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Problem of blind source separation

There is a number of “source signals”:

Due to some external circumstances, only linear mixtures ofthe source
signals are observed.

Estimate (separate) original signals!



Principal component analysis does not recover original signals

A solution is possible

Use information onstatistical independenceto recover:



Independent Component Analysis
(Hérault and Jutten, 1984-1991)

• Observed random variablesxi are modelled as linear sums of

hidden variables:

xi =
m

∑
j=1

ai j sj , i = 1...n (1)

• Mathematical formulation of blind source separation problem

• Not unlike factor analysis

• Matrix of ai j is constant (factor loadings), called “mixing matrix”.

• Thesi are hidden random factors called “independent components”, or

“source signals”

• Problem: Estimate bothai j andsj , observing onlyxi .



When can the ICA model be estimated?

• Must assume:

– Thesi are mutually statistically independent

– Thesi arenongaussian (non-normal)

– (Optional:) Number of independent components is equal to number

of observed variables

• Then: mixing matrix and components can be identified (Comon,1994)

A very surprising result!



Reminder: Principal component analysis

• Basic idea: find directions∑i wixi of maximum variance

• We must constrain the norm ofw: ∑i w
2
i = 1, otherwise solution is that

wi are infinite.

• For more than one component, find direction of max var orthogonal to

components previously found.

• Classic factor analysis has essentially same idea as in PCA:

explain maximal variance with limited number of components



Comparison of ICA, factor analysis and principal componentanalysis

• ICA is nongaussian FA with no separate noise or specific factors.

So many components used that all variance is explained by them.

• No factor rotation left unknownbecause of identifiability result

• In contrast to FA and PCA, components really give the original source

signals or underlying hidden variables

• Catch: only works when components are nongaussian

– Many “psychological” hidden variables (e.g. “intelligence”) may be

(practically) gaussian because sum of many independent variables

(central limit theorem).

– But signals measured by sensors are usually quite nongaussian



Some examples of nongaussianity
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Why classic methods cannot find original components or sources

• In PCA and FA: find componentsyi which are uncorrelated

cov(yi ,y j) = E{yiy j}−E{yi}E{y j} = 0 (2)

and maximize explained variance (or variance of components)

• Such methods need only the covariances, cov(xi ,x j)

• However, there are many different component sets that are

uncorrelated, because

– The number of covariances is≈ n2/2 due to symmetry

– So, we cannot solve then2 factor loadings, not enough information!

(“More equations than variables”)

• This is why PCA and FA cannot find the underlying components (in

general)



Nongaussianity, combined with independence, gives more information

• For independent variables we have

E{h1(y1)h2(y2)}−E{h1(y1)}E{h2(y2)} = 0. (3)

• For nongaussian variables, nonlinear covariances give more
information than just covariances.

• This is not true for multivariate gaussian distribution

– Distribution is completely determined by covariances (andmeans)

– Uncorrelated gaussian variables are independent, and their

– distribution (standardized) is same in all directions (seebelow)

⇒ ICA model cannot be estimated for gaussian data.

• In practice, simpler to look at properties of linear combinations∑i wixi .
PCA maximizes variance of∑i wixi , can we do something better?
Yes, see below.



Illustration

Two components with uniform distributions:

Original components, observed mixtures, PCA, ICA

PCA does not find original coordinates, ICA does!



Illustration of problem with gaussian distributions

Original components, observed mixtures, PCA

Distribution after PCA is the same as distribution before mixing!

“Factor rotation problem” in classic FA



Basic intuitive principle of ICA estimation

• Inspired the Central Limit Theorem:

– Average of many independent random variables will have a

distribution that is close(r) to gaussian

– In the limit of an infinite number of random variables, the

distribution tends to gaussian

• Consider a linear combination∑i wixi = ∑i qisi

• Because of theorem,∑i qisi should be more gaussian thansi .

• Maximizing the nongaussianityof ∑i wixi , we can findsi .

• Also known as projection pursuit.

• Cf. principal component analysis: maximize variance of∑i wixi .



Illustration of changes in nongaussianity
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Histogram and scatterplot, original uniform distributions
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Histogram and scatterplot, mixtures given by PCA



Development of ICA algorithms

• Nongaussianity measure: Essential ingredient

– Kurtosis: global consistency, but nonrobust.

– Differential entropy: statistically justified, but difficult to compute.

∗ Essentially same as likelihood (Pham et al, 1992/97) or infomax

(Bell and Sejnowski, 1995)

– Rough approximations of entropy: compromise

• Optimization methods

– Gradient methods (e.g. natural gradient; Amari et al, 1996)

– Fast fixed-point algorithm, FastICA (Hyvärinen, 1999)



Combining ICA with factor analysis or PCA

• In practice, it is useful to combine ICA with classic PCA or FA

– First, find asmallnumber of factors with PCA or FA

– Then, perform ICA on those factors

• ICA is then a method offactor rotation

• Very different from varimax etc. which do not use statistical structure,

and cannot find original components (in most cases)

• Reduces noise in signals, reduces computation



ICA on filtered data

• Temporal filtering possible: ICA still holds with the same matrix A

x̃i(t) = f (t)∗xi(t) = ∑
τ

f (τ)xi(t − τ) (4)

⇒ (5)

x̃i(t) = ∑
j

ai j s̃j(t) (6)

• One can try to find a frequency band in which the source signalsare as

independent and nongaussian as possible

• Likewise, short-time fourier transform or wavelet transform can be

done without changingA

• We argued (NeuroImage, 2010) that a short-time Fourier transform

makes data more non-gaussian and improves source separation



Analysis of images: Spatial ICA

• Assume we observe several brain

images at different time points

• ICA expresses observed images

as linear sums of “source images” = an1

= a21

= a11  +a12 ... +a1n

• Reverses the roles of observations and variables

• Usually done only with fMRI, but after cortical projection also possible
with MEG/EEG (Ramkumar et al, Biomag2010)



Connectivity (causality) analysis

• Gómez-Herrero et al (2008) combined ICA with a linear autoregressive

model to analyze phase-coherence

• We formulate an autoregressive model based on energies/powers

(Zhang & Hyv̈arinen, UAI 2010)

Black=positive, Red=negative, Green: manually inserted grouping



Reliability (significance) analysis

• Algorithmic reliability: Are there local minima?

• Statistical reliability: Is the result just a random effect?

• Can be analyzed by randomizing data, or initial point in optimization.

• Previous approaches randomize data from a single subject (Meinecke et

al, 2002; Himberg et al, 2004)

• We proposed (HBM 2010) to consider inter-subject consistency

– Do ICA separately for each subject

– Formulate null hypothesis which says these are unrelated

– Accept component only if it is found similar enough in a sufficient

number of subjects



Conclusion

• ICA is very simple as a model:

linear nongaussian latent variables model

• Solves factor rotation and blind source separation problems,

if data (components) are nongaussian

• Estimate by maximizing nongaussianity of components

• Radically different from PCA both in theory and practice

• Recent and future work:

– Short-time Fourier (or wavelet) transform to improve separation

– Spatial ICA can be done if inverse operator available

– Testing is an important but neglected topic

– Connectivity analysis, next step?


