Natural image statistics and cortical visual processing

Aapo Hyvärinen
Dept of Mathematics and Statistics & Dept of Computer Science
University of Helsinki
Ecological approach to receptive fields

- Why are the receptive fields in visual cortex the way they are?
Classical theories of receptive fields

- Edge detection
- Joint localization in space and frequency
- Texture classification
- But: these give only vague predictions.
Statistical-ecological approach

- What is important in a real environment?
- Natural images have statistical regularities.
- Can we “explain” receptive fields by basic statistical properties of natural images?
- Emergence: a lot of precise predictions from only a couple statistical assumptions.
Outline of this talk:

- Statistical models that account for some properties of the (primary) visual cortex.
 - simple cells
 - complex cells
 - topography (spatial organization)
- Multi-layer approach can predict properties beyond V1.
Linear statistical models of images

\[I(x, y) = s_1 \cdot + s_2 \cdot + \cdots + s_k \cdot \]

- Denote by \(I(x, y) \) the gray-scale values of pixels.
- Model as a linear sum of basis vectors:
 \[I(x, y) = \sum_i A_i(x, y) s_i \] \hspace{1cm} (1)
- What are the “best” basis vectors for natural images?
Independent Component Analysis (Jutten and Hérault, 1991)

- In ICA, we assume that
 - The s_i are mutually statistically independent
 - The s_i are nongaussian, e.g. sparse
 - For simplicity: the number of basis vectors equals the number of pixels

- Then, the actual basis vectors can be estimated, if the data is actually generated using the linear model (Comon, 1994).

- Thus we get the best basis vectors from one statistical viewpoint.

- Inverting the system: $s_i = \sum_{x,y} W_i(x,y)I(x,y)$, we see that the s_i are linear filter (simple cell) outputs.
Sparseness

- A form of nongaussianity often encountered in natural signals
- A random variable is “active” only rarely

Outputs of linear filters are usually sparse when input is natural images.
Sparse coding and ICA

- Sparse coding: Find linear representation

\[I(x,y) = \sum_i A_i(x,y)s_i \]

so that the \(s_i \) are as sparse as possible.

- Important property: a given data point is represented using only a limited number of “active” (clearly non-zero) components \(s_i \).

- In contrast to PCA, active components change from image patch to patch.

- Deep result: For images, ICA is sparse coding.
ICA / sparse coding of natural images
(Olshausen and Field, 1996; Bell and Sejnowski, 1997)
ICA of natural images with colour
(Hoyer and Hyvärinen, 2000)
Model II: Independent subspace analysis

• Components estimated from natural images are not really independent.

• The statistical structure much more complicated (of course!).

• In fact, independent components cannot be found for most kinds of data: There are not enough free parameters.

• Next, we model some dependencies of simple cell (linear filter) outputs.

• This leads to a model of complex cell receptive fields: insensitivity to phase of input.
Independent subspaces
(Hyvärinen and Hoyer, 2000)

- A very basic approach to modelling dependencies.
- Assumption: the s_i can be divided into groups or subspaces, such that
 - the s_i in the same group are dependent on each other
 - dependencies between different groups are not allowed.
- We also need to specify the distributions inside the groups
 \Rightarrow Inspiration from energy pooling models.
Energy pooling inside groups

\[
\begin{align*}
\langle w_1, l \rangle & \quad \langle w_2, l \rangle \\
\langle w_3, l \rangle & \quad \langle w_4, l \rangle \\
\langle w_5, l \rangle & \quad \langle w_6, l \rangle \\
\langle w_7, l \rangle & \quad \langle w_8, l \rangle \\
& \quad \cdots
\end{align*}
\]

\[\Sigma \quad \sqrt{\cdot} \quad \sqrt{\cdot} \]
Independent subspaces of natural image patches

Each group of 4 basis vectors corresponds to one complex cell.
Model III: Spatial organization (topography) in V1

- Receptive field properties mostly change continuously when moving on the cortical surface.
- Retinotopy: localization changes smoothly.
- Orientation changes smoothly except in “pinwheels” (Bonhoeffer and Grinvald, 1991; Blasdel, 1992).
- There are low-frequency regions, possibly co-incident with CO blobs (Tootell et al 1988; Edwards et al, 1995).
- Phase changes randomly (DeAngelis et al, 1999).
- Original inspiration for the Kohonen Map (Kohonen, 1982).
Topographic ICA (Hyvärinen and Hoyer, 2001)

- Cells (components) are arranged on a two-dimensional lattice

- Again, simple cell outputs are sparse, but not independent.

- Statistical dependency of components follows topography.
Topographic ICA on natural image patches

Basic vectors (simple cell RF’s) with spatial organization
Model IV: Temporal coherence of simple cell outputs

- In image sequences (video) we can look at the temporal correlations.
- An alternative to sparseness.
- Look at the dependencies of \(s_i(t) \) and a lagged version \(s_i(t - \Delta t) \).
- Using linear correlations gives only Fourier-like receptive fields.
- We propose: Maximize correlation between \(s_i^2(t) \) and \(s_i^2(t - \Delta t) \).
Temporal coherence results on natural images
(Hurri and Hyvärinen, 2003)

Spatial basis vectors estimated from image sequences.
Beyond the primary visual cortex

- What the next stage of processing be like?
- To predict this, we can perform ICA on complex cell outputs
Model V: ICA on complex cell outputs

- Compute complex cell outputs for natural images

- Do ICA on this complex cell output data.
ICA on complex cell outputs
(Hyvärinen, Gutmann, Hoyer, 2005)

Each higher-order cell corresponds to 3 frequency displays
Emergence of contours and pooling over frequencies

- Elongated contour units
- Classic view emphasizes separate frequency channels: here we have pooling of frequency channels
- An example of predictive modelling
For more information:

Natural Image Statistics
A Probabilistic Approach to Early Computational Vision

Springer
Conclusion

- Properties of visual neurons can be quantitatively modelled by statistical properties of natural images.

- Simple cell receptive fields can be learned by maximizing independence / sparseness.

- By modelling dependencies between simple cell outputs we can model complex cells and topography.

- Instead of sparseness, temporal coherence can be used.

- Modelling complex cell outputs yields frequency-pooling contour coding units.

- Many more models can be built and properties predicted using this approach.