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Spatio-Spectral Filters for Improving the Classification of
Single Trial EEG

Steven Lemm, Benjamin Blankertz, Gabriel Curio and Klaus-Robert Müller

Abstract— Data recorded in EEG based Brain-Computer Interface
experiments is generally very noisy, non-stationary and contaminated
with artifacts, that can deteriorate discrimination/classification methods.
In this work we extend the Common Spatial Pattern (CSP) algorithm
with the aim to alleviate these adverse effects. In particular we suggest
an extension of CSP to the state space, which utilizes the method of time
delay embedding. As we will show, this allows for individually tuned
frequency filters at each electrode position and thus yields an improved
and more robust machine learning procedure. The advantages of the
proposed method over the original CSP method are verified in terms
of an improved information transfer rate (bits per trial) on a set of
EEG-recordings from experiments of imagined limb movements.

Index Terms— feature extraction, CSP, classification, BCI

I. INTRODUCTION

THe development of a Brain-Computer Interface (BCI) aims to
provide a communication channel from a human to a com-

puter that directly translates brain activity into sequences of control
commands. Such a device may give disabled people direct control
over a neuro-prosthesis or over computer applications as tools for
communicating solely by their intentions that are reflected in their
brain signals (e.g. [1]–[9]). We record brain activity by means of
multi-electrode electroencephalogram (EEG) which is non-invasive as
opposed to invasive work by e.g. [10]–[13]. An ideal BCI should only
need short adaptation and preparation times and should yield high
information transfer rates. In practice the user is behaving according
to a well-defined paradigm (such as movement imagination) that
allows for an effective discrimination between different brain states
(see e.g. [3], [14]). From the signal processing perspective this
requires the definition of appropriate features that can be effectively
translated into a control signal, either by simple threshold criteria
(cf. [3]), or by means of machine learning, where given some
training examples for each brain state, the task is to infer a possibly
nonlinear discriminating function to distinguish between different
states (e.g. [3], [6]–[9], [15], [16]). Non-invasive data acquisition,
makes automated feature extraction challenging, since the signals of
interest are ’hidden’ in a highly ’noisy’ environment as EEG signals
consist of a superposition of a large number of simultaneously active
brain sources that are typically distorted by artifacts and even subject
to non-stationarity. However, outliers and artifacts can strongly distort
the classifier performance [15], yielding bad generalization, i.e. the
performance on previously unseen data, can become arbitrarily poor.
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So it is important to strive for robust machine learning and signal
processing methods that are as invariant as possible against such
distortions (e.g. [16], [17]). This paper contributes an extension to
CSP based BCI approaches [18], [19] in order to improve both: the
accuracy and the generalization ability of a brain state classifier.

The paper is organized as follow: Section II introduces the underly-
ing neurophysiological principles and elaborates on the mathematical
background of CSP. Based on the latter the subsequent section
introduces the Common Spatio-Spectral Pattern algorithm, as an
extension of CSP to the state space and provides insights into the
implications of the extended model. The performance of the two
methods is then compared on a broad set of experiments in section
IV and a concluding discussion follows.

II. NEUROPHYSIOLOGICAL AND MATHEMATICAL BACKGROUND

A. Neurophysiology

According to the concept known as homunculus, for each part of
the human body there exists a respective region in the motor and
somatosensory area of the neocortex. The ’mapping’ from the body
to the respective brain areas preserves topography, i.e., neighboring
parts of the body are represented in neighboring parts of the cortex.
While the region of the feet is at the center of the vertex, the
left hand is represented lateralized on the right hemisphere and the
right hand on the left hemisphere. One possible feature of brain
activity, that can be exploited for brain-computer interfaces relies
on the neurophysiological observation, that large populations of
neurons in the respective cortex are firing in rhythmical synchrony
when a subject is not engaged with one of his limbs (movements,
tactile senses, or just mental introspection). These are so-called idle
rhythms that are attenuated when engagement with the respective
limb takes place and that can be measured at the scalp in the
EEG as a brain rhythm around 10 Hz (µ-) or 20 Hz (β -rhythm).
As the attenuation effect is due to loss of synchrony in the neural
populations, it is termed event-related desynchronization (ERD), see
[20]. In opposite, the dual effect of an enhanced rhythmic activity
is called event-related synchronization (ERS). Such modulations of
the µ- and β -rhythm have been reported for different physiological
manipulations, e.g., by motor activity, both actual and imagined [21]–
[23], as well as by somatosensory stimulation [24]. In order to setup
a BCI we will utilize these physiological phenomena, in particular
caused by imaginary movements or sensations at different limbs.
The discrimination between different limbs, e.g. left hand vs. right
hand vs. foot will exploit the dissimilarities in the spatio-spectral
topography of the attenuation of the µ and/or β rhythm.

The strength of the sensorimotor idle rhythms as measured by scalp
EEG is known to vary strongly between subjects. This introduces a
high inter-subject variability on the accuracy with which an ERD-
based BCI system works. That is reflected in a high varying classifi-
cation accuracy for different subjects. Hence [19], [25] suggested
to combine the oscillation feature of ERD with another feature
reflecting imagined or intended movements, the movement related
potentials (MRP), denoting a negative DC shift of the EEG signals
in the respective cortical regions. In this paper we are focusing on
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the improvement of the classification based only on the oscillatory
feature (ERD/S), nevertheless the suggested algorithm can be straight
forwardly integrated into the combination framework.

B. Common Spatial Pattern

The common spatial pattern (CSP) algorithm [26] is highly suc-
cessful in calculating spatial filters for detecting ERD/ERS effects
[27] and for ERD-based BCIs, see [18] and has been extended to
multi-class problems in [19]. Given two distributions in a high-
dimensional space, the CSP algorithm finds directions (i.e., spatial
filters) that maximize variance for one class and that at the same
time minimize variance for the other class. After having bandpass
filtered the EEG signals in the frequency domain of interest, high
or low signal variance reflect a strong respective a weak (attenuated)
rhythmic activity. Let us take the example of discriminating left hand
vs. right hand imaginary movement. According to Section II-A, if
the EEG is first preprocessed in order to focus on the µ and β
band, i.e. bandpass filtered in the frequency range 7–30 Hz, then a
signal projected by a spatial filter focusing on the left hand area
is characterized by a strong motor rhythm during the imagination of
right hand movements (left hand is in idle state), and by an attenuated
motor rhythm if movement of the left hand is imagined. This can be
seen as a simplified exemplary solution of the optimization criterion
of the CSP algorithm: maximizing variance for the class of right hand
trials and at the same time minimizing variance for left hand trials.
Furthermore the CSP algorithms calculates the dual filter that will
focus on the area of the right hand (and it will even calculate several
filters for both optimizations by considering orthogonal subspaces).

To be more precise, let X k =
(
Xk

c,t
)
, c = 1, . . . ,C, t = t0, . . . ,T

denote the (potentially bandpass filtered) EEG recording of the k-th
trial, where C is the number of electrodes. Correspondingly Y k ∈
{1;2} represents the class-label of the k-th trial. Using this notation
then the two class-covariance matrices are given as,

Σ1 = 〈XkXk>〉
{k:Y k=1}

and Σ2 = 〈XkXk>〉
{k:Y k=2}

(1)

WΣ1W> = D and WΣ2W> = I −D. (2)

This can be accomplished in the following way: First whiten the
matrix Σ1 +Σ2, i.e., determine a matrix P such that

P(Σ1 +Σ2)P
> = I. (3)

This decomposition can always be found due to positive definiteness
of Σ1 +Σ2. Second define S1 = PΣ1P> and S2 = PΣ2P> respectively
and calculate an orthogonal matrix R and a diagonal matrix D by
spectral theory such that

S1
> = RDR>

. (4)

From S1 + S2 = I it follows that S2
> = R(I −D)R>. Note that the

projection given by the p-th row of matrix R has a relative variance
of dp (p-th element of D) for trials of class 1 and relative variance
1−dp for trials of class 2. If dp is close to 1 the filter given by the
p-th row of R maximizes variance for class 1, and since 1− dp is
close to 0, minimizes variance for class 2. The final decomposition,
that satisfies Eq.(2) can be obtained from,

W := R>P. (5)

Using this decomposition matrix W the EEG recordings X k are
projected onto

Zk = WXk
. (6)

The interpretation of W is two-fold, the rows of W are the stationary
spatial filters, whereas the columns of W−1 can be seen as the

common spatial patterns or the time-invariant EEG source distribution
vectors.

III. COMMON SPATIO-SPECTRAL PATTERN (CSSP)

A. Feature Extraction

In this section we will extend the CSP algorithm to the state
space. Therefore we first introduce an extension to the state space for
Eq.(6), subsequently we discuss its consequences for the optimization
problem and give a mathematical interpretation.

The concept of deterministic low-dimensional chaos has proven to
be fruitful in the understanding of many complex phenomena despite
the fact that very few natural systems have actually been found to be
low-dimensional deterministic in the sense of theory. Also a number
of attempts have been made to analyze various aspects of EEG time
series in the context of nonlinear deterministic dynamical systems.

Determinism in a strict mathematical sense means that there exist
an autonomous dynamical system, defined typically by a first order
differential equation ẏ = f (y) in a state space Γ ⊂ RD, which
is assumed to be observed through a single measurable quantity
s = h(y). The system thus possesses D natural variables, but the
measurement is usually a nonlinear projection onto a scalar value.
In order to recover the deterministic properties of such a system,
we have to reconstruct an equivalent of the state space Γ. Therefore
the time delay embedding method is one way to do so. From the
sequence of scalar observations s1,s2, . . . ,sN overlapping vectors
sn = (sn,sn−τ , . . . ,sn−(m−1)τ ) are formed, with τ as the delay time.
Then according to Takens Theorem [28] under certain conditions,
i.e. for mathematically perfect, noise free observations sn and m
sufficient large, there exist a one-to-one relation between sn and the
unobserved vectors yn. Thus the attractor of any non-linear dynamic
can be reconstructed in the state space using an appropriate delay
coordinate function.

Since it is not our aim to reconstruct the entire dynamics of the
EEG-signal, but rather to extract robust (invariant) features, we extend
Eq. (6) just by one delayed coordinate, i.e.,

Zk = W (0)Xk +W (τ)δ τ Xk
. (7)

Where, for notational convenience, δ τ denotes the delay operator, i.e,

δ τ (X·,t) = X·,t−τ . (8)

Once again, the optimization criterion is to find projections W (0)

and W (τ) such that signal variance of different Zp discriminates two
given classes best, i.e. maximizing the variance for one class while
minimizing it for the opposite class. In order to use the identical
mathematical concepts, introduced in section II-B, we append the
delayed vectors δ τ Xk as additional channels to X k, i.e.

X̂
k
=

(
Xk

δ τ Xk

)
. (9)

Then the optimization criterion can be formulated equivalent to
Eq. (2) using the class covariance matrices Σ̂l , l ∈ {1,2} obtained
from X̂

k
. Following the steps of Eq. (3)–(5), this yields a solution

to this modified optimization problem, especially a decomposition
matrix Ŵ , whose columns divide in two submatrices: Ŵ (0) that
applies to Xk and Ŵ (τ) that applies to the delayed channels δ τ Xk,
i.e., Ŵ X̂

k
=
(

Ŵ (0)Ŵ (τ)
)

X̂
k
.

Based on this, we will now further explore the implications of
this decomposition. Especially we will derive an interpretation into
a spatial and a spectral filter. Therefore let w denote the p-th row



3

of the decomposition matrix Ŵ , then the projected signal Ẑ
k
p = wX̂

k

can be expressed as

Ẑ
k
p = w(0)Xk +w(τ)δ τ Xk

=
C

∑
c=1

w(0)
c Xk

c,· +w(τ)
c δ τ Xk

c,·

=
C

∑
c=1

γc

(
w(0)

c

γc
Xk

c,· +
w(τ)

c

γc
δ τ Xk

c,·

)
, (10)

where (γc)c=1,...,C is a pure spatial filter and ( w(0)
c
γc

,

τ−1︷ ︸︸ ︷
0, . . . ,0,

w(τ)
c
γc

)
defines a Finite Impulse Response (FIR) filter for each electrode c.
This decomposition into a spatial and a FIR filter is not unique, but
there exists a very intuitive partitioning, that we will use throughout
this paper, i.e.

γc :=

√
w(0)

c
2
+w(τ)

c
2

sĩgn
(

w(0)
c

) , (11)

where

sĩgn(w) =

{
−1, w < 0
+1, w ≥ 0

.

(12)

The use of the signed norm γ of the coefficients vector as spatial
filter allows us to examine the origin of the projected source signals
since each column of the inverse of the entire spatial projection
matrix Γ = (γ)p,c corresponds to the coupling strength of one source
with the electrodes. Note that γc maps the non-zero coefficients of
corresponding FIR filter on to one half of the two dimensional unit-
sphere. Consequently we can easily parameterize the FIR filters by
the angle φ (τ)

c , defined as

φ (τ)
c := atan

(
w(0)

c

w(τ)
c

)
∈
[
−

π
2

,
π
2

]
. (13)

Fig. 1 and 2 illustrate the effect of these FIR filters by means of
the resulting filter responses curves for various values of τ and at
different angles φ (τ). Note that at each electrode the FIR filter is
additional to the global bandpass filter, that focuses on the frequency
band of interest.

This additional property of the decomposition matrix allows for a
fine tuning of the overall frequency filters, e.g. an adaptation to the
spectral EEG peaks.

B. Classification

Finally, the features used for the classification are obtained by
decomposing the EEG according to Eq.(6) respectively (7). Typically
one would retain only a small number 2m of projections that contain
most of the discriminative information between the two classes, i.e.
the signal variance. These projections are given by the rows of Ŵ that
correspond to the m largest and m smallest eigenvalues dpi . Based on
the projected single trials Zk

pi,t , i = 1, . . . ,2m, a classifier is estimated
on the log-transformed signal variances, i.e.

f k
i = log

(
var
(

Zk
pi,·

))
. (14)

Specifically we applied a linear discriminant analysis (LDA) as
classification model. Since the introduced delay τ appears as an
underlying hyper-parameter in the overall optimization scheme, it
has to be subject of a model selection procedure in order to find the
optimal τ for the specific classification task. Note that using τ = 0
in the set of feasible hyper-parameters, will incorporate the original
CSP algorithm into the model selection procedure.

Fig. 1: Magnitude responses of the FIR filters at different values of φ(τ)

for a single fixed delay τ =50 ms. Increasing φ(τ) from − π
2 to π

2 keeps the
position of the extreme values in the frequency domain fixed, but turns
maxima into minima. Since a minimum corresponds to a suppression
of the spectral information at this frequency, the FIR filter for φ(τ) =
− 2

5 π focuses mainly on {10,30,50} Hz. In opposite the filter given by
φ (τ) = 1

5 π can be associated with the contrary effect, i.e. it cancels these
frequencies. The shaded region denotes the frequency range (7–30 Hz) of
interest, that defines the bandpass filter used for preprocessing the data
in the experimental session.

C. Online Applicability

A major concern in online applications is to implement an algo-
rithm as efficient as possible. In case of a CSP based classification
procedure the involved operations such as the bandpass filtering and
the spatial projections define the bottleneck for the processing speed.
Especially the filtering of each EEG channel (64-128) is quite time
consuming and dramatically effects the overall processing speed. But
fortunately the bandpass filtering, if realized by convolution with
h, an Infinite Impulse Response (IIR) filter (h ? X), and the spatial
filtering (WX) are strictly linear, and it follows immediately that these
operations can be executed in an arbitrary order, i.e.

W (h?X) = h? (WX) . (15)

This implies, that for an online application one does not need to
bandpass filter all the channels before projecting onto the few spatial
features. Instead we can first apply the spatial projection and filter
only the few resulting signals with the desired bandpass, what makes
the resulting algorithm applicable online.

In case of CSSP, due to the embedding operation δ τ this does not
hold in general. But we can easily work around this and are allowed
to exchange the operations in the following manner:

Ŵ

(
h?X

δ τ (h?X)

)
=

(
IC
IC

)>(
h?Ŵ (0)X

δ τ (h? (Ŵ (τ)X))

)
. (16)

Where IC denotes the C-dimensional identity-matrix. Again one can
arbitrarily exchange the order of first decomposing the EEG using
W (0) and W (τ) and then bandpass filtering the projected channels,
as long as the delay operator and the final summation is applied
afterwards. From this it can be directly seen, that the computational
demands are just doubled compared to the original CSP. Hence the
proposed extended model is applicable online as well.
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Fig. 2: Magnitude responses of the FIR filters at different values of τ
for a single fixed angle φ = −2

5 π . Increasing τ changes the position
and increases the number of the extreme values in the frequency domain.
Since a minimum corresponds to a suppression of the spectral information
at this frequency, the FIR filters for different τ focuses on different
sub-bands of the frequency spectrum. The shaded region denotes the
frequency range (7–30 Hz) of the additional bandpass filter used for
preprocessing the data in the experimental session.

IV. APPLICATION

A. Experimental Design

In this section we apply the CSP and the proposed CSSP algorithm
to data from 22 EEG experiments of imaginary limb movements
performed by 8 different subjects and compare the resulting classi-
fication performances. The investigated mental tasks were imagined
movements of the left hand (l), the right hand (r), and the right
foot (f ). Two experiments were carried out with only 2 classes l and
r. In this study we investigate all resulting two-class classification
problems, i.e. all possible combination of two classes (l-r,l-f and
r-f ), yielding 62 different classification tasks.

All experiments start with training sessions in which the subjects
performed mental motor imagery tasks in response to a visual cue.
In such a way examples of brain activity can be obtained during
the different mental tasks. In the original experiment, these recorded
single trials were then used to train a classifier which was in a second
sessions applied online to produce a feedback signal for (unlabeled)
continuous brain activity (results will be reported elsewhere).

In this off-line study we will only take data from the first (training
session) into account to evaluate the performance of the algorithms
under study. This reflects, that if any feedback is provided to the
subject, he/she will adapt to the feedback (output of the classifier)
itself. Hence the data obtained from a feedback session are biased
towards the specific classifier used to produce the particular feedback
and for that reason we decided to exclude the data of the feedback
session for the evaluation process.

During the experiment the subjects were sitting in a comfortable
chair with arms lying relaxed on the armrests. In the training period
every 4.5–6 seconds one of 3 different visual stimuli indicated for 3–
3.5 seconds which mental task the subject should accomplish during
that period. The brain activity was recorded from the scalp at a

sampling rate of 100 Hz with multi-channel EEG amplifiers using 32,
64 resp. 128 channels. Additional to the EEG channels, we recorded
the electromyogram (EMG) from both forearms and the right leg
as well as horizontal and vertical electrooculogram (EOG) from the
eyes. The EMG and EOG channels were exclusively used to ensure
that the subjects performed no real limb or eye movements correlated
with the mental tasks that could directly (artifacts) or indirectly
(afferent signals from muscles and joint receptors) be reflected in the
EEG channels and thus be detected by the classifier, which should be
constrained to operate on the CNS (central nervous system) activity
only. For each involved mental task we obtained between 120 and
200 single trials of recorded brain activity.

B. Training

After choosing all channels except the EOG and EMG and a
few outermost channels of the cap that are known to have non-
stationary signal quality due to changing conductive properties, we
applied a causal band-pass filter from 7–30 Hz to the data, which
encompasses both the µ- and the β -rhythm. The single trials were
extracted from the temporal frame 750–3500 ms after the presentation
of the visual stimulus, since during this period discriminative brain
patterns are present in most subjects. On these preprocessed single
trials we perform the feature extraction by the CSP and the proposed
CSSP method separately. For each method we project the data to
the three most informative directions of each class, yielding a 6-
dimensional subspace. For these six dimensions we calculate the
logarithms of the variances as feature vectors. Finally we apply a
linear discriminant analysis (LDA) to the feature vectors of all trials,
to find a separating hyperplane. Note that in contrast to [6], [14] we
omitted the regularization (cf. [29]), since the dimensionality of the
features is rather small compared the number of training examples.

In order to compare the results of the two methods (CSP vs. CSSP
with selected τ) we split the data set in two. On the (chronological)
first half we perform the training of the classifier, i.e. the feature
extraction, model selection and the LDA. The performance of the
estimated models were then evaluated on the second half of the data,
to which both algorithms had have no access before. In the following
we will refer to these halves of the data set as “training data” and
“test data”.

To select the best CSSP model for each binary classification
problem, i.e. find the optimal τ , we estimate the performance of the
algorithms by means of a leave one (trial) out (LOO) cross-validation

Fig. 3: The left panel compares the LOO classification error on the
training data of the CSP based model and the selected CSSP based
model for 62 binary classification problems. In either case the error
decreases. For 6 out of 62 datasets the model selection suggest to keep
the CSP-based model, indicated by dots on the diagonal line, in any
other case the CSSP-based classification improves the LOO-training error.
The right panel shows the identical information but instead the error the
corresponding information transfer rate measured in bits per trial is given.
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Fig. 4: The left panel compares the classification error of the CSP based
model and the selected CSSP based model on the test data taken from
the second half of the experiment. Except for a very few cases the CSSP
based classification model improves the test error. Again the right panel
provides the same information in terms of the corresponding information
transfer rate per trial.

procedure on the corresponding training data. Especially we run a
model selection procedure over τ = 0, ..15. Since the CSP resp. the
CSSP algorithm make explicit use of the label information, these
techniques have to be repeatedly applied to each LOO training set
within the cross-validation procedure. Otherwise the cross-validation
error could underestimate the generalization error. Fig. 3 compares
the LOO error respective the information transfer rate of the CSP
model and the best CSSP on the training data for each experiment.
Note that in this particular case CSSP always performs the same or
better than the CSP on the training data, since the CSP model is part
of the model selection procedure (τ = 0).

C. Results

After the model selection the best CSSP and the CSP based models
for each classification problem were then finally trained on the entire
training data and afterwards applied to the corresponding test data,
obtained from the second unseen half of the training session of
each experiment. A comparison of the resulting test errors/bitrate
for all datasets is summarized in Fig. 4. The results on that database

Fig. 5: The left panel gives the resulting LOO information transfer rate
in bits per trial on the training set for one exemplarily chosen dataset
at all hyper-parameter τ = 0, . . . ,15 ( at a sampling rate of 100 Hz this
corresponds to 0, . . .150ms). The right panel shows the corresponding
information transfer rate on the test data. For that particular classification
problem almost any delay parameter would improve the standard CSP-
based classification, shown in the lowest row of each panel. The best
model that has been selected by the model selection procedure based on
the informations provided in the left panel corresponds to τ = 7.

strongly suggest that the proposed algorithm outperforms the CSP-
based approach, in terms of an improved classification accuracy and
an increased generalization ability.

For further illustrations of the properties of the proposed method,
we will now pick one specific dataset, especially we will focus on
a classification task of imaginary foot and right hand movement
that serve this purpose best. For this selected dataset we will relate
the spatial filters found by the CSSP method to those of the CSP-
method and will discuss the impact of the additional spectral filters
(cf Eq. (13)).

To show the general performance of the CSSP-based algorithm, we
trained CSSP models for all values of τ ∈ {0, . . . ,15} on the training
data and applied them to the test data. Fig.5 shows the information
transfer rate on the training and on the test data for all models (τ =
0, . . . ,15) for the selected dataset, where τ = 0 corresponds to the
original CSP algorithm. In that particular case almost any additional
delay improves the classification both on the training data as well as
on the unseen test data. According to the model selection procedure,
described in section IV-B, the model with the highest LOO bitrate
(lowest LOO error) on the training data (τ = 7) would be chosen for
the final application. The spatial and spectral filters of the selected

CSP CSSP

spatial spectralspatial

Fig. 6: The scalp maps show the three spatial and spectral filters for
class feet in descending order of the eigenvalues for both the CSP and the
CSSP method. The filters were calculated for a classification of foot and
right hand movements. The spectral filters are gray-scale-coded according
Eq.(13) in the range [− π

2 ,
π
2 ]. Note that the first spatial filters are almost

identical for CSP and CSSP, but already those for the second largest
eigenvalue diverges. While the spatial filters found by CSP exhibit no
clear structure, the second spatial CSSP filter resembles the first one.
The main difference in the projection occurs only in the spectral filter,
where these filters have opposite sign in the central region, indicating
that at the same location different spectral information is exploited for
classification.

model for each class are visualized in Fig. 6 and 7. These figures
also provide the filters found by CSP method. The first two spectral
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CSP CSSP

spatial spectralspatial

Fig. 7: The scalp maps correspond to the spatial and spectral filters of the
three leading eigenvalues for class right hand of the CSP and the CSSP
method in descending order. The filters were calculated for a classification
of foot and right hand movements. Again the first spatial filters are almost
identical for CSP and CSSP (except for the sign). For the second largest
eigenvalue the CSSP filters work still at the same location, whereas the
CSP filter exhibit no clear focal point at the area of the left motor cortex.

filters for class foot supply insight how additional spectral information
is exploited. The corresponding spatial filters found by the CSSP
method are almost identical and focusing on the central region, while
the spectral filters have opposite signs in this area. This indicates, that
spectral information of disjoint frequency bands is obtained from
the same location. If we look at the FIR filter that corresponds to
τ = 7 in Fig. 2, it turns out that its maxima and minima respectively
are roughly at 14,21,28 Hz in the bandpass selected frequency range.
Remember that for different signs of Φ(τ) the maxima and the minima
are exchanged. Aggregating these facts, the first spectral filter focuses
on β band, whereas the second spectral filter has its focus close to the
upper α band (11–13 Hz). So instead of having a spatial projection
onto a broad band (7–30 Hz) signal as a solution given by the CSP,
CSSP can split the information furthermore by projecting onto two
signals of the same local origin, but stemming from different sub-
bands, such that each projection fulfills the optimization criterion of
maximizing the variance for one class, while having minimal variance
for the other class.

In such a way the CSSP algorithm is not only able to automatically
adapt to the spectral EEG characteristics of a subject, but also to
treat different spectral information, originating from closely adjoint
(or identical) focal areas independently. Summarizing, this yields
an improved spatio-spectral resolution of the discriminative signals
and hence can improve the robustness and accuracy of the final
classification.

V. CONCLUSION

The paper utilized the method of delay embedding in order to
extend the CSP-algorithm to the state space. The advantages of the
proposed method were proved by its application to the classification
of imagined limb movements on a broad set of experiments. We found
that the CSSP algorithm introduced here outperforms the current
state-of-the-art CSP algorithm in terms of classification accuracy as
well as generalization ability.

It is worth to mention, that in principle it is possible to further
extend the suggested model by incorporating more than one temporal
delay. But this will come at the expense of a quadratically increasing
number of parameters for the estimation of the covariance matrices,
while the number of single trials for training remain the same. Hence
and in consistence with our observations, this approach will tend
to over fit the training data, i.e. the simultaneous diagonalization
of the class covariance matrices finds directions that explain the
training data best, but might have poor generalization ability. But
this directly raises an interesting question for further studies, i.e. how
to appropriately regularize the existing diagonalization methods to
achieve better generalization.
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