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Abstract 

Eye activity is one of the main sources of artefacts in EEG and MEG recordings. A new approach to the correction of these disturbances 
is presented using the statisti,zal technique of independent component analysis. This technique separates components by the kurtosis of their 
amplitude distribution over time, thereby distinguishing between strictly periodical signals, regularly occurring signals and irregularly 
occurring signals. The latter category is usually formed by artefacts. Through this approach, it is possible to isolate pure eye activity in the 
EEG recordings (including EOG channels), and so reduce the amount of brain activity that is subtracted from the measurements, when 
extracting portions of the EOG signals. © 1997 Elsevier Science Ireland Ltd. 
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1. Introduct ion 

Among the many sources of  artefacts in EEG studies, eye 
activity plays a dominant role. The need of ocular artefact 
correction has been show:a in the past, and several methods 
have been introduced (for reviews see, e.g. Brunia et al. 
(1989) and Jervis et al. (1988)). 

The simplest and everLtually most commonly used eye 
artefact correction method is rejection. It is based on dis- 
carding portions of  EEG that correspond to EOG channel(s) 
containing attributes (e.g. amplitude peak, variance and 
slope) that exceed a determined criterion threshold (Barlow, 
1979; Verleger, 1993). However,  the rejection method may 
lead to a significant loss of  data, as well as leading to the 
portions used not being representative of  the study made. 
This is particularly important when the brain signals of  
interest occur near/during strong eye activity, as happens 
for example in visual tracking experiments. 

Another problem assoc, iated with the rejection technique 
is that one may be unable to identify all eye activity before- 
hand, rejecting only the small portion that one can see, and 
considering artefact-free what is in fact only artefact- 
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reduced. This may lead to wrong appreciation of the signals 
observed. 

To reduce the presence of eye activity in EEG measure- 
ments, the subject is often asked to avoid blinking, fix the 
eyes on a target, or restrict the blinking at particular times. 
The effectiveness of  this eye fixation method can be ques- 
tionable, specially in studies of  children and of psychiatric 
or neurological patients, who are not fully co-operative. 
Thus it may be difficult to collect a sufficient amount of  
artefact-free data. Besides, this requirement constitutes a 
secondary task, leading to reduced amplitudes in the task 
of interest (Weerts and Lang, 1973; Verleger, 1991). 

A third class of methods, that could be called EOG sub- 
tracting methods, bases its action on the assumption that the 
measured EEG is a linear combination of true EEG and 
ocular artefact. Accepting that one or more EOG derivations 
well represent all eye activity, a correction is proposed by 
subtraction of a regressed portion of this signal throughout 
the EEG (see Gratton et al. (1983) for more details). How- 
ever, as the EOG signal contains a certain amount of  brain 
activity, it is expected that this subtraction distorts the shape 
of the subsequent EEG responses (Jervis et al., 1989). 

Berg and Scherg (1994) have introduced another 
approach for eye artefact correction, a model based on mul- 
tiple source eye analysis. In this MSEC (multiple source eye 
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correction) approach, ocular artefact correction is per- 
formed by subtracting source waveforms defined by the 
eye activity, rather than proportions of the resulting EOG 
signals. The source waveforms are calculated from the EEG 
signal, together with topographic estimations of the propa- 
gation of eye activity throughout the head. This method 
results in considerable eye artefact suppression, but contains 
some basic restrictions. First, to perform this type of correc- 
tion one has to choose a set of calibrating data containing 
eye activity that goes well above the background signals (in 
this context, the EEG). As stated above, this requirement 
may be difficult to fulfil. Second, the technique assumes 
orthogonality of the source vectors, that are a function of 
the location and orientation of each source, and of some 
head parameters. It is possible that this solution represents 
a good approximation to the real conditions, but some 
further improvements may be necessary, like some indepen- 
dent considerations between each source and the back- 
ground EEG. 

Huotilainen et al. (1995) used the signal-space projection 
method to identify and remove eye-blink artefacts, with 
much success. This approach, like that of Berg and Scherg 
(1994) requires either a prior modelling of the production of 
the artefact, or a considerable amount of data where the 
artefact's amplitude is much higher then the EEG or MEG 
under study. These requirements, as stated above, may be 
difficult to fulfil. 

Inspired by the non-linearity of signal processing in the 
human brain, Rao and Reddy (1995) introduced a non-linear 
on-line method to enhance the EEG signals in the presence 
of ocular artefacts. Their method, using the recursive least 
squares based on the second-order Volterra filter, has shown 
good performance, but its non-linearity is still too limited, 
as it stops at second order statistics (variances and covar- 
iances). Mathematical and experimental work prove that 
higher order statistics may be needed to separate indepen- 
dent signals (Karhunen, 1996; Hyvarinen and Oja, 1997a; 
Karhunen et al., 1997; and references therein). 

This paper introduces a new method to separate brain 
activity from eye and other artefacts, based on the assump- 
tion that the brain and eye activities are anatomically and 
physiologically separate processes, and that their indepen- 
dence is reflected in the statistical relation between the elec- 
trical signals generated by those processes. Even if no 
limitation seems to exist on the type of artefact that can 
be extracted, the fact that the ocular ones are the most 
representative justify their choice as illustration of the 
method. Independently, Makeig et al. (1996) have recently 
introduced a comparable application of the independent 
component analysis (ICA) to EEG signals. Our results 
seem to be more convincing, due to the use of a more 
advanced technical implementation of the ICA. 

The remainder of the paper will include a brief introduc- 
tion to the independent component analysis, with a presen- 
tation of the algorithm used and some reasons to use this 
approach. Finally, experimental data are used to illustrate 

the success of the technique, together with some considera- 
tion of its results. 

2. Independent component analysis 

Independent component analysis is a useful extension of 
the principal component analysis (PCA) that was developed 
some years ago in context with blind source separation 
applications (Jutten and Herault, 1991; Comon, 1994). In 
PCA, the eigenvectors of the signal covariance matrix 
C = E { x x  r} give the directions of greater variance on the 
input data x. (All vectors are understood here as column 
vectors (single column matrices); T denotes the transpose 
operator changing a row vector to a column format.) The 
principal components found by projecting x onto those per- 
pendicular basis vectors are uncorrelated, and their direc- 
tions orthogonal. This scheme is very efficient in 
redundancy reduction (or equivalently in source estima- 
tion), and can be said to maximize, in the least squares 
sense, the amount of information spanned by a subset of 
dimensions of the initial vector. 

However, standard PCA is not suited for dealing with 
non-Gaussian data. Uncorrelation between a set of vectors, 
being a necessary prerequisite for statistical independence, 
is not always a synonym to it. Several authors, from the 
signal processing to the artificial neural network commu- 
nities, have shown that information obtained from a second 
order method such as PCA is not enough and higher-order 
statistics are needed when dealing with the more demanding 
restriction of independence (Jutten and Herault, 1991; 
Comon, 1994; Bell and Sejnowski, 1995; Delfosse and Lou- 
baton, 1995; Karhunen et al., 1997). Good tutorials on 
neural ICA implementations are now available (Karhunen, 
1996; Karhunen et al., 1997). The particular algorithm used 
in this study was presented and derived by Hyv~_rinen and 
Oja (1997a), Hyv~inen and Oja (1997b). 

2.1. The model  

In blind source separation, the original independent 
sources are assumed to be unknown, and we only have 
access to their weighted sum. Fig. 1. depicts a block diagram 
of our procedure for identification (and possible removal) of 
EEG artefacts, using an independent component model. In 
this model, the signals recorded in an EEG study (EOG 
included), shown in Fig. 3, are noted as xk(i) (i ranging 
from 1 to L, the number of electrodes used, and k denoting 
discrete time). Each xk(i) is expressed as the weighted sum 
of M independent signals sk(j), following the expression: 

xk(i) = ailSk(1) + a~sk(2) + ' "  + aiMSk(M ) (1) 

or, in a more compact notation, 

M 
Xk = ~, a(i)sk(i) = Ask (2) 

i=1 
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where Xk = [Xk(1) .... ,Xk(L)] r is a vector of length L, made up 
of the L mixtures at discrete time k. In Eq. (2) sk(1) ..... sk(M) 
are M zero mean independent source signals, and 
A = [a(1) ..... a(M)] is a constant mixing matrix whose ele- 
ments agj are the unknown coefficients of the mixtures. To 
guarantee sk(i) to be a zero mean signal, the mean of each 
Xk(j) Can be explicitly extracted before any further proces- 
sing. In order to perform ICA, it is necessary to have at 
least as many mixtures as there are independent sources 
(L > M). When this relation is not fully guaranteed, and 
the dimensionality of the problem is high enough, we 
should expect the first independent components to present 
clearly the most strongly independent signals, while the last 
components still consist of mixtures of the remaining sig- 
nals. In our study, we did expect the ocular and muscular 
artefacts, being clearly independent from the brain activity, 
to come out in the first independent components. The 
remainder of the brain activity (e.g. alpha and theta 
rhythms) may need some further separation, or a greater 
number of measuring electrodes. 

The mixing matrix A is, a function of the geometry of the 
sources and the derivations in an EEG recording and the 
conductivity properties of the brain, cerebrospinal fluid, 
skull and scalp. Although this matrix is unknown, we 
assume it to be constant, or slowly changing (to preserve 
some local constancy). 

We will now divide the independent sources into two 
classes, i.e. eye and brain activities. All other types of arte- 
facts in this presentation ,'tre incorporated in the latter class. 
The only requirement for such a division is that these two 
types of signals are stat:istically independent. Due to the 
physiologically different processes involved in the produc- 
tion of these electric signals, it is reasonable to expect that 
this requirement is verified (although these signals may, for 
example, in evoked response studies be time-locked; see 
Section 6 for some considerations about the validity of 
this approach). Eq. (2) then becomes 

NB NE 
Xk = E a(i)sk(i)+ ~ e(i)o~(i) (3) 

i=1 i=1 

where NB and N E  are the number of brain and eye sources, 
respectively, sk(i) are the," brain's independent waveforms, 
and ok(i) are the waveforms produced by the eye activity; 
e(i) are the columns of matrix A corresponding to ok(i). It is 
interesting to notice the resemblance between the expres- 
sions above, and the first two equations in the paper of Berg 
and Scherg (1994). The main difference introduced here is 
the possibility of non-orthogonality and the requirement 
of independence between the brain and the eye wave- 
forms. 

The problem is now to estimate the independent signals 
(sk(i), Ok(i)) from their mixtures, or the equivalent problem 
of finding the separating matrix B that satisfies (see 
Eq. (2)). 

sk =BXk (4) 

In our algorithm, the solution uses the statistical definition 
of fourth-order cumulant or kurtosis that, for the ith source 
signal, is defined as 

kurt(s(i) ) = E{ s(i) 4 } - 3[E { s(i) 2 }]2 (5) 

where E(s) denotes the mathematical expectation of s. The 
kurtosis is negative for source signals whose amplitude has 
sub-Gaussian probability densities (distributions flatter than 
Gaussian, positive for super-Gaussian) sharper than Gaus- 
sian, and zero for Gaussian densities. 

2.2. The algorithm 

The initial step in source separation, using the method 
described in this article, is the whitening, or sphering. 
This projection of the data is used to achieve the uncorrela- 
tion between the solutions found, which is a prerequisite of 
statistical independence (Hyv~rinen and Oja, 1997a). The 
whitening can also be seen to ease the separation of the 
independent signals (Karhunen et al., 1997). It may be 
accomplished by PCA projection, which can be seen in a 
matxicial notation as (see Fig. 1 for graphical explanation of 
the variables used): 

v = V x  

with E{vv r} = I, where I denotes the unit matrix. The 
whitening matrix V is given by 

V = A -  1/2~,r 

where A = diag[X(1) ..... )~(M)] is a diagonal matt'ix with the 
eigenvalues of the data covariance matrix E{xkx ~ }, and ,~ 
is a matrix with the corresponding eigenvectors as its 
columns. 

Consider a linear combination y = w r v  of the sphered 
data vector v, with [Iwll = 1. Then E{y 2 } = 1 and kurt(y) = E 
{y4} _ 3, whose gradient with respect to w is 4E {v(wrv)3}. 

Based on this, Hyv~inen and Oja (1997a) introduced a 
very simple and highly efficient fixed-point algorithm for 
computing ICA, calculated over sphered zero-mean vectors 
v, that is able to find one of the rows of the separating matrix 
B (noted w) and so identify one independent source at a 
time; the corresponding independent source can then be 
found using Eq. (4). This algorithm, a gradient descent 
over the kurtosis, is defined, for a particular k, as 

1. Take a random initial vector w0 of unit norm. Let l -- 1. 
2. Let wl = E{v(wT_ l V) 3 } - - 3 w t _  1. The expectation can be 

estimated using a large sample of vk vectors (e.g. 1000 
vectors) by computing over successive time points of the 
EEG. 

3. Divide wt by its norm (e.g. the Euclidean norm 
IIw[b = ~ w2). 

T 4. If Iwt Wl- 11 is not close enough to 1, let l = 1 + 1 and go 
back to step 2. Otherwise, output the vector wt. 

In order to estimate more than one solution, and up to a 
maximum of M, the algorithm may be run as many times as 
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Fig. 1. Block diagram of artifact extraction 

required. It is, nevertheless, necessary to remove the infor- 
mation contained in the solutions already found, to estimate 
each time as a different independent component. This can be 
achieved, after the fourth step of  the algorithm, by simply 
subtracting the estimated solution g = wry from the 
unsphered data xk. As the solution is defined up to a multi- 
plying constant, the subtracted vector must be multiplied by 
a vector containing the regression coefficients over each 
vector component of  xk. 

Considering A to be constant, B will also be kept 
unchanged throughout successive sections of  the EEG 
recordings. 

Due to the cubic convergence of  the algorithm 
(HyvLdnen and Oja, 1997a), the solution is typically 
found in less than 15 iterations. 

from EEG, using independent component analysis. 

this transformation)) was able to deal with the only Gaus- 
sian signal, and could get some of  the positive kurtotic 
signal out (see the projections W1 and W2 of Fig. 2e). How- 
ever, the complete separation of  the independent signals can 
only be achieved in the last frame of  Fig. 2, when the ICA 
projection is performed. A qualitative look at the solutions 
ICA1. . . ICA3 (Fig. 2g), together with the quantitative appre- 
ciation of  their distributions (Fig. 2h) show how close these 
time sequences are to the original ones (Fig. 2a). 

The ICA solutions can thus be found through maximiza- 
tion of the absolute value of  the kurtosis of  a linear combi- 
nation of  the observed signals (maximizing for positive 
kurtotic combinations, and minimizing for negative ones). 

4. Experimental data 

3. Simulated data 

To give an illustrative example of  the behaviour of  the 
model presented, consider the case of  Fig. 2a,b. Three sig- 
nals are shown, presenting all extreme distributional beha- 
viour of  the kurtosis. S1 is an epileptic discharge-like signal, 
with very sharp amplitude distribution and high positive 
kurtosis, $2 is white noise, with a Gaussian distribution 
and zero kurtosis and $3 is a sinusoid, with near-to-fiat 
distribution and strong negative kurtosis (this fourth 
moment is not limited in the positive direction, but has a 
negative bound at -2).  

After mixing the signals, all resulting sequences have 
close to Gaussian distributions (Fig. 2c,d). As could be 
expected, the PCA projection (also called whitening, as it 
forces all directions of  the transformed data to have equal 
variance (see the algorithm section for a method to perform 

The experimental data used in this paper were taken from 
the study of  Joutsiniemi et al. (1995). A routine clinical 22- 
channel EEG was recorded for 15-25 min from children 
aged 9 -13  years. During the recording, the subjects were 
lying with their eyes closed, and a few times they were 
asked to open and close their eyes. They were not prevented 
from falling asleep. The training set input to the ICA algo- 
rithm consisted of  a subset of  5 min of EEG, visually 
inspected to guarantee the presence of eye activity. The 
records of  all subjects showed results agreeing with the 
example presented in this paper. 

The 22 electrodes were placed according to the interna- 
tional 10-20 system, as shown on the last frame of  Fig. 5, 
and were all referred to Cz. A 23rd electrode was just above 
the right eye, between the eyelid and the eyebrow, and was 
referred to Fpl to measure EOG. This EOG montage is not a 
typical one, as it only reflects some slight vertical and 

Fig. 2. Examples of independent source signals with positive, zero and negative kurtosis values (a), their amplitude distributions (b), and the respective value 
for the kurtosis below this last figure. The mixtures of the previous signals (c) have near to zero kurtosis and close to Gaussian distributions (d). From PCA 
projection (e,f) to ICA (g,h) the resulting time series have clearer negative, positive or zero kurtosis values close to those of the initial independent source 
signals. 
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horizontal gradients, but it was nevertheless useful for the 
identification and validation of the independent components 
found. It is important to note here that a separate EOG 
channel should not even be necessary to isolate the eye 
activity. It can be expected that eye artefacts present in 
the 22 scalp electrodes are extractable due to their indepen- 
dence from the brain's activities (some preliminary analysis 
of data without any EOG channel support this expectation). 

All signals were digitally band-pass filtered from 0. lto 25 
Hz, and then down-sampled from 200 to 50 Hz. 

Fig. 3 shows the 6th, the earlier half of the 8th, and the 
10th minutes of one subject's record, respectively noted as L 
H and I lL  These sections were selected to show some struc- 
tures that appeared in the first few independent components. 

Section I presents strong eye activity, evident in the fron- 
tal electrodes (Fe~, Fp~ and Fpz), a s  well as in the EOG 
channel. The first 15 s in F8 show some eye blinking that 
was not captured by the EOG channel which illustrates the 
suboptimal use of possible EOG information (note that this 
EEG measurement was not tailored to illustrate the useful- 
ness of ICA in ocular artefact correction). The duration of 

the deflections (0.3 s and 0.1 s) are a good signature of 
blinking type of activity. 

Section H of the figure shows strong and very local activ- 
ity in channel T3, evidently due to mechanical electrode 
movement. C3 and Fv show some coinciding activity that 
could be due to filter adaptation response. Electrodes T4 and 
F8 reveal high-frequency muscle activity during section I lL  

5 .  R e s u l t s  

As an illustration of the separation abilities of ICA algo- 
rithms, the first eight independent components found from 
the EEG study ace plotted in Fig. 4. Some of the waveforms 
shown are actually multiplied by -1 to ease the visual com- 
parison with the EEG data in Fig. 3. ICA solutions are 
defined up to a multiplying constant that cannot be esti- 
mated with this technique. The real scaling factor of each 
component is found by regression through each electrode on 
the scalp (see Fig. 5 and the explanations at the end of this 
section). 

t l  I i t  

_ ~  - . . . . . . . . . . . . . .  " . . ' . % ~ 1 ~ $ . ~ -  r ~ _ _ ~ .  ~ = -  . . . . . . . . . . . . . . . . . . . . . . .  

I I " . . i  ; ~ • i :  

• : l: : : ;1~. : . . I  

Fpz 

A2 ~ . . . . . . . . . . . . . .  lOSe¢-=" . . . . . . . . . . .  : "  - --.; "-~ :--:::-). : ~ ;  "~-r  "..- ~ -v: :,.7--,~-1: : |  . . . . . . . .  r - - - :  ,. !-~-~. " - . .  ~r 

Fig. 3. Three sections of the same EEG record, corresponding to the 6th minute of measurement, the early half of the 8th, and the 10th minute, respectively 
noted as sections 1, H and IlL 
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Fig. 4. First eight ICA components for the three sections of Fig. 3. 

The eye blinking on channel F8 was clearly isolated in 
the first ICA component, reducing even the fluctuation 
around the blinks, enhancing the signal-to-noise ratio of 
the channel (everything that is not directly related to the 
blinks is considered here noise). The comparison of respec- 
tive signals in Figs 3 and 4 shows that the background 
oscillations have similar amplitude while the peaks are 
over twice as strong in the latter. 

ICA2 and ICA8 together span the activity present in the 
EOG channel. Please note again the clean signal in ICA2, 
when compared, e.g. with Fpl or EOG signals of Fig. 3. Fig. 
6 gives a closer look at these solutions. The mechanical 
disturbance in T3 appears in ICA3, and the electronic adap- 
tation triggered by it in ICA5. The usefulness of ICA in EEG 
analysis is very strongly shown in section H of the 4th 
component, where a cleat signal appears with no visible 
EEG deflection. In fact, A2 displays a small coinciding 
bump, but it is embedded in much stronger brain activity. 
Finally, ICA7 shows bursts of high frequency oscillations 
(visible in T4 and Fs), due to electromyographic activity, 
completely isolated. 

As stated above, ICA solutions are defined up to a multi- 
plying constant. To find oul: the right constant that brings the 
solution close to its representation for each EEG signal, 
linear regression may be used. Fig. 5 depicts the coefficients 
of that regression, for each one of the first eight solutions 
(each component in a separate frame). The inspection of the 
diagrams indicates the topographic importance of the 
respective ICA solution throughout the scalp. It should be 
recalled that all electrodes were referred to C z, which 
explains why no data are present at the vertex. 

The area of each hexagon is proportional to the amplitude 
of the regression parameter, and the two grey shades corre- 
spond to the positive and negative signs. 

The distribution in Regr4, together with the shape of 
ICA4 in Fig. 4, leads us to suggest that ICA4 reflects a K- 

complex, generated at the vertex during the initialization of 
sleep. 

Frames Regr2 and Regr8 (the frames corresponding to 
the ICA solutions containing eye activity) indicate that 
ICA2 was found by computing a horizontal gradient on 
the scalp electrode signals (from Regr2 it is clear that the 
average of the frontal left-hand electrical signals is extracted 
from the right-handed average, in order to produce the sec- 
ond ICA component), while ICA8 was attained through a 
vertical gradient on the referred signals (in Regr8 the sub- 
traction is made between the average of the frontal signals 
and the EOG (please remember that the EOG channel is 
measured from above the fight eye to Fpl)). This may reflect 
the different behaviour of vertical and horizontal compo- 
nents of eye movements. 

Fig. 6a zooms to section I of Fig. 3 for the frontal elec- 
trodes Fpl, Fp2, Fp~ and the EOG channel. The influence from 
ICA 1 was subtracted from all signals to avoid unnecessary 
confusion when comparing some ICA solutions with the 
EOG. Fig. 6b has the 2nd and 8th ICA components, together 
with their weighted sum (with weights defined by the coef- 
ficients of their regression on the EOG channel), and the 
residual of the subtraction of the sum from the EOG 
signal. 

One can clearly inspect the structures in ICA2 and ICA8 
in a more detailed way than in the EEG signals. The residual 
signal, obtained by subtracting the solutions from the EOG, 
has a considerable magnitude and may still carry some 
meaningful brain activity. In traditional ocular artefact 
removal, when subtracting a portion of the full EOG signal 
from the EEG, the signal noted as residual is also used, even 
if it does not seem to carry any information on eye activity, 
but rather on other physiological brain functions. The reg- 
ular oscillations in the parieto-occipital electrodes P3, P4, 

O1, O2 and Oz, with typical alpha frequency of 7-10 Hz, 
although present in considerable amounts throughout all the 
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R rS 

Regr8 

/lOG 

Fig. 5. Scalp distribution of the regression coefficients corresponding to the eight ICA components shown in the previous figure. The area of each hexagon is 
proportional to the amplitude of the regression coefficient, and the grey shade tells its sign. The positions of the hexagons correspond to the electrode 
locations, as shown on the last frame. 

measurement, just appeared among the last independent 
components, and will not be reported in this paper. 

6. Discussion 

The present paper introduced a new approach to ocular 
artefact cancellation from EEG recordings, based on the 
statistical technique of independent component analysis. 
This method was initially tested in some simulated data, 
showing very good performance in the separation of signals 
from their linear mixtures. In experimental data, ICA was 
able to extract the eye information present in the EOG sig- 
nals, and use this information in the removal of this type of 
artefact, rather than the complete EOG (that still has some 
remaining brain activity). This technique seems to be an 
improvement to the traditional artefact cancelling methods. 

As stated in the introductory section of this paper, the 
basic assumption made on the data used in the study is 
that of independence between brain and artefact waveforms. 
In most cases this independence is verified due to the differ- 
ences in physiological origins of those signals. Neverthe- 
less, in some event-related potential (ERP) studies (e.g. 
using infrequent or painful stimulus), both the cerebral 
and ocular signals can be similarly time-locked to the sti- 
mulus. This time dependence, present only for a very short 
instant, may be of some limitation in these particular stu- 
dies. However, as the independence between two signals is a 
measure of the similarity between their joint amplitude dis- 
tribution and the product of each signal's distribution (cal- 
culated throughout the entire signal, and not only close to 
the stimulus applied), it can be expected that the very local 
relation between those two signals, during stimulation, will 
not affect their global statistical relation. 
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Fig. 6. (a) Expanded section I of Fig. 3 for the frontal and the EOG channels. (b) ICA components 2 and 8, their weighted sum (with the coefficients defined 
by regression on the EOG channel), and the residual of the subtraction of the sum from the EOG signal for the same time period. 

It should be noted that the ICA method is not  yet  an 
at tempt to fully automate  the detect ion and removal  of  arte- 
facts f rom the EEG data, bu t  rather a potential ly helpful tool 
that will  be available to the EEG communi ty .  Combina t ion  
of  this method with other automatic  feature extractors may  

lead to the required automation.  
Since eye activity is irttrinsically independent  f rom the 

background  EEG,  due to its origins,  no theoretical l imita t ion 
exists to the use of  this method without  any E O G  channel .  
Nevertheless,  the use of  E O G  informat ion  is advisable,  as it 

tunes the search for eye activity, and helps in  val idat ing 
be tween  eye artefact and other classes of  disturbances.  

More  than one E O G  channel  may  be included in further 
exper iments  to better tune the search for a more accurate 
description of  the eye artefacts. Elbert  et al. (1985) have 
suggested the use of  three E O G  channels ;  one vertical, 

one lateral and one radial. 
Furthermore,  the ICA method may,  with small  changes,  

take into account  other sorts of  artefacts, e.g. muscle  activity 
or mechanica l  displaceraent  of  electrodes. It can be 
expected that this method still holds for the analysis  of  
certain brain  activities (e.g. detect ion of  alpha and theta 

rhythms, decomposi t ion  of  ERP complexes,  etc.). 
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