Nonlinear independent component analysis: A principled framework for unsupervised deep learning

Aapo Hyvärinen

[Now:] Parietal Team, INRIA-Saclay, France
[Earlier:] Gatsby Unit, University College London, UK
[Always:] Dept of Computer Science, University of Helsinki, Finland
[Kind of:] CIFAR
Abstract

▶ Short critical introduction to deep learning
▶ Importance of Big Data
Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
- Disentanglement methods try to find independent factors
Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
- Disentanglement methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?
Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
- Disentanglement methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?
- Problem: Nonlinear ICA fundamentally ill-defined
Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
- Disentanglement methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?
- Problem: Nonlinear ICA fundamentally ill-defined
- Solution 1: use temporal structure in time series, in a self-supervised fashion
Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
- Disentanglement methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?
- Problem: Nonlinear ICA fundamentally ill-defined
- Solution 1: use temporal structure in time series, in a self-supervised fashion
- Solution 2: use an extra auxiliary variable in a VAE framework
Success of Artificial Intelligence

- Autonomous vehicles, machine translation, game playing, search engines, recommendation machine, etc.

- Most modern applications based on deep learning
Neural networks

- Layers of “neurons” repeating linear transformations and simple nonlinearities f
 \[x_i(L + 1) = f \left(\sum_j w_{ij}(L)x_j(L) \right), \] where L is layer

 with e.g. $f(x) = \max(0, x)$

- Can approximate “any” nonlinear input-output mappings

- Learns by nonlinear regression (e.g. least-squares)
Deep learning

- Deep Learning = learning in neural network with many layers
- With enough data, can learn any input-output relationship: image-category / past-present / friends - political views
- Present boom started by Krizhevsky, Sutskever, Hinton, 2012: Superior recognition success of objects in images
Characteristics of deep learning

- **Nonlinearity**: E.g. recognition of a cat is highly nonlinear
 - A linear model would use a single prototype
 - But locations, sizes, viewpoints highly variable
Characteristics of deep learning

- **Nonlinearity:** E.g. recognition of a cat is highly nonlinear
 - A linear model would use a single prototype
 - But locations, sizes, viewpoints highly variable

- Needs **big data**: E.g. millions of images from the Internet
 - Because general nonlinear functions have many parameters
Characteristics of deep learning

▶ **Nonlinearity**: E.g. recognition of a cat is highly nonlinear
 ▶ A linear model would use a single prototype
 But locations, sizes, viewpoints highly variable

▶ Needs **big data**: E.g. millions of images from the Internet
 ▶ Because general nonlinear functions have many parameters

▶ Needs **big computers**: Graphics Processing Units (GPU)
 ▶ Obvious consequence of need for big data, and nonlinearities
Characteristics of deep learning

- **Nonlinearity**: E.g. recognition of a cat is highly nonlinear
 - A linear model would use a single prototype
 But locations, sizes, viewpoints highly variable

- Needs **big data**: E.g. millions of images from the Internet
 - Because general nonlinear functions have many parameters

- Needs **big computers**: Graphics Processing Units (GPU)
 - Obvious consequence of need for big data, and nonlinearities

- Most **theory quite old**: Nonlinear (logistic) regression
 - But earlier we didn’t have enough data and “compute”
Success stories in deep learning need category labels

- Is it a cat or a dog? Liked or not liked?
Importance unsupervised learning

- Success stories in deep learning need category labels
 - Is it a cat or a dog? Liked or not liked?
- Problem: labels may be
 - Difficult to obtain
 - Unrealistic in neural modelling
 - Ambiguous
Importance unsupervised learning

- Success stories in deep learning need category labels
 - Is it a cat or a dog? Liked or not liked?
- Problem: labels may be
 - Difficult to obtain
 - Unrealistic in neural modelling
 - Ambiguous
Importance unsupervised learning

- Success stories in deep learning need category labels
 - Is it a cat or a dog? Liked or not liked?
- Problem: labels may be
 - Difficult to obtain
 - Unrealistic in neural modelling
 - Ambiguous

- Unsupervised learning:
 - we only observe a data vector \(\mathbf{x} \), no label or target \(\mathbf{y} \)
 - E.g. photographs with no labels
- Very difficult, largely unsolved problem
ICA as principled unsupervised learning

Linear independent component analysis (ICA)

\[x_i(t) = \sum_{j=1}^{n} a_{ij} s_j(t) \quad \text{for all } i, j = 1 \ldots n \] (2)

\[x_i(t) \] is the \(i \)-th observed signal at sample point \(t \) (possibly time)

\(a_{ij} \) are constant parameters describing “mixing”

Assuming independent, non-Gaussian latent “sources” \(s_j \)
ICA as principled unsupervised learning

- Linear independent component analysis (ICA)

\[x_i(t) = \sum_{j=1}^{n} a_{ij} s_j(t) \quad \text{for all } i, j = 1 \ldots n \] (2)

- \(x_i(t) \) is \(i \)-th observed signal at sample point \(t \) (possibly time)
- \(a_{ij} \) constant parameters describing “mixing”
- Assuming independent, non-Gaussian latent “sources” \(s_j \)
- ICA is identifiable, i.e. well-defined: (Darmois-Skitovich \sim 1950; Comon, 1994)
 - Observing only \(x_i \) we can recover both \(a_{ij} \) and \(s_j \)
 - I.e. original sources can be recovered
 - As opposed to PCA, factor analysis
Unsupervised learning can have different goals

1) Accurate model of data distribution?
 ▶ E.g. Variational Autoencoders are good

2) Sampling points from data distribution?
 ▶ E.g. Generative Adversarial Networks are good

3) Useful features for supervised learning?
 ▶ Many methods, “Representation learning”

4) Reveal underlying structure in data, disentangle latent quantities?
 ▶ Independent Component Analysis! (this talk)

▶ These goals are orthogonal, even contradictory!
▶ Probably, no method can accomplish all (Cf. Theis et al 2015)
▶ In unsupervised learning research, must specify actual goal
Unsupervised learning can have different goals

1) Accurate model of data distribution?
 ▶ E.g. Variational Autoencoders are good
Unsupervised learning can have different goals

1) Accurate model of data distribution?
 - E.g. Variational Autoencoders are good

2) Sampling points from data distribution?
 - E.g. Generative Adversarial Networks are good
Unsupervised learning can have different goals

1) Accurate model of data distribution?
 ▶ E.g. Variational Autoencoders are good
2) Sampling points from data distribution?
 ▶ E.g. Generative Adversarial Networks are good
3) Useful features for supervised learning?
 ▶ Many methods, “Representation learning”
Unsupervised learning can have different goals

1) Accurate model of data distribution?
 ▶ E.g. Variational Autoencoders are good

2) Sampling points from data distribution?
 ▶ E.g. Generative Adversarial Networks are good

3) Useful features for supervised learning?
 ▶ Many methods, “Representation learning”

4) Reveal underlying structure in data, disentangle latent quantities?
 ▶ Independent Component Analysis! (this talk)
Unsupervised learning can have different goals

1) Accurate model of data distribution?
 ▶ E.g. Variational Autoencoders are good

2) Sampling points from data distribution?
 ▶ E.g. Generative Adversarial Networks are good

3) Useful features for supervised learning?
 ▶ Many methods, “Representation learning”

4) Reveal underlying structure in data, disentangle latent quantities?
 ▶ Independent Component Analysis! (this talk)
 ▶ These goals are orthogonal, even contradictory!
 ▶ Probably, no method can accomplish all (Cf. Theis et al 2015)
Unsupervised learning can have different goals

1) Accurate model of data distribution?
 ▶ E.g. Variational Autoencoders are good

2) Sampling points from data distribution?
 ▶ E.g. Generative Adversarial Networks are good

3) Useful features for supervised learning?
 ▶ Many methods, “Representation learning”

4) Reveal underlying structure in data, disentangle latent quantities?
 ▶ Independent Component Analysis! (this talk)
 ▶ These goals are orthogonal, even contradictory!
 ▶ Probably, no method can accomplish all (Cf. Theis et al 2015)
 ▶ In unsupervised learning research, must specify actual goal
Identifiability means ICA does blind source separation

Observed signals:

Principal components:

Independent components are original sources:
Example of ICA: Brain source separation

(Hyvärinen, Ramkumar, Parkkonen, Hari, 2010)
Example of ICA: Image features

(Olshausen and Field, 1996; Bell and Sejnowski, 1997)

Features similar to wavelets, Gabor functions, simple cells.
Nonlinear ICA is an unsolved problem

- Extend ICA to nonlinear case to get general disentanglement?
- Unfortunately, “basic” nonlinear ICA is not identifiable:
- If we define nonlinear ICA model simply as

\[x_i(t) = f_i(s_1(t), \ldots, s_n(t)) \quad \text{for all } i, j = 1 \ldots n \]

we cannot recover original sources (Darmois, 1952; Hyvärinen & Pajunen, 1999)
Darmois construction

- Darmois (1952) showed impossibility of nonlinear ICA:
- For any x_1, x_2, can always construct $y = g(x_1, x_2)$
 independent of x_1 as

$$g(\xi_1, \xi_2) = P(x_2 < \xi_2 | x_1 = \xi_1)$$ \hspace{1cm} (4)
Darmois construction

- Darmois (1952) showed impossibility of nonlinear ICA:
- For any x_1, x_2, can always construct $y = g(x_1, x_2)$ independent of x_1 as
 \[
g(\xi_1, \xi_2) = P(x_2 < \xi_2|x_1 = \xi_1)
\]

- Independence alone too weak for identifiability:
 We could take x_1 as independent component which is absurd
- Maximizing non-Gaussianity of components equally absurd:
 Scalar transform $h(x_1)$ can give any distribution
Temporal structure helps in nonlinear ICA

- Two kinds of temporal structure:
 - Autocorrelations (Harmeling et al 2003)
 - Nonstationarity (Hyvärinen and Morioka, NIPS2016)

- Now, identifiability of nonlinear ICA can be proven (Sprekeler et al, 2014; Hyvärinen and Morioka, NIPS2016 & AISTATS2017):
 Can find original sources!
Trick: “Self-supervised” learning

- Supervised learning: we have
 - “input” x, e.g. images / brain signals
 - “output” y, e.g. content (cat or dog) / experimental condition
Trick: “Self-supervised” learning

- **Supervised learning**: we have
 - “input” x, e.g. images / brain signals
 - “output” y, e.g. content (cat or dog) / experimental condition

- **Unsupervised learning**: we have
 - only “input” x
Trick: “Self-supervised” learning

- **Supervised learning**: we have
 - “input” x, e.g. images / brain signals
 - “output” y, e.g. content (cat or dog) / experimental condition

- **Unsupervised learning**: we have
 - only “input” x

- **Self-supervised** learning: we have
 - only “input” x
 - *but we invent* y somehow, e.g. by creating corrupted data, and use supervised algorithms
Deep Learning
Independent component analysis
Nonlinear ICA
Connection to VAE’s

ICA as principled unsupervised learning
Difficulty of nonlinear ICA

Trick: “Self-supervised” learning

- **Supervised learning**: we have
 - “input” x, e.g. images / brain signals
 - “output” y, e.g. content (cat or dog) / experimental condition

- **Unsupervised learning**: we have
 - only “input” x

- **Self-supervised** learning: we have
 - only “input” x
 - *but we invent y* somehow, e.g. by creating corrupted data, and use supervised algorithms

- Numerous examples in computer vision:
 - Remove part of photograph, learn to predict missing part
 (x is original data with part removed, y is missing part)
Permutation-contrastive learning (Hyvärinen and Morioka 2017)

- Observe n-dim time series $\mathbf{x}(t)$
Permutation-contrastive learning (Hyvärinen and Morioka 2017)

- Observe n-dim time series $x(t)$
- Take short time windows as new data

$$y(t) = (x(t), x(t - 1))$$
Permutation-contrastive learning (Hyvärinen and Morioka 2017)

- Observe n-dim time series $\mathbf{x}(t)$
- Take short time windows as new data
 \[\mathbf{y}(t) = (\mathbf{x}(t), \mathbf{x}(t-1)) \]
- Create randomly time-permuted data
 \[\mathbf{y}^*(t) = (\mathbf{x}(t), \mathbf{x}(t^*)) \]

with t^* a random time point.
Permutation-contrastive learning *(Hyvärinen and Morioka 2017)*

- Observe n-dim time series $\mathbf{x}(t)$
- Take short time windows as new data
 \[
 \mathbf{y}(t) = (\mathbf{x}(t), \mathbf{x}(t-1))
 \]
- Create randomly time-permuted data
 \[
 \mathbf{y}^*(t) = (\mathbf{x}(t), \mathbf{x}(t^*))
 \]
 with t^* a random time point.
- Train NN to discriminate \mathbf{y} from \mathbf{y}^*
- Could this really do Nonlinear ICA?
Theorem: PCL estimates nonlinear ICA with time dependencies

- Assume data follows nonlinear ICA model $x(t) = f(s(t))$ with
 - smooth, invertible nonlinear mixing $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$
 - independent sources $s_i(t)$
 - temporally dependent (strongly enough), stationary
 - non-Gaussian (strongly enough)
Theorem: PCL estimates nonlinear ICA with time dependencies

- Assume data follows nonlinear ICA model $x(t) = f(s(t))$ with
 - smooth, invertible nonlinear mixing $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$
 - independent sources $s_i(t)$
 - temporally dependent (strongly enough), stationary
 - non-Gaussian (strongly enough)
- Then, PCL demixes nonlinear ICA: hidden units give $s_i(t)$
 - A constructive proof of identifiability
Theorem: PCL estimates nonlinear ICA with time dependencies

- Assume data follows nonlinear ICA model $x(t) = f(s(t))$ with
 - smooth, invertible nonlinear mixing $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$
 - independent sources $s_i(t)$
 - temporally dependent (strongly enough), stationary
 - non-Gaussian (strongly enough)
- Then, PCL demixes nonlinear ICA: hidden units give $s_i(t)$
 - A constructive proof of identifiability
- For Gaussian sources, demixes up to linear mixing
Illustration of demixing capability

- AR Model with Laplacian innovations, $n = 2$
 \[
 \log p(s(t)|s(t-1)) = -|s(t) - \rho s(t-1)|
 \]
- Nonlinearity is MLP. Mixing: leaky ReLU’s; Demixing: maxout

Sources (s)
Mixtures (x)
Estimates by kTDSEP (Harmeling et al 2003)
Estimates by our PCL
Time-contrastive learning: (Hyvärinen and Morioka 2016)

- Observe n-dim time series $\mathbf{x}(t)$
Time-contrastive learning: (Hyvärinen and Morioka 2016)

- Observe n-dim time series $\mathbf{x}(t)$
- Divide $\mathbf{x}(t)$ into T segments (e.g. bins with equal sizes)
Time-contrastive learning: (Hyvärinen and Morioka 2016)

- Observe n-dim time series $\mathbf{x}(t)$
- Divide $\mathbf{x}(t)$ into T segments (e.g. bins with equal sizes)
- Train MLP to tell which segment a single data point comes from
 - Number of classes is T, labels given by index of segment
 - Multinomial logistic regression

Feature extractor: $\mathbf{h}(\mathbf{x}; \theta)$

Multinomial logistic regression: \mathbf{W}, \mathbf{b}
Time-contrastive learning: (Hyvärinen and Morioka 2016)

- Observe n-dim time series $\mathbf{x}(t)$
- Divide $\mathbf{x}(t)$ into T segments (e.g. bins with equal sizes)
- Train MLP to tell which segment a single data point comes from
 - Number of classes is T, labels given by index of segment
 - Multinomial logistic regression
- In hidden layer \mathbf{h}, NN should learn to represent nonstationarity (≡ differences between segments)
- Nonlinear ICA for nonstationary data!
Experiments on MEG

- Sources estimated from resting data (no stimulation)
- a) Validation by classifying another data set with four stimulation modalities: visual, auditory, tactile, rest.
 - Trained a linear SVM on estimated sources
 - Number of layers in MLP ranging from 1 to 4
- b) Attempt to visualize nonlinear processing
Auxiliary variables: Alternative to temporal structure
(Arandjelovic & Zisserman, 2017; Hyvärinen et al, 2019)

Look at correlations of video (main data) and audio (aux var)

Figure 3. **Learned visual concepts.** Each column shows five images that most activate a particular unit of the 512 in pool4 for the vision...
Deep Learning
Independent component analysis
Nonlinear ICA
Connection to VAE’s

Deep Latent Variable Models and VAE’s

- General framework with observed data vector x and latent z:
 \[
p(x, z) = p(x|z)p(z), \quad p(x) = \int p(x, z)dz
 \]
 where θ is a vector of parameters, e.g. in a neural network
- Posterior $p(x|z)$ could model nonlinear mixing

Variational autoencoders (VAE):
- Model:
 - Define prior so that z white Gaussian (thus independent z_i)
 - Define posterior so that $x = f(z) + n$
- Estimation:
 - Approximative maximization of likelihood
 - Approximation is “variational lower bound”
 - Is such a model identifiable?

A. Hyvärinen Nonlinear ICA
Deep Latent Variable Models and VAE’s

- General framework with observed data vector x and latent z:
 \[p(x, z) = p(x|z)p(z), \quad p(x) = \int p(x, z)dz \]

 where θ is a vector of parameters, e.g. in a neural network

- Posterior $p(x|z)$ could model nonlinear mixing

- **Variational autoencoders (VAE):**
 - **Model:**
 - Define prior so that z white Gaussian (thus independent z_i)
 - Define posterior so that $x = f(z) + n$
 - **Estimation:**
 - Approximative maximization of likelihood
 - Approximation is “variational lower bound”
Deep Latent Variable Models and VAE’s

- General framework with observed data vector \mathbf{x} and latent \mathbf{z}:
 \[
p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z}), \quad p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{z})d\mathbf{z}
\]
 where θ is a vector of parameters, e.g. in a neural network

- Posterior $p(\mathbf{x}|\mathbf{z})$ could model nonlinear mixing

- **Variational autoencoders (VAE):**
 - **Model:**
 - Define prior so that \mathbf{z} white Gaussian (thus independent z_i)
 - Define posterior so that $\mathbf{x} = f(\mathbf{z}) + \mathbf{n}$
 - **Estimation:**
 - Approximative maximization of likelihood
 - Approximation is “variational lower bound”

- Is such a model identifiable?
Identifiable VAE

▶ Original VAE is not identifiable:
 ▶ Latent variables usually white and Gaussian:
 ▶ Any orthogonal rotation is equivalent: $z' = Uz$ has exactly the same distribution.
Identifiable VAE

- Original VAE is not identifiable:
 - Latent variables usually white and Gaussian:
 - Any orthogonal rotation is equivalent: \(z' = Uz \) has exactly the same distribution.

- Our new iVAE (Khemakhem, Kingma, Hyvärinen, 2019):
 - Assume we also observe auxiliary variable \(u \), e.g. audio for video, segment label, history
 - General framework, not just time structure

- \(z_i \) conditionally independent given \(u \)
- Variant of our nonlinear ICA, hence identifiable
Application to causal analysis

- **Causal discovery**: learning causal structure without interventions
- We can use nonlinear ICA to find general non-linear causal relationships (Monti et al, UAI2019)
- Identifiability absolutely necessary

\[
S_1 : \quad X_1 = f_1(N_1) \\
S_2 : \quad X_2 = f_2(X_1, N_2)
\]
Conclusion

- Conditions for ordinary deep learning:
 - Big data, big computers, class labels (outputs)
Conclusion

- Conditions for ordinary deep learning:
 - Big data, big computers, class labels (outputs)
 - If no class labels: \textit{unsupervised} learning
Conclusion

- Conditions for ordinary deep learning:
 - Big data, big computers, class labels (outputs)
 - If no class labels: **unsupervised learning**
- Independent component analysis can be made nonlinear
 - Special assumptions needed for identifiability
Conclusion

- Conditions for ordinary deep learning:
 - Big data, big computers, class labels (outputs)
- If no class labels: unsupervised learning
- Independent component analysis can be made nonlinear
 - Special assumptions needed for identifiability
- Self-supervised methods are easy to implement
Conclusion

- Conditions for ordinary deep learning:
 - Big data, big computers, class labels (outputs)
- If no class labels: unsupervised learning
- Independent component analysis can be made nonlinear
 - Special assumptions needed for identifiability
- Self-supervised methods are easy to implement
- Connection to VAE’s can be made → iVAE
Conclusion

- Conditions for ordinary deep learning:
 - Big data, big computers, class labels (outputs)
- If no class labels: unsupervised learning
- Independent component analysis can be made nonlinear
 - Special assumptions needed for identifiability
- Self-supervised methods are easy to implement
- Connection to VAE’s can be made → iVAE
- Principled framework for “disentanglement”