian sources, demixes up to linear mixing
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Permutation-contrastive learning
Time-contrastive learning
Auxiliary variables framework

Nonlinear ICA

lllustration of demixing capability

> AR Model with Laplacian innovations, n = 2

log p(s(t)[s(t — 1)) = —[s(t) — ps(t — 1)|
» Nonlinearity is MLP. Mixing: leaky RelLU's; Demixing: maxout

Sources (s) Estimates by kTDSEP (Harmeling et al 2003)

Mixtures (x)

e

oz \
o

-0.2

o4 /

L . B E o s
4 2 o 2 4 Source signals Source signals
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Permutation-contrastive learning
Time-contrastive learning
Auxiliary variables framework

Nonlinear ICA

Time-contrastive learning: (Hyvarinen and Morioka 2016)

» Observe n-dim time series x(t)

e it e e

Time (t)
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Permutation-contrastive learning
Time-contrastive learning
Auxiliary variables framework

Nonlinear ICA

Time-contrastive learning: (Hyvarinen and Morioka 2016)

Segments (1...7)

» Observe n-dim time series x(t) 3, 4 T, T

P Y ; é
» Divide x(t) into T segments -
(e.g. bins with equal sizes) o T

Ti!me (t;
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Permutation-contrastive learning
Time-contrastive learning
Auxiliary variables framework

Nonlinear ICA

Time-contrastive learning: (Hyvarinen and Morioka 2016)

Segments (1...7)

» Observe n-dim time series x(t) Gt T

» Divide x(t) into T segments o
(e.g. bins with equal sizes)

» Train MLP to tell which segment " WW "‘"l"é

a single data point comes from | .

» Number of classes is T, ==
labels given by index of segment 1 Ll m
» Multinomial logistic regression
-

i
m

Feature extractor: h(x; )

I Multinomial logistic regression: W, b

g e 4D e 28034 T
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Permutation-contrastive learning
Time-contrastive learning
Auxiliary variables framework

Nonlinear ICA

Time-contrastive learning: (Hyvarinen and Morioka 2016)

Segments (1...7)
3 4 71, T
vl

» Observe n-dim time series x(t)

» Divide x(t) into T segments
(e.g. bins with equal sizes)

» Train MLP to tell which segment " WW W
a single data point comes from | .

» Number of classes is T, ==
labels given by index of segment e m

Feature extractor: h(x; )

» Multinomial logistic regression
» In hidden layer h, NN should learn to M
represent nonstationarity ml---l o3 1 =T
(= differences between segments) Multlnomlal logistic regression: W, b
» Nonlinear ICA for nonstationary datal * * * W t!
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Permutation-contrastive learning
. Time-contrastive learnin,
Nonlinear ICA . . &
Auxiliary variables framework

Experiments on MEG

Sources estimated from resting data (no stimulation)

a) Validation by classifying another data set with four
stimulation modalities: visual, auditory, tactile, rest.
» Trained a linear SVM on estimated sources
» Number of layers in MLP ranging from 1 to 4

b) Attempt to visualize nonlinear processing

a
S

b) L3 ‘.a
L2 NgC TVIF VWOLF

L WOT MQE WX
TCL DAE  kTDSEP NSVICA ‘.’ ‘.' ‘0’

Classification accuracy (%)
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Permutation-contrastive learning
Time-contrastive learning

Nonlinear ICA Auxiliary variables framework

Auxiliary variables: Alternative to temporal structure
(Arandjelovic & Zisserman, 2017; Hyvarinen et al, 2019)

Look at correlations of video (main data) audio (aux var)

Fingerpicking ~ Lawnmowing  Paccordion  P.bassguitwr P saxophone Typing P. clarinet gan

Figure 3. Learnt visual concepts. Each column shows five i hat most activate a particular unit of the 512 i for the vision
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Connection to VAE's

Deep Latent Variable Models and VAE's

» General framework with observed data vector x and latent z:
p(x,2) = p(xl2)p(z), p(x) = / p(x,2)dz

where 0 is a vector of parameters, e.g. in a neural network
» Posterior p(x|z) could model nonlinear mixing
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Deep Latent Variable Models and VAE's

» General framework with observed data vector x and latent z:
p(x,2) = p(xl2)p(z), p(x) = / p(x,2)dz

where 0 is a vector of parameters, e.g. in a neural network

» Posterior p(x|z) could model nonlinear mixing
» Variational autoencoders (VAE):
> Model:

» Define prior so that z white Gaussian (thus independent z;)
> Define posterior so that x = f(z) +n

» Estimation:

> Approximative maximization of likelihood
> Approximation is ‘“variational lower bound”
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Connection to VAE's

Deep Latent Variable Models and VAE's

» General framework with observed data vector x and latent z:
p(x,2) = p(xl2)p(z), p(x) = / p(x,2)dz

where 0 is a vector of parameters, e.g. in a neural network

» Posterior p(x|z) could model nonlinear mixing
» Variational autoencoders (VAE):
> Model:

» Define prior so that z white Gaussian (thus independent z;)
> Define posterior so that x = f(z) +n

» Estimation:

> Approximative maximization of likelihood
> Approximation is ‘“variational lower bound”

» Is such a model identifiable?



Connection to VAE's

|dentifiable VAE

» Original VAE is not identifiable:

» Latent variables usually white and Gaussian:
» Any orthogonal rotation is equivalent: 2’ = Uz has exactly the
same distribution.
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Connection to VAE's

|dentifiable VAE

» Original VAE is not identifiable:
» Latent variables usually white and Gaussian:
» Any orthogonal rotation is equivalent: 2’ = Uz has exactly the
same distribution.

» Our new iVAE (Khemakhem, Kingma, Hyvarinen, 2019):

» Assume we also observe auxiliary variable u,
e.g. audio for video, segment label, history
» General framework, not just time structure

H

» z; conditionally independent
given u

» Variant of our nonlinear ICA,
hence identifiable

_ Performance _
a
H
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Connection to VAE's

Application to causal analysis

» Causal discovery: learning causal structure without
interventions

» We can use nonlinear ICA to find general non-linear causal
relationships (Monti et al, UAI2019)
> Identifiability absolutely necessary

Ny Ny
/Z{ S1: Xy = fi(\)
1
\' Sy i Xo = fo(X1, No)
X1 X5
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Connection to VAE's

Conclusion

» Conditions for ordinary deep learning:
> Big data, big computers, class labels (outputs)
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Connection to VAE's

Conclusion

» Conditions for ordinary deep learning:
> Big data, big computers, class labels (outputs)

v

If no class labels: unsupervised learning

v

Independent component analysis can be made nonlinear
» Special assumptions needed for identifiability

v

Self-supervised methods are easy to implement
» Connection to VAE's can be made — iVAE
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Connection to VAE's

Conclusion

» Conditions for ordinary deep learning:
> Big data, big computers, class labels (outputs)

v

If no class labels: unsupervised learning

v

Independent component analysis can be made nonlinear
» Special assumptions needed for identifiability

v

Self-supervised methods are easy to implement
» Connection to VAE's can be made — iVAE

v

Principled framework for “disentanglement”

A. Hyvérinen Nonlinear ICA
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