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The locations of active brain areas can be estimated
rom the magnetic field the neural current sources
roduce. In this work we study a visualization method
f magnetoencephalographic data that is based on
inimum l 1-norm estimates. The method can repre-

ent several local or distributed sources and does not
eed explicit a priori information. We evaluated the
erformance of the method using simulation studies.
n a situation resembling typical magnetoencephalo-
raphic measurement, the mean estimated source
trength exceeded baseline level up to 2 cm from the
imulated point-like source. The method can also visu-
lize several sources, activated simultaneously or in a
equence, which we demonstrated by analyzing mag-
etic responses associated with sensory stimulation
nd a picture naming task. r 1999 Academic Press

INTRODUCTION

Magnetoencephalography (MEG) (Hämäläinen et al.,
993) is a functional brain imaging method with an
xcellent temporal resolution. However, the source
ocations can be obtained from MEG data unambigu-
usly only if suitable constraints are imposed. There-
ore, it has been difficult to interpret the data and to
ombine MEG with other functional imaging methods.
In this article we present an MEG visualization
ethod that can be used without explicit a priori

nformation and can represent several local or distrib-
ted sources, even when they overlap in time.
Using parametric dipole models (Brenner et al., 1978;

uomisto et al., 1983; Scherg, 1990; Mosher et al., 1992;
utela et al., 1998) the active brain areas can be located
ith an accuracy of about 0.5 cm if the model structure,

.e., the number of active sources and their time spans,
s correct. However, it is not straightforward to select
n appropriate model when several temporally overlap-
ing sources are active. Some objective methods for

odel structure selection have been proposed, but

173
urrently the most practical approach is that an experi-
nced scientist generates the models by trial and error.
The minimum current estimate (MCE) belongs to the

lass of minimum norm estimates (Hämäläinen and
lmoniemi, 1994; Ioannides et al., 1990; Dale and
ereno, 1993; Pascual-Marqui et al., 1994; Matsuura
nd Okabe, 1995). These estimates do not impose
xplicit constraints on the current distribution but,
nstead, select the most plausible source distribution
mong the ones compatible with the measurements.
he results are usually blurred because of the rela-

ively long distance from the sensors to the sources and
he noise in the recorded signals. Still, the estimates
ay assist a scientist visualizing the data and selecting
good model structure for multidipole models.

METHODS

eneral Minimum Norm Estimate

The MEG signals at a given time point can be
odeled using a discrete linear model (Hämäläinen et

l., 1993)

b 5 G q 1 n, (1)

here b is a vector of the measured signals, G is a gain
atrix consisting of the magnetic signals produced by

nit sources at different locations and orientations, q is
vector consisting of the source strengths, and n is a

oise vector.
Although the measured data b do not give the source

trengths q unambiguously if the number of discretized
ources is larger than the number of sensors, a mini-
um norm estimate of q can be calculated as a solution

f the optimization problem

min 0 0q 00 (2)

ubject to
G q < b. (3)

1053-8119/99 $30.00
Copyright r 1999 by Academic Press
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174 UUTELA, HÄMÄLÄINEN, AND SOMERSALO
This approach has different forms depending on how
he norm is selected in Eq. (2) and what kind of errors
re tolerated in Eq. (3) (the selection of the regulariza-
ion method).

egularization

The estimation of the current distribution on the
asis of the measured magnetic fields is an ill-posed
roblem: small variations in the measured signals may
hange the estimated current distributions consider-
bly. However, the variance of the estimated current
ensity can be reduced by allowing a slight bias: the
stimate is regularized. The regularization can be
iewed as incorporating prior information to the estima-
ion problem. The most commonly used regularization
ethods are the Tikhonov or Wiener regularization

Tikhonov and Arsenin, 1977; Foster, 1961) and the
ingular value decomposition method, which is em-
loyed in MCE.
Let G 5 ULVT be the singular value decomposition of

he gain matrix G. Here, U and V are unitary matrices
nd L is a diagonal matrix, the diagonal elements being
he singular values in decreasing order. With cutoff
ndex n, the regularized version of the optimization
roblems (2) and (3) assumes the form

min 0 0q 00 (4)

ubject to the constraint

LnVTq 5 Un
Tb, (5)

here Ln includes the n rows of L (i.e., n largest
ingular values) and Un includes the n first columns of
. The optimal value for the regularization parameter
depends on the signal-to-noise ratio of the measure-
ents: The smaller n is, the greater the allowed
ismatch between b and Gq can be while still satisfy-

ng constraint (5).

inimum Current Estimate

The minimum current estimate minimizes the sum
f the absolute currents (l 1-norm) (Matsuura and
kabe, 1995). This leads to more focal source estimates

han estimates using Euclidean (l 2) norm and can
epresent well the relatively compact source areas
ypically activated in the sensory projection areas.
orms with orders between 1 and 2 could be used for

stimates with properties between the l 1- and l 2-
orms (Beucker and Schlitt, 1996), but iterative meth-
ds would be needed to calculate them.
In Bayesian sense, the minimum l 2-norm estimate

an be thought of as the maximum a posteriori probabil-

ty estimate with Gaussian a priori current distribu- b
ion, while the minimum l 1-norm estimate corresponds
o an exponential a priori distribution (Fig. 1).

The magnetic field produced by a deep focal source
an be very similar to that of a superficial, extended
ource. Because measurements are more sensitive to
he superficial sources, the ordinary minimum norm
stimate has a bias toward these. This bias can be
ompensated by using a weighted norm (Ioannides et
l., 1990; Köhler et al., 1996) where the weight of each
ource component in vector q of Eq. (2) is proportional
o the strength of the signal that a constant current in
he same location produces, i.e., the Euclidean norm of
row of matrix G. The weighted l 1-norm of q is

00q 001,w 5 o
j51

N

wj 00qj 002, (6)

here wj and q j are weight and current vector at source
ocation j and N is the number of different source
ocations.

The drawback of the minimum l 1-norm estimate,
ompared with minimum l 2-norm estimate, is that the
ptimization problem cannot be solved directly. How-
ver, linear programming (LP) solves the problem
fficiently, if the current orientations can be assumed to
e known in advance. Because of the columnar organi-
ation of the cortex, the observable sources are typi-
ally perpendicular to the cortical surface. Magnetic
esonance (MR) images can be used to determine the
ormal of the cortex at given points and thus also the
ost probable current orientation (Dale and Sereno,

993). Since the cortex is heavily convoluted, a large
umber of points are required to represent its geometry
ccurately. However, the use of a dense point set may be
nnecessary because of the relatively poor spatial
esolution of MEG. Using an excessive number of
econstruction points also increases the computational

1

FIG. 1. A priori distributions of current amplitudes in minimum
1- and l 2-norm estimates.
urden in the calculation of the l -norm estimate.
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175MINIMUM CURRENT ESTIMATES
herefore, we used a sparser point set and selected the
urrent orientations with help of the minimum l 2-norm
olution. The LP algorithm can also be modified to
teratively update the orientations (Matsuura and
kabe, 1996), but the results do not seem to be signifi-

antly better, partly because of convergence problems.
The cutoff index n is also the number of constraints in

he LP problem; thus the maximum number of source
ocations having nonzero current at any single time
oint is n.
The algorithm consists of the following steps:

1. Find the minimum weighted l 2-norm estimate q0
y minimizing

o
j51

N

wj
2 00qj 002

2

ubject to the constraint

LnVTq 5 Un
Tb.

2. Create the orientation matrix Q in which each row
s a vector describing the current orientation in q0 in
he corresponding location. Scale the vectors to Euclid-
an norm one.
3. Find the weighted minimum l 1-norm estimate by
inimizing

o
j51

N

wjtj

FIG. 2. Average source strength as percentage of the strength of
he simulated source. The circles show the mean values and the lines
he 5 and 95% percentiles.

FIG. 4. The source distributions (color coded) estimated from simu
ctive patch of cortex, (c) two parallel focal sources, and (d) two orthog
FIG. 5. MCE of somatosensory evoked fields 15–40 ms (a) and
rojected on subject’s MR images (c).
ith respect to source strength vector t subject to the
onstraints

LnVTQt 5 Un
Tb, tj $ 0.

isualization

To visualize the three-dimensional estimates they
re shown on a triangle mesh representing the surface
f the brain (Fig. 5). The neural currents are estimated
n points of a three-dimensional cubical lattice within
he brain. The estimated current of each location is
rojected along a radius from the origin of the spheri-
ally symmetric head model employed in the calcula-
ions. The current strength is weighted inversely propor-
ionally to the distance from the projected location to
he vertices of the triangle and added to the activity at
he vertices. Thus estimated currents from locations
irectly under a node on the surface is shown almost
otally in that node, and the estimated current from a
ocation between adjacent nodes is reflected in all of
hem. The results are shown with interpolated color
oding on the triangle net.
The program calculating and visualizing the esti-
ates was implemented using Matlab. The LP problem
as solved using the lp_solve library by Michel Berke-

aar. After the initialization, the calculation typically
ook 1–2 s/time point in an HP C160 workstation.

FIG. 3. The distribution of current amplitudes estimated from
imulated noise (gray bars). The solid line shows the exponential
istribution fitted to the nonzero values.

ed source distributions (green arrows): (a) a single focal source, (b) an
l focal sources.

0–150 ms (b) after the stimulus. Corresponding multidipole model
lat
ona
10
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FIG. 6. MCE of fields evoked by picture naming using time span
ipole modeling results projected on subject’s MR images (d).
90–160 ms (a), 200–250 ms (b), and 400–500 ms (c) after stimulus and
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178 UUTELA, HÄMÄLÄINEN, AND SOMERSALO
SIMULATIONS

Signals measured with a Neuromag-122 system (Aho-
en et al., 1993) were simulated to evaluate the perfor-
ance of the method. The magnetic field generated by a

ingle current dipole was calculated using a single-
ompartment boundary-element conductor model as-
uming the shape of the cranial volume. In MCE,
pherically symmetric conductor model was used; thus
he estimation included modeling errors in the forward
roblem, which cannot be avoided in real measure-
ents.
Simulated noise whose spatial and temporal correla-

ions resembled that of the real measurements, includ-
ng spontaneous background activity of the brain, was
dded: The spatial distribution of the noise was a
ombination of signal arising from random dipoles
ithin the head (de Munck et al., 1992) and white noise.
he temporal noise characteristics were simulated
sing an autoregressive model of measured back-
round activity. A 50-Hz noise component was also
dded. The noise corresponded to 10% of the variance of
he simulated data.

The MCE was calculated from this simulation; the
utoff index of regularization was 30. The possible
ource locations were constrained to the brain volume
n a simple cubical lattice with lattice constant of 10

m. Locations closer than 30 mm to the center of the
phere model were excluded, because currents in these
reas produce very weak magnetic signals. Figure 2
hows the estimated source strength as a function of
he distance from the true source location.

Noise and modeling errors spread the main peak
n the estimation results to some extent. The amplitude
f the estimated current at the closest node was 57% of
he correct value. The rest of the current had spread to
he nearby nodes: the estimated current strength ex-
eeded the baseline variations in nodes up to 20 mm
rom the simulated source.

The distribution of the noise of the estimate was
tudied by calculating MCE from a simulation of noise
n an evoked response measurement with 100 aver-
ges. The noise level was 8 fT/cm, and the spatial and
emporal characteristics were the same as in the previ-
us simulation.
Because of the regularization, 98% of the estimated

urrents were zeros. The nonzero values were approxi-
ately exponentially distributed with mean value of

.8 nAm (Fig. 3).
Because there is no one-to-one relationship between

urrent distributions and measured magnetic fields,
here are equivalent source distributions that cannot
e discriminated by MEG recordings. For example, a
mall extended source, a few focal sources next to each
ther with parallel currents, and a single dipole each

roduce very similar magnetic fields. The separability s
f two focal sources depends on the angle between the
urrents; magnetic fields produced by sources with
erpendicular currents cannot be explained well with a
ingle source (Lütkenhöner, 1998).
To demonstrate the situation, we calculated the
agnetic fields, as measured with a Neuromag-122, of

our current distributions: a single current dipole, a
-cm-wide patch with constant current, and two dipoles
ith a 3-cm distance with parallel and orthogonal

urrents. The distance from the center of the sphere
odel to the extended currents was 6 cm, and to the

ingle source 4.5 cm. The correlation coefficients be-
ween two of the first three cases were 0.97–0.98, and the
ata vectors corresponding to any coefficients between the
erpendicular source case and the others were 0.56–0.57.
As in the previous simulations, noise amounting to

0% of the variance of the simulated data was added.
or each source configuration the current distribution
as estimated over a 30-ms time period. Because MCE

avors focal sources, the estimates current of the patch
nd the two dipoles with parallel currents concentrated
round the location of the single source (Figs. 4a–4c),
hereas the orthogonal currents produced two distinct

lusters (Fig. 4d).
The resolution of the method depends basically on

he ability to measure the differences between the
ource distributions and in a general case cannot be
rastically improved. However, there is some a priori
nformation that can be incorporated. In MEG measure-

ents, the same sources are active during several time
oints, and unless their time courses are too similar,
heir relative strength varies. This leads to estimates
here the strongest currents overlap the real sources
t some time points and a focal current seems to move
etween them, when the source strengths are balanced.
he temporal information could be automatically incor-
orated to the estimate, for example, by using MUSIC
lgorithm (Mosher et al., 1992) to assign weights to
ifferent source locations (Dale and Sereno, 1993). Also,
f functional MR data of a similar measurement are
vailable, the result can be used to enhance the spatial
esolution (Dale et al., 1997; Uutela and Ryymin, 1998).

MEASURED DATA

omatosensory Evoked Fields

To assess the performance of the method with real
EG data we calculated the MCE from magnetic

esponses evoked by somatosensory stimuli. Median
erve stimulation activates several brain areas with
emporal overlap. Because the somatosensory re-
ponses have been studied extensively (Brenner et al.,
978; Hari et al., 1984; Forss et al., 1994), the areas
roducing the main activations are known: The pri-
ary somatosensory cortex (S1) contralateral to the
timulus is activated beginning approximately 20 ms
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179MINIMUM CURRENT ESTIMATES
fter the stimulus. Later, typically around 100–140 ms,
he secondary somatosensory cortices are activated
ilaterally. Activity of the contralateral posterior pari-
tal cortex is also often seen (Forss et al., 1994).
Schnitzler et al. (1995) stimulated electrically the left
edian nerve of the subject once every 1.5 s and
easured the evoked responses with Neuromag-122.
he signal was analogically low-pass filtered at 330 Hz,
ampled at 1 kHz, low-pass filtered offline with cutoff
requency 90 Hz, and decimated to 250 Hz.

The MCE was calculated from these data with 30
ingular values (Fig. 5). The estimate shows a clear
ource in the hand area of the S1 15–20 ms after the
timulation. Later, during time range 100–150 ms, the
econdary somatosensory cortices and the parietal cor-
ex are active. The widespread weak activity seen in the
stimate between 100 and 150 ms may reflect larger
patial extent of the activated areas at the later stages
f sensory processing or possibly recruitment of some
dditional areas. According to the simulation studies,
he strongest source areas should be correctly located;
he locations of the strongly activated areas are also
oncordant with a multidipole model of the same data.

aming Task

To assess the performance of the method with a more
omplex source distribution we calculated the MCE
rom magnetic responses associated with a picture
aming task. The exact cortical sites involved in lan-
uage processing vary between subjects, but typically
uring the first 200 ms after picture onset the visual
reas of the occipital lobe are active. During the next
00 ms the posterior language area near the left
emporoparietooccipital junction is activated and subse-
uently the frontal language and mouth motor areas;
he corresponding areas in the right hemisphere are
ften active as well (Ojemann, 1990; Salmelin et al.,
994).
Levelt et al. (1998) presented black and white line

rawings of familiar objects to a healthy subject, who
amed them aloud as quickly as possible. The evoked
elds were measured using Neuromag-122 and aver-
ged with respect to picture onset. The averages were
ow-pass filtered with a cutoff frequency of 40 Hz.

The MCE was calculated from these data using 30
ingular values (Fig. 6). The magnetic field at 100 ms
fter picture onset yielded an estimate with activity
ainly in the occipital areas. Later, between 200 and

50 ms, the parietal cortex near the midline and an
rea near the end of the Sylvian fissure were most
trongly activated. Between 400 and 500 ms, areas
ear the junction of central sulcus and Sylvian fissure
ere strongly activated. The results resemble the source

ocations obtained using automatic multidipole model-

ng of the same data (Uutela et al., 1998).
CONCLUSIONS

The MCE shows good performance both with simu-
ated data and with real MEG measurements. Unlike
he minimum l 2-norm estimate, the estimate is close to
he actual distribution when the true sources are focal.
o assumptions about the activation sequence are
ade, and the time course of each source can also be

stimated.
The accuracy of MCE is not as good as that of a dipole
odel for a single source, but because MCE needs
inimal user intervention, it is objective and easy to

alculate and not prone to modeling errors.
MCE is useful for visualizing the sources of MEG

ignals and for selecting the model structure for multi-
ipole analysis. Because the MCE is a three-dimen-
ional estimate of the brain activity, the method is also
uitable for combined analysis of MEG and other
maging modalities.
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