Unsupervised machine learning for analysis of EEG and MEG at rest

Aapo Hyvärinen

Dept of Mathematics and Statistics, Dept of Computer Science, HIIT
University of Helsinki, Finland

with

Pavan Ramkumar, Riitta Hari, Lauri Parkkonen (Aalto University, Finland)
Abstract

- Resting-state networks in the brain
- Improving ICA of resting EEG/MEG
 - Applying ICA on time-frequency decompositions
 - Spatial version of independent component analysis (ICA)
- Testing components: Are they just random effects?
 - Intersubject consistency provides an plausible null hypothesis
- Causal analysis / effective connectivity
 - Structural equation models better estimated using non-Gaussianity
The brain at rest

- The subject’s brain is being measured while
 - the subject has no task
 - the subject receives no stimulation
- Measurements by
 - functional magnetic resonance imaging (fMRI)
 - electroencephalography (EEG)
 - magnetoencephalography (MEG)
- Why is this data so interesting?
 - Not dependent on subjective choices in experimental design (e.g. stimulation protocol, task)
 - Not much analysis has been done so far
 - Completely new viewpoint: rich internal dynamics
Is anything happening in the brain at rest?

- Some brain areas are actually more active at rest
- “Default-mode network(s)” in PET and fMRI (Raichle 2001)
- Brain activity is “intrinsic” instead of just responses to stimulation
- How to analyse resting state in more detail?

(Raichle, 2010 based on Shulman et al 1997)
Independent component analysis (ICA)

- Supervised methods cannot be used: no “teaching signal”
- Assume a linear mixing model

\[x_i = \sum_j a_{ij} s_j \]

where \(x_i \) are observed variables, and \(s_j \) latent variables.

- ICA finds both \(a_{ij} \) and \(s_j \) by maximising sparsity of the \(s_j \).
- Sparsity = probability density has heavy tails and peak at zero:

![Graphs comparing Gaussian and sparse distributions](image)
ICA finds resting-state networks in fMRI

- a) Medial and
- b) lateral visual areas,
- c) Auditory system,
- d) Sensory-motor system,
- e) Default-mode network,
- f) Executive control,
- g) Dorsal visual stream

(Beckmann et al, 2005)
ICA finds resting-state networks in fMRI

a) Medial and
b) lateral visual areas,
c) Auditory system,
d) Sensory-motor system,
e) Default-mode network,
f) Executive control,
g) Dorsal visual stream

(Beckmann et al, 2005)

Very similar results obtained if subject watching a movie!
How about EEG and MEG?

- EEG and MEG are measurements of electrical activity in the brain
 - Very high temporal accuracy (millisecond scale)
 - Not so high spatial accuracy (less than in fMRI)
- Typically characterized by oscillations, e.g. at around 10 Hz
- Up to 306 time series (signals), $10^4 \ldots 10^5$ time points.
- Information very different from fMRI
Different sparsities of EEG/MEG data

- ICA finds components by maximizing sparsity, but sparsity of what?
 Depends on preprocessing and representation
- Assume we do wavelet or short-time Fourier transform
- We have different sparsities:
ICA finds components by maximizing sparsity, but sparsity *of what*? Depends on preprocessing and representation.

- Assume we do wavelet or short-time Fourier transform.
- We have different sparsities:

Sparsity in time: Temporally modulated.
ICA finds components by maximizing sparsity, but sparsity of what?
Depends on preprocessing and representation

Assume we do wavelet or short-time Fourier transform

We have different sparsities:

- **Sparsity in time:** Temporally modulated
- **Sparsity in space:** Localised on cortex
ICA finds components by maximizing sparsity, but sparsity of what?
Depends on preprocessing and representation
Assume we do wavelet or short-time Fourier transform
We have different sparsities:

- **Sparsity in time:** Temporally modulated
- **Sparsity in space:** Localised on cortex
- **Sparsity in frequency:** Narrow-band signals
ICA finds components by maximizing sparsity, but sparsity of what?
Depends on preprocessing and representation

Assume we do wavelet or short-time Fourier transform

We have different sparsities:

- **Sparsity in time:** Temporally modulated
- **Sparsity in space:** Localised on cortex
- **Sparsity in frequency:** Narrow-band signals

For example: Joint sparsity in time and frequency allows separation of even Gaussian sources (NeuroImage, 2010).
Spatial sparsity (spatial ICA)

- Images observed at different time points are linear sums of “source images”

\[
\begin{align*}
\text{Image 1} &= a_{11} + a_{12} + \ldots + a_{1n} \\
\text{Image 2} &= a_{21} \\
\vdots \\
\text{Image n} &= a_{n1}
\end{align*}
\]

- Reverses the roles of observations and variables
- Maximizes spatial sparsity alone
- Almost always used in fMRI
Spatial sparsity (spatial ICA)

- Images observed at different time points are linear sums of “source images”

\[\begin{align*}
 \text{Image}_1 & = a_{11} \cdot + a_{12} \cdot + \ldots + a_{1n} \cdot \\
 \text{Image}_2 & = a_{21} \cdot + \cdot + \cdot \\
 \vdots & \vdots \\
 \text{Image}_n & = a_{n1} \cdot \\
\end{align*} \]

- Reverses the roles of observations and variables
- Maximizes spatial sparsity alone
- Almost always used in fMRI
Spatial ICA in MEG

- Spatial ICA possible for MEG by projecting data on the cortex
- We combine this with short-time Fourier transforms
- Maximizes sparsity spatially and spectrally
- **No** assumption on temporal independence

(Ramkumar et al, Human Brain Mapping, in press. Here, not resting data but with “naturalistic stimulation”)
Testing ICs: motivation

- ICA algorithms give a fixed number of components and do not tell which ones are reliable (statistically significant)
- How do we know that an estimated component is not just a random effect?
- Algorithmic artifacts also possible (local minima)
ICA algorithms give a fixed number of components and do not tell which ones are reliable (statistically significant).

How do we know that an estimated component is not just a random effect?

Algorithmic artifacts also possible (local minima).

We develop a statistical test based on inter-subject consistency:

- Do ICA separately on several subjects
- A component is significant if it appears in two or more subjects in a sufficiently similar form
- We formulate a rigorous null hypothesis to quantify this idea (NeuroImage, in press)
Testing ICs: results

One IC

Distribution over channels

Modulation by stimulation

Fourier spectrum

#8

Frequency (Hz)

Another IC

Distribution over channels

Modulation by stimulation

Fourier spectrum

#3

Frequency (Hz)
Causal analysis: Introduction

- Model connections between the measured variables
- Two fundamental approaches
 - If time-resolution of measurements fast enough, we can use autoregressive modelling (Granger causality)
 - Otherwise, we need structural equation models
- If measured variables are raw EEG/MEG, we should first localize sources
- After blind source separation, sources are uncorrelated
 ⇒ More meaningful to model dependencies of envelopes (amplitudes, variances)
Structural equation models

- How does an externally imposed change in one variable affect the others?

\[x_i = \sum_{j \neq i} b_{ij} x_j + e_i \]

- Difficult to estimate, not simple regression
 - Classic methods fail in general
Structural equation models

- How does an externally imposed change in one variable affect the others?
 \[x_i = \sum_{j \neq i} b_{ij} x_j + e_i \]

- Difficult to estimate, not simple regression
 - Classic methods fail in general

- Can be estimated if (Shimizu et al., JMLR, 2005)
 1. the \(e_i(t) \) are mutually independent
 2. the \(e_i(t) \) are non-Gaussian, e.g. sparse
 3. the \(b_{ij} \) are acyclic: There is an ordering of \(x_i \) where effects are all “forward”
Simple measures of causal direction

- The very simplest case: choose between regression models
 \[y = \rho x + d \]
 \[x = \rho y + e \]
 where \(d \) is independent of \(x \), and symmetrically

- If data is Gaussian we can estimate \(\rho = E\{xy\} \)

BUT: Both models have same likelihood!

- For non-Gaussian data, approximate log-likelihood ratio as
 \[R = \rho E\{xg(y) - g(x)y\} \]
 where \(g \) is a nonlinearity similar to those used in ICA:
 \(g(u) = u^3 \) or \(g(u) = -\tanh(u) \) (ACML2010).

- Choose direction based on sign of \(R \)!
Sample of results on MEG

Black: positive influence, red: negative influence.
Green: manually drawn grouping.
Here, using GARCH model (Zhang and Hyvärinen, UAI2010)
Exploratory data analysis by ICA can give information about internal dynamics during rest, and

- activity not directly related to stimulation
- responses when stimulation too complex
Discussion

- Exploratory data analysis by ICA can give information about internal dynamics during rest, and
 - activity not directly related to stimulation
 - responses when stimulation too complex
- We present two stages of analysis
 - Finding sources by different variants of ICA
 - Spatial ICA, time-frequency decompositions, etc.
 - Analyzing their effective connectivity:
 - Non-Gaussian versions of SEM
Exploratory data analysis by ICA can give information about internal dynamics during rest, and
- activity not directly related to stimulation
- responses when stimulation too complex

We present two stages of analysis
- Finding sources by different variants of ICA
 - Spatial ICA, time-frequency decompositions, etc.
- Analyzing their effective connectivity:
 - Non-Gaussian versions of SEM

At some point, intersubject consistency should be analyzed
- Makes significance tests possible
Discussion

- Exploratory data analysis by ICA can give information about internal dynamics during rest, and
 - activity not directly related to stimulation
 - responses when stimulation too complex
- We present two stages of analysis
 - Finding sources by different variants of ICA
 - Spatial ICA, time-frequency decompositions, etc.
 - Analyzing their effective connectivity:
 - Non-Gaussian versions of SEM
- At some point, intersubject consistency should be analyzed
 - Makes significance tests possible