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Source current estimation from MEG measurement is an ill-posed

problem that requires prior assumptions about brain activity and an

efficient estimation algorithm. In this article, we propose a new

hierarchical Bayesian method introducing a hierarchical prior that

can effectively incorporate both structural and functional MRI data. In

our method, the variance of the source current at each source location

is considered an unknown parameter and estimated from the observed

MEG data and prior information by using the Variational Bayesian

method. The fMRI information can be imposed as prior information on

the variance distribution rather than the variance itself so that it gives

a soft constraint on the variance. A spatial smoothness constraint, that

the neural activity within a few millimeter radius tends to be similar

due to the neural connections, can also be implemented as a

hierarchical prior. The proposed method provides a unified theory to

deal with the following three situations: (1) MEG with no other data,

(2) MEG with structural MRI data on cortical surfaces, and (3) MEG

with both structural MRI and fMRI data. We investigated the

performance of our method and conventional linear inverse methods

under these three conditions. Simulation results indicate that our

method has better accuracy and spatial resolution than the conven-

tional linear inverse methods under all three conditions. It is also

shown that accuracy of our method improves as MRI and fMRI

information becomes available. Simulation results demonstrate that

our method appropriately resolves the inverse problem even if fMRI

data convey inaccurate information, while the Wiener filter method is

seriously deteriorated by inaccurate fMRI information.
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Introduction

Functional magnetic resonance imaging (fMRI) and magneto-

encephalography (MEG) are the major recording means of brain

activity. fMRI records brain activity with millimeter-order spatial

resolution, but its temporal resolution is on the order of several

seconds due to slow hemodynamic responses to neural activity

(Bandettini, 2000; Belliveau et al., 1991; Churchland and

Sejnowski, 1988; Logothetis et al., 2001; Ogawa et al., 1990).

Conversely, MEG measures brain activity with millisecond-order

temporal resolution, but its spatial resolution is poor due to the

ill-posed nature of the inverse problem for estimating source

currents from the electromagnetic measurement (Nunez, 1981). In

addition, the number of MEG sensors is generally insufficient to

provide a precise reconstruction of the source current (Grave de

Peralta Menendez and Gonzalez Andino, 1998). Therefore, prior

information on the source currents is essential to solve the inverse

problem. Inverse procedures are commonly classified as dipole

and distributed source methods. The dipole method (Aine et al.,

2000; Hari, 1991; Mosher et al., 1992) approximates brain

activity by a small number of current dipoles. Although this

method gives good estimate when the number of active areas is

small, it is difficult to determine the appropriate number of dipole

sources for complicated spatio-temporal activity. In addition,

neural current distribution over the cortical surface cannot be

estimated by the dipole method. The distributed source method

assumes distributed currents in the brain (Hamalainen et al.,

1993). In a linear approach to resolve the inverse problem,

several prior assumptions have been used such as the (weighted)

minimum norm method (Hamalainen and Ilmoniemi, 1994;

Hamalainen et al., 1993; Wang et al., 1992), the maximum

smoothness method (Pascual-Marqui, 1999; Pascual-Marqui et

al., 1994), the minimum L1-norm method (Uutela et al., 1999),

and others (Huang et al., 1997; Toyama et al., 1999). Bayesian

methods have also been proposed to incorporate nonlinear

smoothness constraints (Baillet and Garnero, 1997). Unfortu-

nately, the prior assumptions are still insufficient to fully resolve



1 In the following, the notation, m = 1:M, is used to represent m =

1,. . ., M.
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the ill-posed nature of the inverse problem, and thus the spatial

resolution of these methods is still rather low. Attempts have been

made to overcome these limitations by supplementing the

information of other imaging means (Ahlfors et al., 1999; Dale

and Sereno, 1993; Dale et al., 2000; Fujimaki et al., 2002; Heinze

et al., 1994; Kajihara et al., 2004; Liu et al., 1998; Phillips et al.,

2002; Schmidt et al., 1999). The MRI image gives information on

the position and orientation of the cortical dipoles, while fMRI

provides topographical information on active dipoles. Although

fMRI has high spatial resolution, it has been pointed out that the

hemodynamic signals of fMRI may not precisely correspond to

neural activity due to various factors such as the effects of noise

and artifacts. In particular, the fMRI activity corresponds to an

average of several thousands of MEG time series data because of

the time resolution difference between MEG and fMRI. When

higher brain functions are examined, several different processes

may occur within several seconds, and these activities are

averaged out in the fMRI data. Consequently, the fMRI active

areas may include inactive current areas in the MEG time slice

data, and the fMRI activity for the active current may be smeared

by the temporal averaging. The recent approaches, such as the

Wiener filter or the Bayesian method (Dale et al., 2000; Kajihara

et al., 2004; Phillips et al., 2002; Schmidt et al., 1999), use the

fMRI data as prior information on the source current variance by

assuming that the current variances for fMRI active dipoles are

large compared with those for fMRI inactive dipoles. Source

current estimation based on these methods may fail if the fMRI

data contain incorrect information.

In this article, we propose a new hierarchical Bayesian method

introducing a hierarchical prior that can effectively incorporate

both structural and functional MRI data. In our method, the

variance of the source current at each source location is considered

an unknown parameter and estimated from the observed MEG data

and prior information. The fMRI information can be imposed as

prior information on the variance distribution rather than the

variance itself so that it gives a soft constraint on the variance.

Therefore, our method is capable of appropriately estimating the

source current variance from the MEG data supplemented with the

fMRI data, even if fMRI data convey inaccurate information.

Accordingly, our method is robust against inaccurate fMRI

information. The spatial smoothness constraint that the neural

activity within a few millimeter radius tends to be similar due to the

neural connections can also be implemented as a hierarchical prior.

Because of the hierarchical prior, the estimation problem becomes

nonlinear and cannot be solved analytically. Therefore, the

approximate posterior distribution is calculated by using the

Variational Bayesian (VB) method (Attias, 1999; Sato, 2001).

The resulting algorithm is an iterative procedure that converges

quickly because the VB algorithm is a type of natural gradient

method (Amari, 1998) that has an optimal local convergence

property. The VB method also provides a model selection criterion

and is used to select the most probable surface on which the source

current is located when there is no prior information on the source

position.

This paper presents principles and performance of the new

hierarchical Bayesian method in comparison with the conventional

linear inverse methods for the three different situations: (1) MEG

with no other data, (2) MEG with structural MRI data on cortical

surfaces, and (3) MEG with both structural MRI and fMRI data.

We also examined the performance of our method and the Wiener

filter method for incorrect fMRI information.
Methods

Bayesian and linear filter approaches for MEG inverse problem

When neural current activity occurs in the brain, it produces a

magnetic field observed by MEG. The relationship between the

magnetic field B = {Bmjm = 1:M}1 measured byM sensors and the

primary source current J = { Jnjn = 1:N} in the brain is given by

B ¼ G d J; ð1Þ

where G = {Gm,njm = 1:M, n = 1:N} is the lead field matrix. The

lead field Gm,n represents the magnetic field Bm produced by the

nth unit dipole current. The MEG inverse problem is to estimate

the source current J from the observed magnetic field data B.

Conventional linear inverse filters can be derived by minimiz-

ing an error function defined by

E Jð Þ ¼ btB�G d Jt2 þ JVd �0 d J: ð2Þ

The first term in the right hand side (r.h.s) of Eq. (2) represents the

reconstruction error, which measures the difference between the

observed MEG data and the reconstructed MEG signal calculated

from the estimated source current. To resolve the ill-posed nature

of the MEG inverse problem, a regularization term is added to the

error function. Depending on the choice of the regularization

matrix �0, various linear inverse methods can be derived. For

example, the minimum norm solution (Hamalainen and Ilmoniemi,

1994) can be derived if �0 is the N-by-N identity matrix. The

parameter b controls the relative weight between the reconstruction

error and the regularization term. The minimum solution of Eq. (2)

is given by

J ¼ L d B ¼ ��1
0 d GV d G d ��1

0 d GV þ b�1IM
��1

d B;
�

ð3Þ

where IM denotes the M-by-M identity matrix.

These linear inverse filters can be also derived by using the

Bayesian method (Dale et al., 2000; Grave de Peralta Menendez

and Gonzalez Andino, 1998; Phillips et al., 2002). The proba-

bilistic model for the source currents can be constructed assuming

Gaussian noise for the MEG sensors. Then, the probability

distribution, that the magnetic field B is observed for a given

current J, is given by

P BjJð Þ~exp � 1

2
btB� G d Jt2

�
;

�
ð4Þ

where b corresponds to the inverse of the noise variance. In the

Bayesian method (Gelman et al., 1995), a prior assumption on the

source currents J is imposed as a prior probability distribution

P0(J). The Bayesian method calculates the posterior probability

distribution for the source current, P(JjB), which represents the

probability that the source current is J under the observed MEG

data B and the prior information:

P J jBð Þ ¼ P BjJð ÞP0 Jð Þ
P Bð Þ : ð5Þ
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The marginal likelihood P(B) appearing in the denominator is

defined by

P Bð Þ ¼
Z

dJP BjJð ÞP0 Jð Þ: ð6Þ

Maximum a posteriori (MAP) estimates find the optimal parameter

(source current value) that maximizes the posterior probability

distribution P(JjB). The linear inverse filters defined by Eq. (3)

can be derived as the MAP solution by assuming the Normal

distribution prior for the source current with a fixed covariance

matrix ��1
0 ;

P0 Jð Þ~exp � 1

2
JV d �0 d J

�
:

�
ð7Þ

One can easily see that the maximization of the log-posterior

log(P(JjB)) is equivalent to the minimization of the error

function (2).

The Wiener filter solution is derived by the minimization of the

estimated current error, which is defined as the error between the true

current and the estimated current. The MAP solution (3) gives the

Wiener filter solution, if the prior current covariance matrix ��1
0 is

the true current covariance matrix (Dale et al., 2000). However, the

true current covariance is unknown. It has been proposed that the

fMRI information can be used to determine the prior current

covariance matrix (Dale et al., 2000; Phillips et al., 2002).

Because of the underdetermined character of the MEG

inverse problem, that is, N N M, a class of the linear inverse

methods defined by Eq. (3) satisfies the following constraint (see

Appendix A):

XN
n ¼ 1

Gn VM : ð8Þ

The estimation gain Gn represents the nth estimated current Jn
by Eq. (3) for a single unit dipole source at the nth position and

should be one for perfect reconstruction. The inequality (8) implies

that the linear inverse method cannot perfectly retrieve more

current dipoles than the number of sensors M.

This constraint can be avoided by using the variance

information. To simplify the explanation, let us assume that there

are active currents in n = 1:K and the current covariance matrix

��1
0 is given as a diagonal matrix with ��1

0

	 �
n;n

¼ 1 (for n = 1:K)

and ��1
0

	 �
n;n

¼ 0 (for n = (K + 1):N). The estimated currents for

null variance points Jn (n = (K + 1):N) vanish from Eq. (3) with

this covariance matrix. Therefore, the estimation gains for n = (K +

1):N also vanish, Gn ¼ 0, and the constraint (8) becomesPK
n ¼ 1 Gn VM . Consequently, the inequality does not constrain

the estimation gains for active dipoles, Gn (n = 1:K), if the number

of active dipoles K is less than the number of sensors M.

Introduction of activity dependent variance information reduces the

effective degree of freedom by suppressing the estimation gains for

small variance points, and this makes the estimation of active

dipoles more accurate.

However, the source current estimation based on the prior

current variance such as the Wiener filter method may fail if the

variance information is incorrect.

Hierarchical Bayesian method

We propose a new hierarchical Bayesian method to overcome

the above difficulties. In our method, the variances (diagonal
part of the covariance matrix) are considered unknown param-

eters and estimated from the observed MEG data by introducing

a hierarchical prior on the current variance. The fMRI

information can be imposed as prior information on the variance

distribution rather than the variance itself so that it gives a soft

constraint on the variance. The spatial smoothness constraint that

neurons within a few millimeter radius tend to fire simulta-

neously due to the neural interactions can also be implemented

as a hierarchical prior.

Hierarchical prior

Let us suppose a time sequence of MEG data B1:T u {B(t)jt =
1:T} is observed. The MEG inverse problem in this case is to

estimate the primary source current J1:T u {J(t)jt = 1:T} from the

observed MEG data B1:T . We assume a Normal prior for the

current:

P0 J 1:T jAð Þ~exp � 1

2

XT
t ¼ 1

JVtð Þ d A d J tð Þ
#
;

"
ð9Þ

where A is the diagonal matrix with diagonal elements A = {anjn =

1:N}. We also assume that the current variance A�1 does not

change over period T. The current inverse variance parameter A is

estimated by introducing an Automatic Relevance Determination

(ARD) hierarchical prior (Neal, 1996):

P0 Að Þ ¼ P
N

n ¼ 1
C
�
anjā0n; c0na


;

C
�
ajā;c


u a�1

�
ac=ā

c
C cð Þ�1

e�ac=ā; ð10Þ

where C(ajā,c) represents the Gamma distribution with mean ā
and degree of freedom c. C cð Þu

Rl
0

dttg � 1e�t is the Gamma

function.

We briefly explain the difference between a conventional

Normal prior and the hierarchical prior. In the case of the Normal

prior, the value of the inverse variance parameter an is given as

prior information. For small variance (large an value, aL), the

prior probability distribution for the current, P0( JnjaL), is

concentrated near zero (Fig. 1A), so large current is highly

penalized by the prior information. For large variance (small an

value, aS), P0( JnjaS) spreads over large values (Fig. 1B), so the

estimated current likely becomes large. In the case of the

hierarchical prior, the inverse variance parameter an is considered

a random variable. Therefore, there are nonzero probabilities for

any value of the inverse variance parameter an, and the prior

probability distribution for an is given by the Gamma distribution

(10). The hyperparameters c0na control the spread of the

distribution and represent the reliability (or confidence) of the

hierarchical prior. The hyperparameters ā0n represent the mean

value of an in the hierarchical prior. If the prior mean a0n is small,

the prior probability P0(an = aS) that an takes a small value, aS

(large variance), increases (Fig. 1C). In contrast, the prior

probability P0(an = aL) that an takes a large value, aL (small

variance), increases for large ā0n (Fig. 1D). Therefore, the prior

information on the current variance is imposed as a soft constraint

in the variance estimation.

When the fMRI data are not available, we have no information

on the current variance. Lack of knowledge can be represented as a

non-informative prior, which assumes that any parameter value has



Fig. 1. Hierarchical Bayesian method. (A) Probability distribution of a Normal prior P0 ( JnjaL) for the current Jn with a large inverse variance (small variance)

parameter aL is plotted. (B) That with a small inverse variance (large variance) parameter aS. (C) Hierarchical prior distribution P0(an) for the inverse variance

parameter an with a small prior mean ā0n is plotted. The probability for small inverse variance aS is large compared with that for large inverse variance aL. (D)

That with a large prior mean ā0n. The probability for small inverse variance aS is small compared with that for large inverse variance aL. (E) Flow chart of the

Variational Bayesian (VB) method. In the J-step, the inverse filter L(�A
�1) is recalculated according to (28) using the estimated covariance matrix �A

�1 in the

previous iteration. The current J1:T is then estimated from the observed MEG data B1:T using the inverse filter according to Eq. (29). The current variance a�1

is estimated in the a-step by using the estimated time sequence of the current J1:T and the fMRI information according to Eq. (30). The current covariance

matrix �A
�1 is then calculated by using the current variance and the smoothing filter W according to Eq. (31). The free energy is calculated at the end of the

steps. If the free energy has not converged, the above J- and a-steps are repeated.
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the same probability.2 Therefore, we use a non-informative prior

for the current inverse variance parameter an in this case, that is,

c0na = 0 and P0(an) = an
�1. When the fMRI data is available, fMRI

information is imposed as the prior mean variance ā0n
�1 weighted

with the confidence parameter c0na. The prior mean variance ā0n
�1 is

increased for the fMRI active area, so the probability that an takes

a small value (large variance) becomes large (Fig. 1C). On the

other hand, ā0n
�1 is decreased for the fMRI inactive area, so the

probability that an takes a large value (small variance) becomes

large (Fig. 1D).

Smoothness prior

The smoothness constraint can be imposed as the structural

constraint on the off-diagonal part of the covariance matrix, which

enforces high correlations between neighboring current activity:

P0 J1:T jA;Lð Þ~exp � 1

2

XT
t ¼ 1

JV tð Þ d �A d J tð Þ
#
;

"
ð11Þ

where the current covariance matrix ��1
A is given by

��1
A ¼ A�1 þW d K�1 d WV: ð12Þ
A and K are the diagonal matrices with the diagonal elements

A = {anjn = 1:N} and L = {knjn = 1:N}, respectively. The second

term in the r.h.s. of Eq. (12) represents the correlation in current

activity between the neighboring points. The spatial profile of the
2 We assume the probability distribution is flat with respect to log(an).
correlation function is characterized by the smoothing filter W. If

we assume the Gaussian smoothing filter for W, the correlation in

current activity between two points decreases exponentially as the

squared distance increases. Parameters A and L control the

diagonal and the off-diagonal part of the current covariance

matrix, respectively. As the variance parameter an
�1 increases,

the variance of the nth current increases. As the smoothness

parameter kn
�1 increases, the correlation between the nth and the

neighboring currents increases. Parameters A and L are estimated

by introducing the ARD hierarchical prior for them.

Variational Bayesian method

Because of the hierarchical prior, the estimation problem

becomes nonlinear and cannot be solved analytically. Therefore,

the approximate posterior distribution is calculated by using the

Variational Bayesian (VB) method (Attias, 1999; Sato, 2001). In

the VB method (see Appendix B.1), the calculation of the

posterior distribution is reformulated as the maximization problem

of the free energy for a trial distribution that approximates the true

posterior. The optimization problem is solved by imposing

constraints on the trial distribution. The resulting algorithm is an

iterative procedure. The method alternately estimates the current

and the variance from the observed MEG data B1:T and the prior

variance information given by the fMRI data. It has been proved

(Sato, 2001) that the VB method converges into a local maximum

of the free energy and is equivalent to the natural gradient method

(Amari, 1998), which has an optimal local convergence property.

The maximum free energy provides a model selection criterion and

is used to select the most probable surface on which the source



3 Here, the dependence on the surface model M is explicitly

expressed.
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current is located when there is no prior information on the source

position (see Surface model selection). The detailed algorithm is

derived in Appendix B.

Here, we explain some of the essential equations of the VB

method for the hierarchical prior Eqs. (9) and (10). The

algorithmic flow of the VB method is summarized in Fig. 1E

(see also Appendix B.4). At the start of the algorithm, the initial

value of the estimated variance an
�1 is set to the prior mean

variance ā0n
�1 and the covariance matrix is calculated as

��1
A ¼ diag A�1ð Þ. Namely, the prior variance information given

by the fMRI data is also used as the initial value of the current

variance. Consequently, the VB current estimate at the first

iteration is equal to the Wiener filter solution. When there is no

fMRI information, all of the current variances are set to the same

value, and thus the first VB current estimate is given by the

minimum norm solution in this case.

In the J-step (Fig. 1E), the inverse filter L ��1
A

	 �
is recalculated

using the estimated covariance matrix ��1
A . It depends on the

observed data B1:T through the estimated variance A�1. The

current is then estimated using the inverse filter (see Eqs. (28) and

(29) in Appendix B.4):

L
�
��1

A


¼ ��1

A d GV d
�
G d ��1

A d GVþ b�1IM

�1

;

J tð Þ ¼ L ��1
A

�
d B tð Þ:

	
ð13Þ

This equation has the same form as the linear inverse Eq. (3). The

crucial difference is that the variance of the current is estimated in

our method, while it is given as prior information in the linear

inverse method.

The variance is estimated in the a-step by using the estimated

time sequence of the current J1:T (Fig. 1E). The update equation

for the current variance an
�1 is somewhat complicated (see Eq. (30)

in Appendix B.4), but it becomes simple when the algorithm

converges:

a�1
n ¼ c0naā

�1
0n

þ T
2

1
T

PT
t ¼ 1 J

2
n tð Þ

� 
c0na þ T

2
L ��1

A

	 �
d G

	 �
n;n

: ð14Þ

The first term in the r.h.s. numerator of Eq. (14) represents

the contribution of the prior mean variance ā0n
�1. It is weighted

by a prior confidence factor c0na. The second term is the data

term and represents the average magnitude of the estimated

current. It is weighted by half of the data number T/2. Therefore,

the estimated variance is a weighted average of the data term

and the prior contribution. The covariance matrix is then

calculated as ��1
A ¼ diag A�1ð Þ. When the smoothness constraint

is imposed by Eq. (11), the covariance matrix is calculated by

Eq. (12) using the smoothing filter W and the estimated

smoothness parameter L
�1 as well as A

�1 (see Eq. (31) in

Appendix B.4). The free energy is calculated at the end of the

steps. If the free energy is not converged, the above J- and a-

steps are repeated.

Since the VB method estimates the current variance according

to the observed MEG data as well as the fMRI information, the VB

method can appropriately estimate the current variance value, even

when the fMRI data is biased toward an incorrect variance value.

We evaluated this point by using anatomically realistic simulation

data, as described in the following sections.
Surface model selection

When structural MRI data is available, the cortical surface

obtained from the MRI image data can be used as a surface model

M for current estimates and a dipole source current Jn is assumed

in each vertex point on the surface M. If there is no structural

information by MRI, the shape and position of the cortical surface

is unknown. In this case, we consider a set of surface models M
with different radii and compare the probability that the source

current is on the surface M. Since there is no prior information on

the surface position, any surface may have the same prior

probability, that is, P0 Mð Þ = constant. Then, the probability

P MjB1:Tð Þ, that the source current is on the surface M under the

observed data B1:T, is proportional to the marginal likelihood for

the surface model M;P B1:T jMð Þ:3

P MjB1:Tð Þ~P B1:T jMð ÞP0 Mð Þ~P B1:T jMÞ:ð ð15Þ

Namely, we can find the most probable surface M by finding

the surface with the maximum marginal likelihood, which is

equivalent to finding the maximum log-marginal likelihood log

P B1:T jMð Þð Þ because the logarithm is a monotonically increasing

function.

The log-marginal likelihood is approximated by the maximum

free energy for the surface model M in the VB method (see

Appendix B.1). Therefore, the most probable surface can be

determined by finding the surface model with the maximum free

energy. This procedure gives more accurate estimation of the

source current than using the distributed current model in three-

dimensional space.
Results

We evaluated the performance of our VB method to resolve

the MEG inverse problem in comparison with conventional linear

inverse filters. Basic estimation capabilities were evaluated by

conducting simulations for a single dipole source and a single

distributed source randomly placed on a cortical surface under

three situations: (1) MEG with no other data, (2) MEG with

structural MRI data on cortical surfaces, and (3) MEG with both

structural MRI and fMRI data. Precision of the source local-

ization was measured by a localization error, which was defined

as the Euclidean distance between the true current and the

estimated current peak. Accuracy of the current amplitude

estimation for a single dipole source was measured by the

estimation gain, which was defined as the ratio between the

estimated current and the source current at the source position.

The spatial profile of the current estimates for a single dipole

source was also measured by a point-spread curve, which was

defined as the estimated current profile around the source dipole.

These measures were averaged over 500 cases randomly

generated on the cortical surface.

More realistic estimation performances were also evaluated

using simulated visual cortical responses under three other

situations: (1) MEG with structural MRI data, (2) MEG with

structural MRI and correct fMRI data, and (3) MEG with structural

MRI and incorrect fMRI data. To evaluate spatio-temporal patterns
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of the estimated currents, local currents were defined as the sum of

the estimated currents within the areas corresponding to the active

source currents. The precision of the estimation was assessed as the

estimation gain at the source current peak and the normalized root

mean squared error (RMSE) for the temporal sequences of the local

current.

MRI-based cortical surface model

A polygon model of cortical surfaces (number of vertex points,

24,917; intervertex distance, 1.5 F 0.5 mm) was constructed based

on MRI image slices of an experimental subject (YO) using

BrainVoyager 2000 (Goebel and Max Plank Society, 2000) (Fig.

2A). A single current dipole was assumed at each vertex point

perpendicular to the cortical surface. One hundred and ninety-nine

gradiometer sensors were assumed to surround the brain (blue dots

in Fig. 2A), which reproduced the geometry of the whole-head

MEG recording device used in our laboratory (Shimadzu SBI200).

For calculation of the lead field, the brain structures were

approximated as a sphere with a 100-mm radius, and the Sarvas

equation (Sarvas, 1987) was used. In the following simulations, we

used this MRI-based cortical surface model as a forward model to

generate simulated MEG signals.
Fig. 2. MRI-based cortical surface model. (A) MRI-based cortical surface model ob

(B) Five hundred points randomly selected from the MRI-based cortical surface mo

surface model for current estimates is plotted together with 199 MEG sensors.
VB and linear inverse filter estimates for single dipole and

distributed current sources

To investigate the basic capabilities of the VB estimate, we

conducted simulations for two types of sources, that is, a single

dipole source and a single circular distributed source composed of

uniformly distributed dipoles within a 7-mm radius from the source

center on the cortical surface. Noiseless and noisy conditions,

where MEG signals contain Gaussian sensor noise with N/S of 0.1,

were tested under three situations: (1) MEG with no other data, (2)

MEG with structural MRI data, and (3) MEG with both structural

MRI and fMRI data. Precision of the source localization was

measured by the localization error, which was defined as the

Euclidean distance between the true current (center) position X0

and the maximum (absolute value) peak position Xpeak of the

estimated current:

Localization Error ¼ tX 0 � Xpeakt:

A single dipole or a single distributed source was located at one

of 500 randomly selected vertices among 24,917 vertices (red

points in Figs. 2B and C), and the localization errors for the 500

cases were averaged out, since the estimation performance depends

on the depth and orientation of the current sources. The accuracy of
tained from MRI image data. 199 MEG sensors are also plotted as blue dots.

del are shown by red dots (Top view). (C) Bottom view. (D) Variable-radius
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the amplitude estimation and the spatial profile of the current

estimates for a single dipole source were also assessed by averages

of the estimation gain and the point-spread curve, respectively. The

results were compared with those for the conventional linear

inverse filters.

Before going into the detailed results, the estimation procedures

of the VB method are explained for the three situations.

MEG with no other information

Variable-radius surface model

In the situation where no other information is available than

MEG data, we assumed a variable-radius surface model for current

estimates. The surface consisting of 2282 polygons (number of

vertex points, 1185; intervertex distance, 5.7 mm at 70 mm radius)

with a variable radius R was constructed, and a tangential current

dipole with two degrees of freedom was assumed at each vertex

point (Fig. 2D). The surface radius was determined so as to

maximize the free energy (see Surface Model Selection). We used

the hierarchical prior without smoothness constraints Eq. (9) and

assumed the non-informative prior for P0(A).
Fig. 3. Single and multiple source estimation. (A) A single dipole source at X1 = (7

a blue dot. The other dipole source at X2 = (57.1 mm, 47.28, 152.38) used in multip

a single source estimation under noiseless condition is plotted by a blue line. The

peaked at 75 mm, which well agreed with the depth of the current source 74.5 mm.

line. (C) Free energy curve for a single source estimation under noise condition. T

energy peaked at 75 mm. (D) The reconstruction error of the dipole fit under nois

observed MEG data for each radius R by constraining the radius of the dipole to R.

by VB method under noise condition for the surface with R = 75 mm is plotted o

source position is depicted by a blue dot. (F) Estimated currents on the maximum

Two local current peaks were identified near the angular positions of the two sou

local current peaks are shown by blue and green circles. (G) The free energies ma

free energy as a function of R1 (R2) is plotted by a blue (green) line, where R2 (R

surfaces with R1 = 75 mm and R2 = 57 mm are shown by pseudocolor represent
Single current source

We first explain the VB method for a single sinusoidal current

dipole at X1 = (radius r1 = 74.5 mm, elevation angle h1 = 69.48,
azimuthal angle /1 = 110.28) of the MRI-based cortical surface

model (blue dot in Fig. 3A) under the noisy condition with

Gaussian sensor noise (N/S = 0.1).

The VB method was applied for each surface with a radius R by

repeating the current (J-step) and the variance (a-step) estimations

alternately according to Appendix B.4 until the free energy

converged to the maximum (Fig. 1E). The free energy obtained

for variable R peaked at R = 75 mm (Fig. 3C), which roughly

agreed with the radius of the current source (74.5 mm). To see the

effect of noise, the free energy curve under noiseless condition was

also shown in a blue curve of Fig. 3B. The free energy was sharply

tuned at the peak position when there was no noise. As the noise

amplitude increased, the peak profile of the free energy curve

became broader as shown in Fig. 3C. However, the peak almost

stayed at the same position and there was no local peak around the

maximum peak position in the presence of noise. Therefore, the

source depth was safely determined by the free energy maximum.

On the other hand, the reconstruction error (green curve in Fig. 3B)
4.5 mm, 69.48, 110.28) in the MRI-based cortical surface model is shown by

le source estimation is also shown by a green dot. (B) Free energy curve for

free energy was maximized for each surface with radius R. The free energy

The reconstruction error under noiseless condition is also plotted by a green

he free energy maximized for each surface with radius R is plotted. The free

e condition was calculated for each radius. A single dipole was fitted to the

The error had the minimum at 75 mm. (E) Peak sinusoidal current estimated

n a flattened map using pseudocolor representation of current intensity. The

free energy surface for two dipole sources are plotted on the flattened map.

rces and depicted by blue and green crosses. Two local surfaces around the

ximized for a set of two local surfaces with radii R1 and R2 are plotted. The

1) is fixed at 57 mm (70 mm). (H) Current estimates for a set of two local

ation. The two source positions are depicted by blue and green dots.
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of this distributed source model under the noiseless condition was

nearly flat for the radius larger than 50 mm, so it was not a good

measure to estimate the source depth. This is because the magnetic

field produced by a deep focal source can be reproduced by

distributed superficial sources. We also examined the standard

single dipole fit for this problem. The reconstruction error (Fig.

3D) of the dipole model under the same noise condition (N/S =

0.1) showed the similar (reversed) tuning curve as the free energy

(Fig. 3C).

We then estimated the source current for the maximum free

energy surface. The sinusoidal current peak estimated by the VB

method for the surface with R = 75 mm was correctly focused

around the true dipole position (blue dot in Fig. 3E) with a

localization error of 2.7 mm.

Multiple current sources

To explain the VB method for a multiple dipole case, we

assumed another sinusoidal current dipole of the same current

strength at X2 = (57.1 mm, 47.28, 152.38) (green dot in Fig. 3A), in

addition to that for the single dipole case.

The maximum free energy surface was determined in the same

way as for the single current source case. The free energy peaked at

R = 70 mm. There were two current peaks at X̂1 and X̂2 on this

surface (blue and green crosses in Fig. 3F), and local surfaces (blue

and green circles) were extracted as assemblies of vertex points X

within 308 angular coordinate differences from X̂1 and X̂2, that is,

(XV X̂i)/(jXtX̂ij) z cos (308) for i = 1,2. Then, a new surface

model was constructed as the set of the two local surfaces with the

radii R1 and R2, which were determined by alternately maximizing

the free energy with respect to R1 and R2. The free energy was first

maximized by varying R2 while R1 was fixed at 70 mm. The free

energy peaked at R2 = 57 mm (green line in Fig. 3G). Next, the free

energy was maximized by varying R1 while R2 was fixed at 57

mm. The free energy peaked at R1 = 75 mm (blue line in Fig. 3G).

In principle, it is necessary to iterate this procedure until the free

energy converges to a maximum value. However, no increase in

the free energy was found with further iteration in this case, and R1

and R2 were estimated at 75 and 57 mm, respectively. Plots of

sinusoidal current peaks estimated for the two local surfaces (R1

and R2, 75 and 57 mm) indicate that the VB current estimates were

correctly focused to the two true dipole sources (blue and green

dots in Fig. 3H). Localization errors for X1 and X2 were 2.7 and

2.6 mm, respectively.

The VB method can recover multiple current sources from

MEGs if the estimated current peaks in the maximum free energy

surface can be discriminated and correspond to all of the current

sources. To specify each source position, a new surface model is

constructed from a set of local surfaces for the individual current

peaks. The VB estimates can be completed by maximizing free
Table 1

Discriminability of two sources

Distance (mm) 0–5 5–10 10–15

% of failure 81.8 40.4 14.6

Localization error 3.62 6.95 6.43

Discriminability of two sources. Discriminability of two sources for the VB meth

sets of two dipole sources (maximum distance, 35 mm) in the MRI-based cortica

listed according to the range of the Euclidean distance between the two sources, th

over 350 sets according to the range of the distance and listed in millimeters.
energy by alternately changing each local surface radius. To

investigate whether the VB method can discriminate two sources

placed at nearby points, simulations were conducted by randomly

generating 350 sets of two dipole sources (maximum distance, 35

mm) in the MRI-based cortical surface model. When the Euclidean

distance between the two sources was small, the VB method often

estimated only a single current peak (Table 1). The percentages that

only a single source was recovered were 81.8%, 40.4%, and 14.6%

for the distance ranges 0–5, 5–10, and 10–15 mm, respectively.

When only a single current peak was estimated, the localization

error for each source was defined as the Euclidean distance

between each source and the single estimated current peak.

Localization errors for the two sources were averaged over 350

cases according to the range of the distance, that is, 0–5,..., 30–35

mm (Table 1). Localization errors slightly increased around

distances of 5–20 mm. However, the localization errors decreased

for distances less than 5 mm, since the single estimated current

peak could approximate both sources within 5-mm localization

error. Table 1 also shows that the mean localization errors for the

two sources remained below 7 mm across the distances of 0–35

mm. These results indicate that the minimal distance for the VB

estimates to resolve two current sources is roughly 15 mm if no

other information than MEG is available.

MEG with structural MRI information

When structural MRI data were available, the MRI-based

cortical surface model for current sources (Fig. 2A) could be used

as a surface model for current estimates. The VB estimate was

conducted in two steps: (1) low-resolution current estimation using

a coarse surface model and (2) high-resolution estimation using a

fine surface model. The coarse surface model (number of vertex

points, 2494; average intervertex distance, 6 mm) was constructed

by reducing the number of vertex points down to one-tenth of that

for the MRI-based cortical surface model. A locally distributed

current source with a Gaussian profile was assumed at each vertex

of the coarse surface model. Then, the current in the coarse surface

model ZL induces the current J =WL ZL in the MRI-based cortical

surface model, where WL denotes the Gaussian profile of the

distributed currents. The Gaussian profile is given by (WL)nj = exp

(�(dnj/r)
2), where dnj denotes the shortest path length between the

nth vertex point of the MRI-based cortical surface model and the

jth vertex point of the coarse surface model. The magnetic filed B

produced by the coarse model current ZL is given by B = Gd J =

Gd WLd ZL. Therefore, the effective lead field matrix for ZL is

given by Gd WL. The coarse model current ZL was estimated by

the VB method with the hierarchical prior Eq. (9). The non-

informative prior was assumed for P0(AL), where AL was an

inverse variance parameter for ZL. The VB algorithm in Appendix
15–20 20–25 25–30 30–35

2.0 2.4 0.0 0.0

5.50 3.89 3.78 3.04

od with no other information was investigated by randomly generating 350

l surface model. The percentages that only a single source is recovered are

at is, 0–5,. . ., 30–35 mm. Localization errors for two sources were averaged
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B.4 was modified such that G was replaced by Gd WL, and W = 0.

The current in the MRI-based cortical surface model is given by

J tð Þ ¼ ��1
A d GV

�
G d ��1

A d GVþ b�1IM

�1

d B tð Þ;

��1
A ¼ W L d A�1

L d W LV; ð16Þ

where AL
�1 = diag(AL

�1) denotes the variance matrix for ZL. The

comparison between Eqs. (13) and (16) implies that this current

model is equivalent to assuming a hierarchical prior with the

current covariance matrix, (WLd AL
�1d WL

V ).

High-resolution VB estimation was conducted for local peak

currents of the coarse surface model. As in the case of MEG for

multiple dipoles with no other information, local surfaces were

extracted from theMRI-based cortical surface model as an assembly

of vertex points within 35 mm from the vertex point of each local

current peak. The VB current estimate was performed for a fine

surface model constructed by a set of extracted local surfaces using

the hierarchical prior, Eqs. (11) and (12), with a non-informative

prior. The Gaussian filter for the smoothness constraints was

assumed asWnm = exp(�(dnm/r)
2), where dnm denotes the shortest

path length between the nth and the mth vertex point of the MRI-

based cortical surface model. The full width half maximum

(FWHM) of the Gaussian filter was assumed to be 8 mm. We

tested several Gaussian filters with different FWHM. The bio-

logically plausible value, FWHM = 3.5 mm according to the point

spread map of fMRI (Engel et al., 1997), was too small in the

present MRI-based cortical surface model. The number of points

within a 3.5-mm diameter for each vertex point was very few

(average number, 2 F 1), which caused inhomogeneity in the

smoothness constraints. The value FWHM = 8 mm (average

neighbor number, 8 F 2) was selected as the compromise between

spatial resolution and smoothness of the estimation results.

The performance of the VB estimates with structural MRI

information was compared with that of the conventional linear

inverse filters. The minimum norm estimate (MN) (Hamalainen and

Ilmoniemi, 1994) and the minimum norm estimate with smoothness

constraints (MNC) were tested using the same MRI-based cortical

surface model. To avoid the regularization problem of determining

the regularization coefficient, simulation was conducted only for the

noiseless case. The MN estimate is defined as the linear inverse

estimate (3) with�0 = IN and b�1 = 0. TheMNC estimate is defined

as that with ��1
0

	 �
nm

¼ expð� dnm=rð Þ2Þ (FWHM = 8 mm) and

b�1 = 0. This smoothness constraint with Gaussian profile is

comparable with the smoothness constraint used in the high-

resolution VB estimation.
Table 2

Localization error for single source

Method VB

Information NO MRI

Dipole source No Noise 4.85 (8.19) 1.33 (3.49)

N/S = 0.1 4.64 (7.72) 0.71 (2.08)

Distributed source No Noise 5.90 (7.71) 3.64 (3.30)

N/S = 0.1 5.57 (7.44) 2.81 (2.70)

Summary of the localization error (mm). The localization errors averaged over 50

surface model are listed in millimeters. The standard deviations are listed in parent

sensor noise with N/S of 0.1, were tested under three different situations dependi

MRI (MRI), and MEG with MRI and fMRI (MRI + fMRI). The estimation method

norm estimate with smoothness constraints (MNC), and the Wiener filter method

filter methods as indicated by – in the table.
MEG with MRI and fMRI information

If fMRI data is available in addition to structural MRI data, that

information may be used as hierarchical priors. fMRI signals were

assumed to uniformly spread out in a circular area of a 15-mm

radius around the point source brain activity: the fMRI signal Vn at

the nth vertex point was one in the 15-mm radius around the source

current (center) position, and Vn = 0 for other positions. The VB

current estimate was performed in the same way as for the high-

resolution VB with MRI information, except for the introduction of

fMRI signals into the hierarchical priors defined by Eq. (32) (see

Appendix B.4).

The performance of the VB estimates was also compared with

that of the Wiener filter estimates (Dale et al., 2000; Kajihara et al.,

2004; Phillips et al., 2002), using the same MRI and fMRI

information. For the noiseless case, the Wiener filter estimate

is given by Eq. (3) with ��1
0

	 �
nm

¼ VnVmexpð� dnm=rð Þ2Þ
(FWHM = 8 mm) and b�1 = 0.

Performance improvement by combining MEG with MRI and fMRI

Table 2 compares localization errors of the VB estimates

averaged over 500 randomly placed dipoles and distributed sources

in the MRI-based cortical surface model. Noiseless and noisy

conditions were tested under three situations: (1) MEG with no

other data (NO), (2) MEG with MRI (MRI), and (3) MEG with

both MRI and fMRI (MRI + fMRI). One can see that localization

errors in the VB estimates reduce for all cases as more information

becomes available.

Interestingly, the performance of the VB estimate is slightly

better under the noisy condition than that of the noiseless

condition. In the noisy condition, dynamic sources with sinusoidal

waveform were assumed and the time sequence of MEG data was

used to estimate the current variance in the VB method. On the

other hand, static sources were assumed in the noiseless case, and

only a single set of MEG data was used to estimate the current

variance. This result shows the usefulness of the time sequence

information of MEG data.

The contribution of MRI and fMRI information to improve

localization errors for single dipole sources is also shown by scatter

plots of localization errors as a function of the lead field norm

tGnt = M(�m =1
M Gm,n

2 ) (Figs. 4A–C). The lead field norm

represents the magnitude of MEG produced by a single dipole

source, and it becomes small as the source location becomes deep

and the current orientation approaches the radial direction. Local-
MN MNC Weiner

MRI + fMRI MRI MRI MRI + fMRI

0.28 (0.98) 21.6 (31.1) 17.0 (24.6) 1.30 (1.90)

0.11 (0.57) – – –

3.12 (1.61) 20.1 (28.0) 16.4 (24.0) 1.65 (1.53)

2.40 (1.94) – – –

0 randomly placed dipole and distributed sources in the MRI-based cortical

heses. Noiseless and noisy conditions, where MEG signals contain Gaussian

ng on the available information: no other data than MEG (NO), MEG with

s are the VB method (VB), the minimum norm estimate (MN), the minimum

(Wiener). The noisy conditions were not tested for MN, MNC, and Wiener



Fig. 4. Localization error for a single dipole source. (A–C) Scatter plots of localization errors for single dipole source as a function of the lead field norm. (A)

The VB method for MEG with no other data (NO). (B) That for MEG with MRI (MRI). (C) That for MEG with both MRI and fMRI (MRI + fMRI). (D) Point-

spread curves of the current estimates around the source dipole were calculated by averaging over the 500 dipole sources as a function of the Euclidean distance

from the source dipole position. Estimation methods are VB estimate with NO other information (solid red line), VB estimate with MRI (solid green line), VB

estimate with MRI and fMRI (solid blue line), minimum norm estimate (MN) with MRI (dashed cyan line), minimum norm estimate with smoothness

constraints (MNC) with MRI (dashed magenta line), and Wiener filter estimate with MRI and fMRI (dashed black line).
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ization errors for dipole sources with small lead field norms were

larger than those with large lead field norms in all situations (Figs.

4A–C) because the estimation of the sources with small lead field

norms was difficult. The scatter plots also show that introduction of

MRI and fMRI information significantly decreases localization

errors, especially for large lead field norms. In addition, the

positions of dipole sources were perfectly recovered for large lead

field norms when both MRI and fMRI information were imposed.

Table 2 also shows that the precision of the VB estimates with

MRI information is far better than those of the MN and MNC

estimates both for single and distributed sources. The precision of

the VB estimates with MRI and fMRI information is comparable

with that of the Wiener filter, that is, that of the VB estimates is

slightly better than that of the Wiener filter for a single dipole

source, but the converse is true for a single distributed source

(Table 2). It should be noted that the localization error of less than

7 mm for the distributed source implies that the source position is

correctly estimated inside the distributed source, since the radius of

the distributed source is 7 mm. Therefore, the differences of

localization errors less than 7 mm do not have much meaning for

the distributed source, unless the detailed spatial profile of the

estimated currents are examined.

The spatial profile of the estimated currents for single dipole

source was assessed as the point-spread curve. It was defined by

the estimated current profile around the source dipole and averaged
across the 500 dipole sources as a function of the Euclidean

distance from the source dipole position. If the current estimation is

perfect, the value of the point-spread curve at the origin, which is

equal to the estimation gain, should be one and that for positive

distance should be zero. Fig. 4D shows the point-spread curve of

the VB estimates for three situations: (1) MEG with no other data

(NO), (2) MEG with MRI (MRI), and (3) MEG with both MRI and

fMRI (MRI + fMRI). The point-spread curve for NO case (red line

in Fig. 4D) was rather broadly spread with FWHM = 5 mm. The

estimation gain (height of the point-spread curve at the origin) was

0.68 in this case. The point-spread curves for MRI and MRI +

fMRI cases (green and blue lines in Fig. 4D) were sharply tuned at

the source position with FWHM = 1 mm, and the estimation gains

were 0.48 and 0.81, respectively. These results show that the

introduction of MRI and fMRI information significantly increases

the spatial resolution of the VB method.

The point-spread curves of the MN and the MNC methods

(dashed cyan and magenta lines in Fig. 4D) were almost flat and

nearly overlapped with the x-axis, which indicated very poor

resolution of these methods. The point-spread curve of the Wiener

filter estimate (dashed black line in Fig. 4D) was worse than that of

the VB estimate for MRI + fMRI (FWHM = 4 mm; estimation

gain, 0.27).

These results show that the precision of the source localization

for the VB method is comparable with that for the Wiener filter
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method when structural MRI and correct fMRI data are available.

On the other hand, the estimated current profile of the Wiener filter

method have much larger spread than that of the VB method for a

single dipole source. Both measures are much better for the VB

method than for the MN and the MNC methods when only

structural MRI data is available.

VB and linear inverse filter estimates for simulated cortical

responses

Comparison of the VB performance for single and distributed

current sources among the three situations indicates that the MRI

and fMRI information effectively improves the spatial resolution as

well as the reliability of the VB estimates. However, mismatches

could occur between MEG and fMRI information for several

reasons, including noise artifacts and the slow hemodynamic

response of fMRI. We investigated how these mismatches affect

the VB and the Wiener filter estimates for MEGs by conducting

simulations reproducing realistic visual cortical responses.

We identified cortical areas in a subject’s (MA) brain including

V1v, V1d, V2v, V2d, V3, and VP (Fig. 5A). This was based on the

cortical retinotopy determined by fMRI using a rotating pole and

expanding/shrinking annulus stimuli (Engel et al., 1994; Linden et

al., 1999; Sereno et al., 1995). We simulated sequential activities

evoked in visual cortical areas by lower-quadrant visual field
Fig. 5. Simulated visual responses. (A) The cortex model used for the simulated v

visual areas are shown by using an inflated map of the cortex. Visual areas V1v,

source currents with a 5-mm radius in the V1v, V2v, and VP areas are shown in y

(blue line) currents. Total current strength of each source is shown. Abscissa denot

150 ms are shown on the inflated map. (E) Simulated fMRI activity given as t

convolved with a Gaussian smoothing filter (FWHM = 6 mm). (F) False-positive

fMRI signals in V1v, V2v, and VP.
stimulation. Sinusoidal currents uniformly distributed in vertex

points within a circular area (radius, 5 mm) of V1v were assumed

and those in V2v and VP were activated with 50- and 100-ms

delays to those in V1v, respectively (Figs. 5C and D). White

Gaussian sensor noise with N/S = 0.1 was added to the generated

MEG signals.

To evaluate spatio-temporal patterns of the estimated currents,

we defined local V1v, V2v, and VP currents as the sum of the

estimated currents within a 5-mm radius of the local peak current

positions in the V1v, V2v, and VP areas, respectively. The

precision of the estimation was assessed as the estimation gains

for the V1v, V2v, and VP local currents at 50, 100, and 150 ms,

respectively, where each source current became maximum. The

normalized root mean squared errors (RMSEs) were also calcu-

lated for the temporal sequences of the local V1v, V2v, and VP

currents. The estimation gain should be one and RMSE should be

zero for perfect estimation.

MEG with no fMRI information

We first investigated the performance of the VB estimate for the

simulated visual cortical responses, in the situation where MEGs

were supplemented with only structural MRI information. The VB

estimate was conducted according to the method of high-resolution

estimation for MEG combined with MRI. Time-lapse current maps

using pseudocolor representation revealed that the VB estimate
isual responses. The visual area is depicted on the left hemisphere. (B) The

V1d, V2v, V2d, VP, and V3 are shown by different colors. The generated

ellow. (C) Time course plot of the V1v (red line), V2v (green line), and VP

es the time in ms. (D) Time-lapse map of source currents at t = 50, 100, and

he sum of the source signal amplitude and 0.1 N/S white Gaussian noise

fMRI signal including V1d, V2d, and V3 activities in addition to the true



Fig. 6. Estimated current with no fMRI information. (A and C) Time-lapse current maps estimated by the VB method (A) and the MNC method (C) with no

fMRI information are plotted using pseudocolor representation at t = 50, 100, and 150 ms. (B and D) Time course plot of the V1v (red line), V2v (green line),

and VP (blue line) currents estimated by the VB method (B) and the MNC method (D) with no fMRI information are plotted. Each current is defined as a

current sum within a 5-mm radius of the local peak current positions in the V1v, V2v, and VP areas.

M. Sato et al. / NeuroImage 23 (2004) 806–826 817
virtually recovered V1v and VP responses but left V2v responses

undetectable (Fig. 6A). Correspondingly, the time plots for local

currents indicated a rather fine match between the estimated and

true source currents assumed in V1v and VP (compare red and blue

traces in Fig. 6B with those in Fig. 5C). However, the estimated

V2v current was far smaller than the true source current assumed in

V2v (compare green trace in Fig. 6B with those in Fig. 5C). These

findings can be confirmed by the estimation gains and RMSEs for

VB with the no fMRI situation in Table 3. The current estimates for

V2v were difficult, since the lead field for V2v was much smaller

(roughly 0.1) compared with those for V1v and VP currents, and

V2v has a very close distance (less than 2 mm) to VP.
Table 3

Accuracy of spatio-temporal current estimates

Method VB

Information No fMRI Correct fMRI Inco

Estimation gain V1v 0.85 0.95 0.96

V2v 0.19 0.86 0.86

VP 0.70 0.87 0.88

RMSE V1v 0.14 0.06 0.05

V2v 0.82 0.21 0.20

VP 0.34 0.12 0.12

Accuracy of spatio-temporal current estimates. The performance of the VB meth

situations: MEG with MRI data (No fMRI), MEG with MRI and correct fMRI da

fMRI). The precision of the estimation was assessed as the estimation gains for the

normalized root mean squared errors (RMSEs) for the temporal sequences of the

method with no fMRI information and the Wiener filter method with correct fMR
The performances of MNC were very poor. The time-lapse

maps revealed that the estimated currents broadly spread out from

the areas in V1v, V2v, and VP for which current sources were

assumed (Fig. 6C). The time plots showed much smaller peaks

for V1v, V2v, and VP than those for the VB estimates (Fig. 6D).

In fact, the estimation gains for MNC were very small and

RMSEs were large as can be seen in Table 3. In addition, the

time course of V2v currents was more broadened than that of the

true source currents (compare green trace in Fig. 6D with those in

Fig. 5C). These findings indicate that the MNC estimate is not

feasible for the MEG of realistic visual cortical responses. The

performance of the VB method is much better than that of the
MNC Weiner

rrect fMRI No fMRI Correct fMRI Incorrect fMRI

0.27 0.83 0.93

0.15 0.58 0.24

0.24 0.95 1.06

0.72 0.20 0.35

0.84 0.51 0.59

0.77 0.34 0.55

od was investigated using simulated visual cortical responses under three

ta (Correct fMRI), and MEG with MRI and incorrect fMRI data (Incorrect

V1v, V2v, and VP local currents at 50, 100, and 150 ms, respectively. The

local V1v, V2v, and VP currents were also listed in the table. The MNC

I and incorrect fMRI information were also tested.
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MNC estimate, but the VB estimate with no fMRI information is

still insufficient to recover the fine dynamic structure of visual

responses.

MEG combined with correct fMRI information

Next, we examined whether the correct fMRI information

improves the VB and the linear filter performance for the same

simulated cortical responses. fMRI signals were assumed to be the

sum of the source signal and 0.1 N/S Gaussian white noise

convolved with a Gaussian smoothing filter for fMRI imaging

(FWHM = 6 mm) (Fig. 5E). The VB estimate was conducted in the

same way as for the situation of MEG combined with MRI and

fMRI. The time-lapse maps and time plots indicated that the VB

estimates nearly correctly recovered the current activities in V1v,

V2v, and VP (compare Figs. 7A,B with Figs. 5D,C). The estimated

currents were slightly smaller than the true source currents

assumed in these cortical areas. The estimation gains for V1v,

V2v, and VP currents were 0.95, 0.86, and 0.87, and RMSEs for

V1v, V2v, and VP currents were 0.06, 0.21, and 0.12, respectively

(Table 3).

The performances of the VB estimates were compared with

those of the Wiener filter (Dale et al., 2000; Kajihara et al., 2004;

Phillips et al., 2002). The Wiener filter estimates were conducted as

Eq. (3) with ��1
0

	 �
nm

¼ CVnVmexpð� dnm=rð Þ2Þ (FWHM = 8 mm)

for the same MEGs and fMRI signals. The coefficient C was

determined so as to maximize the correlation between the fMRI

signals and the temporal average of the estimated currents
Fig. 7. Estimated current with correct fMRI information. (A and C) Time-lapse cur

with correct fMRI information are plotted at t = 50, 100, and 150 ms. (B and D) T

currents estimated by the VB method (B) and the Wiener filter method (D) with
(Kajihara et al., 2004). The Wiener filter estimates recovered

activities in V1v, V2v, and VP (compare Fig. 7C with Fig. 5D), but

V2v current was rather smaller than the true source current

assumed in V2v. The estimation gains for V1v, V2v, and VP

currents were 0.83, 0.58, and 0.95, and RMSEs for V1v, V2v, and

VP currents were 0.20, 0.51, and 0.34, respectively (Table 3). In

addition, the time plots show a tendency of some oscillations in

time courses of V1v, V2v, and VP currents (compare Fig. 7D with

Fig. 5C). Consequently, correct fMRI information almost perfectly

improved the performance of the VB estimate, but this improve-

ment was still insufficient for the linear inverse filter.

MEG combined with incorrect fMRI information

We further examined how false-positive fMRI signals affect the

VB estimate. The VB estimate was conducted for the same

simulated cortical responses as those for the correct fMRI situation

using incorrect fMRI information. fMRI signals were assumed to

contain false-positive signals in V1d, V2d, and V3 as strong as the

correct fMRI signals in V1v, V2v, and VP in addition to the correct

ones in these areas (Fig. 5F). The performance of the VB estimate

remained almost unaffected by false-positive fMRI signals as can

be seen from the estimation gains and RMSEs in Table 3. The

time-lapse map and time course plot of the VB estimates were

almost the same as those for the correct fMRI situation (compare

Figs. 8A,B with Figs. 7A,B). No false currents were estimated in

V1d, V2d, and V3, where false-positive fMRI signals were

assumed (compare Fig. 8A with Fig. 5D).
rent maps estimated by the VB method (A) and the Wiener filter method (C)

ime course plot of the V1v (red line), V2v (green line), and VP (blue line)

correct fMRI information.



Fig. 8. Estimated current with false-positive fMRI information. (A and C) Time-lapse current maps estimated by the VB method (A) and the Wiener filter

method (C) with false-positive fMRI information are plotted at t = 50, 100, and 150 ms. (B and D) Time course plot of the V1v (red line), V2v (green line), and

VP (blue line) currents estimated by the VB method (B) and the Wiener filter method (D) with false-positive fMRI information.
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In contrast, the Wiener filter estimate was seriously affected

by false-positive fMRI signals. The time-lapse map indicated that

substantial currents were estimated around the area of V1d, V2d,

and V3, where false-positive signals were assumed (compare Fig.

8C with Fig. 5F). Correspondingly, the time course of V1v, V2v,

and VP currents became much more oscillatory than those for the

correct fMRI situation (compare Fig. 8D with Fig. 7D) due to

increased ambiguity caused by false-positive signals. As a result,

RMSEs became larger than those for the correct fMRI case

(Table 3).

These findings show that the Wiener filter estimates are

sensitive to false-positive fMRI signals but not the VB estimates.

Separation of simultaneously active currents

The spatial resolution of the VB and the Wiener filter estimates

were also examined. The resolution matrix defined by Eq. (18) (see

Appendix A) was calculated using the optimized inverse filters for

MEGs of the simulated visual responses with the correct fMRI.

The nth row of the resolution matrix represents the point-spread

profiles of the current estimates for a single dipole source at the nth

vertex point. The spatial profiles of the current estimates for

simultaneously active V1v, V2v, and VP currents (Fig. 9A) were

calculated by summing the rows of the resolution matrix

corresponding to the active vertex points of the V1v, V2v, and

VP. Profile maps indicate that both the VB and the Wiener filter

methods nearly correctly recover the source current profiles in V1v,

V2v, and VP (compare Figs. 9B and C with Fig. 9A).

Likewise, the spatial profiles of the current estimates for

simultaneously active V1v, V2v, and VP (Fig. 9A) were determined
according to the resolution matrix of the VB inverse filter optimized

for the MEGs combined with the false-positive fMRI (Fig. 9D).

Profile maps indicate that the VB estimates for simultaneously

active V1v, V2v, and VP correctly recover the source current

profiles (compare Figs. 9E with A) under the false-positive fMRI

information. Conversely, the current estimates based on the

resolution matrix of the Wiener filters optimized for the same set

of MEG and incorrect fMRI as those for the VB estimates were

rather seriously affected by the false-positive fMRI signals

(compare Figs. 9F with D).

MEG combined with insufficient fMRI information

fMRI also may not provide correct information for traveling

cortical responses. We studied the performance of the VB estimate

assuming that a uniform circular current source (radius, 5 mm)

stayed in V1 for the 200-ms period of time and traveled (distance,

50 mm; velocity, 0.5 m/s) to the other region in V1 (Fig. 10A).

This may correspond to V1 responses, where a spot near the

fixation point moves toward the upper-right direction.

fMRI signals were given as a sum of the temporal average of

the source currents and 0.1 N/S Gaussian white noise convolved

with a Gaussian smoothing filter (FWHM = 6 mm) (Fig. 10A).

Time-lapse maps indicate that the VB estimates for MEGs

generated by the traveling V1 responses almost recovered the

spatio-temporal patterns of the traveling source currents (compare

Figs. 10C with B). However, the estimates were slightly deformed

and weaker than the true traveling sources. On the contrary, the

Wiener filter estimates almost failed to recover the spatio-temporal

patters of the traveling source currents (compare Figs. 10D with B).



Fig. 9. Current profiles for simultaneously active V1v, V2v, and VP currents. Spatial profiles of the current estimates for simultaneously active V1v, V2v, and

VP currents are shown on the inflated map of the visual area. (A) Simultaneously active currents in V1v, V2v, and VP. (B and C) Current profiles estimated by

the VB method (B) and the Wiener filter method (C) with correct fMRI information. (D) False-positive fMRI signals in V1d, V2d, and V3 in addition to the

correct fMRI signals in V1v, V2v, and VP. (E and F) Current profiles estimated by the VB method (E) and the Wiener filter method (F) with false-positive fMRI

information.
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A static source, which corresponded to the large fMRI signal, was

recovered most of the time. These results show the advantage of

the VB estimate over the Wiener filter estimate for spatio-

temporally changeable brain activities.
Discussion

We proposed a novel hierarchical Bayesian method to resolve

the MEG inverse problem, which gives a unified framework for

three possible situations: (1) MEG with no other data (NO), (2)

MEG with structural MRI data on cortical surfaces (MRI), and

(3) MEG with both structural MRI and fMRI data (MRI + fMRI).

Our method estimates the current variance from the time

sequence of the MEG data by introducing a hierarchical prior.

The fMRI information can be imposed as prior information on

the variance distribution rather than the variance itself so that it

gives a soft constraint on the variance. The spatial smoothness

constraint can also be incorporated as a hierarchical prior. The

smoothness constraint reduces the effective degree of freedom in

the estimation model, and thus it reduces the ill-posedness of the

inverse problem.

Because of the hierarchical prior, the estimation problem

becomes nonlinear, so the approximate posterior distribution of

the source current is calculated by using the Variational Bayesian

(VB) method. An important difference between the VB method

and the MAP estimate used for the linear inverse methods is that

the VB estimate calculates the posterior probability distribution of

the source current while the MAP estimate calculates the optimal

current value that maximizes the posterior distribution. The VB

method takes account of the spread of the posterior distribution in
estimating the current variance, so robust estimation for the

current variance can be achieved. In the MEG inverse problem,

the number of unknown parameters is much larger than the

number of MEG sensors M. The parameter estimation of such a

system often suffers from overfitting to the observed data. The

VB method can avoid such overfitting because the model

complexity penalty term in the free energy (see Eq. (22) in

Appendix B.1) freezes unnecessary degrees of freedom by

suppressing the estimation gain for small variance points. The

advantages of the VB estimate over the MAP estimate were also

shown by Penny et al. (2003) for fMRI data analysis. It is also

noted that the current variances are estimated from T time samples

of the MEG data. Therefore, the effective number of data for

variance estimation becomes (T � M). This improves the accuracy

of the variance estimation.

Since the VB method solves the nonlinear estimation problem,

the VB solution converges into a local maximum of the free energy.

Therefore, the converged solution depends on the initial value of the

estimated current variance. Fortunately, we have reasonable

candidates for the initial value of the current variance. When there

is no fMRI information, the initial value of the current variance is

set to the same value for all dipole currents. This setting corresponds

to the minimum norm solution, that is, the VB current estimate at

the first iteration is given by the minimum norm solution. The VB

method, then, improves the accuracy of the current estimate by

estimating the current variance from the time sequence of the MEG

data. A single hyperparameter a0 controls the initial variance as

(a0n
�1 = a0 /Gave

2 ), which is normalized by the average of the lead

field norm G2
ave ¼

PN
n ¼ 1

PM
m ¼ 1 G

2
m;n

� 
=N . In all the simulations

of this paper, a0 = 10 was used. When there is fMRI information, it

is also used as the initial value of the current variance (see



Fig. 10. Traveling wave responses in visual area. (A) Traveling wave responses schematically shown by an arrow, assuming that a uniform circular current

source (radius, 5 mm) stayed in V1 for a 200-ms period of time and traveled (distance, 50 mm; velocity, 0.5 m/s) to the other region in V1. Simulated fMRI

activity given as the sum of the temporal average of the source currents and 0.1 N/S Gaussian white noise convolved with a Gaussian smoothing filter

(FWHM = 6 mm) is also shown using pseudocolor representation. (B) Time-lapse map of the source currents at t = 200, 220,..., 300 ms. (C and D) The time-

lapse map of the currents estimated by the VB method (C) and the Wiener filter method (D).
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Variational Bayesian method). Therefore, the VB current estimate

at the first iteration is given by the Wiener filter solution in this

case. The initial variance is controlled by two hyperparameters

amin and amax as defined by (32) in the Appendix B.4. They were

set as amin =10
�3 and amax =10 in all the simulations of this paper.

The above hyperparameter values were determined by the

maximum free energy criterion applied to one of the simulated

MEG data (see the procedure explained in the Appendix B.4). The

range of the searched values were 1 V amax V 105 and 1 V amax /

amin V 105. The obtained solutions were not sensitive to small

changes of the hyperparameter values.

There are other factors, which affect the estimation accuracy.

In the simulations, we used the same cortical surface model both

for the forward magnetic field calculation and for the inverse

source current estimation. However, in the analysis of real

experimental data, there may be inaccuracy in the cortical surface

estimation. Since the cortical surfaces have highly folded

structures, small errors in the cortical position may cause large

errors in the normal direction and then cause large lead field

errors. Therefore, high accuracy of the cortical surface estimation

is required when the dipole direction is imposed as the structural
prior information. The effective radius (FWHM) of the smooth-

ness (Gaussian) filter also affects the estimation performance as

explained in the MEG with Structural MRI Information section.

Too small filter radius disables the smoothness constraint while

too large filter radius smears the current estimation. An

appropriate value may depend on the resolution and the accuracy

of the extracted cortical surfaces.

As pointed out previously, fMRI activity may not precisely

correspond to the MEG source current activity. In particular, the

fMRI activity corresponds to an average of several thousands of

MEG time series data because of the time resolution difference

between MEG and fMRI. When higher brain functions are

examined, several different processes may occur within several

seconds, and these activities are averaged out in the fMRI data.

Consequently, the fMRI active areas may include inactive current

areas in the MEG time slice data, and the fMRI activity for the

active current may be smeared by the temporal averaging. When

the fMRI activity is used to determine the source current variance

such as for the Wiener filter method, the fMRI information may

mislead the source current estimation in these situations. To deal

with these situations, we divide the entire MEG time series into



M. Sato et al. / NeuroImage 23 (2004) 806–826822
several short periods in which the brain activity changes

moderately, and the VB method is applied to the MEG data for

each period. Although the VB estimate starts from the Wiener filter

solution, the current variance estimation using the short-period

MEG data may improve the accuracy of the source current

estimation.

An advantage of the VB method is the model selection

capability. If there is no structural MRI information, we consider

a variable-radius surface model for current estimates and the most

probable surface is determined by the surface with the maximum

free energy. When there was no noise, the free energy was

sharply tuned at the peak position (Fig. 3B). As the noise

amplitude increased, the peak profile of the free energy curve

became broader as shown in Fig. 3C. However, the peak almost

stayed at the same position and there was no local peak around

the maximum peak position in the presence of noise. Therefore,

the source depth was safely determined by the free energy

maximum. We also examined the standard single dipole fit for the

single dipole source problem shown in Fig. 3. The reconstruction

error (Fig. 3D) of the dipole model under the same noise

condition showed the similar (reversed) tuning curve as the free

energy (Fig. 3C).

In the simulations, the VB method iterated the current

estimation until the free energy converged. Therefore, the

processing time would be an important concern in practice.

The VB estimate with the hierarchical prior Eq. (9) (50 MEG

time samples and 2494 vertex points) required about 1 min on a

XEON (2.2 GHz) processor, while that with the smoothness prior

Eq. (11) (200 MEG time samples and 819 vertex points) required 6

min.
Summary

The advantages of the VB method over the linear filters were

confirmed in simulation studies using a single source and realistic

visual responses. The simulation results can be summarized as

follows.

(1) When the same information is given, the VB method achieves

better performance than the conventional linear inverse filter

methods.

(2) When the correct information is given, the performance of the

VB method improves as more information becomes available.

(3) When inaccurate fMRI information is given, performance

degradation of the current estimate is much less for the VB

method than for the Wiener filter method.

Consequently, the VB method provides a unified framework to

resolve the MEG inverse problem for three possible situations:

MEGs combined with no other information, with only MRI, and

with both MRI and fMRI. The first version may be useful for

analysis of MEGs whose current sources are in deep brain

structures such as the thalamus and basal ganglia because reliable

estimation of dipole locations and orientations based on MRI is

difficult. The second version may also be useful for situations in

which fMRI measurement using the same experimental conditions

as those for MEG is difficult. Finally, the third version provides the

most reliable solution of the MEG inverse problem. It is important

that the VB method may correctly resolve the inverse problem

even if fMRI signals fail to convey the precise spatio-temporal
patterns of brain activities due to the slow hemodynamic response,

which would commonly be the case in many experimental

protocols.

In this article, we have concentrated on the MEG inverse

problem with fMRI information. It should be mentioned that our

method can also be applied to electroencephalography (EEG) and

that fMRI information can be replaced by positron emission

tomography (PET) data.
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Appendix A. Resolution matrix and estimation gain

We define the resolution matrix and estimation gain in this

Appendix and derive the inequality on the estimation Eq. (8). In the

absence of noise, the magnetic field B produced by the current J is

given by B = G d J. The estimated current Ĵ is written as

Ĵ ¼ L d B ¼ L d G d J ð17Þ

using the linear inverse method (3). The resolution matrix R and

the estimation gain G (Grave de Peralta Menendez and Gonzalez

Andino, 1998) are defined by

R ¼ L d G; G ¼ Rn;njn ¼ 1:Ng:
�

ð18Þ

The (n,k) component of the resolution matrix Rn ,k represents

the nth estimated current when the unit current dipole is applied for

the kth current, that is, Jk = 1 and Jl = 0(l p k). Therefore, the

resolution matrix R should be the identity matrix in the current

space for perfect reconstruction. Specifically, the estimation gain

Gn(n = 1:N) should be one. However, the following simple

calculation shows the relation:

XN
n¼ 1

Gn ¼ TrR ¼ M � b�1Tr
�
G d ��1

0 d GVþ b�1 IM

�1

VM :

ð19Þ

This equation holds because both b�1 IM and G d ��1
0 d GV are

positive semidefinite matrices. The inequality (19) was derived for

the first time in this paper, as far as we know.
Appendix B. Variational Bayesian method for hierarchical

prior

In the following, we explain the VB method for the hierarchical

prior with the smoothness constraint, (11) and (12). The

hierarchical prior, (9) and (10), is a special case of the hierarchical

prior with the smoothness constraint, and it is obtained by setting

W u 0.

B.1. Variational Bayesian method

First, we explain the main ideas of the VB method using the

hierarchical prior, (9) and (10), with a single MEG data set B. The
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objective of the Bayesian estimation is to calculate the posterior

probability distribution of J for the observed data B:

PðJ jBÞ ¼
Z

dAP J ;AjBÞ;ð

P J ;AjBð Þ ¼ P J ;A;Bð Þ
P Bð Þ ;

P J ;A;BÞ ¼ P BjJÞP0 J jAÞP0 AÞ;ðððð

PðBÞ ¼
Z

dJdAP J ;A;BÞ:ð

The calculation of the marginal likelihood P(B) cannot be done

analytically. In the VB method, the calculation of the joint posterior

P(J, AjB) is reformulated as the maximization problem of the free

energy. The free energy for a trial distribution Q(J,A) is defined by

F Qð Þ ¼
Z

dJdAQ J ;Að Þlog P J ;A;Bð Þ
Q J ;Að Þ

#"

¼ log P BÞÞ � KL Q J ;AÞtP J ;AjBÞ	:ðð½ðð ð20Þ

Eq. (20) implies that the maximization of the free energy F(Q)

is equivalent to the minimization of the Kullback–Leibler distance

(KL-distance) defined by

KL½QðJ;AÞtP J;AjBð Þ	 ¼
Z
dJdAQ J;Að Þlog Q J;Að Þ=P J;AjBÞÞ:ðð

This measures the difference between the true joint posterior

P(J,AjB) and the trial distribution Q J ;AÞð . Since the KL-distance

reaches its minimum at zero when the two distributions coincide,

the joint posterior can be obtained by maximizing the free energy

F Qð Þ with respect to the trial distribution Q. In addition, the

maximum free energy gives the log-marginal likelihood log(P(B)).

The optimization problem can be solved using a factorization

approximation restricting the solution space4 (Attias, 1999; Sato,

2001):

Q J;Að Þ ¼ QJ Jð ÞQA Að Þ: ð21Þ
Under the factorization assumption (21), the free energy can be

written as

F Qð Þ ¼ hhlogP J ;A;Bð ÞiJ ia � hlogQJ Jð ÞiJ � hlogQa Að Þia
¼ hlogP BjJð ÞiJ � KL QJ Jð ÞQa Að ÞtP0 J jAð ÞP0 Að Þ½ 	;

ð22Þ

where hd iJ and hd ia represent the expectation values with respect

to QJ JÞð and Qa (A), respectively. The first term in the second Eq.

(22) corresponds to the negative sign of the expected reconstruc-

tion error. The second term (KL-distance) measures the difference

between the prior and the posterior and corresponds to the effective
4 The VB method with this factorization assumption gives more

accurate approximation than the mean field approximation (MFA), which is

widely used in the field of statistical physics (Parisi, 1988), because MFA

has a stronger factorization assumption, that is, that all of the variable

components can be factorized.
degree of freedom that can be well specified from the observed

data. Therefore, (negative sign of) the free energy can be

considered a regularized error function with a model complexity

penalty term. The maximum free energy is obtained by alternately

maximizing the free energy with respect to QJ and Qa. In the first

step (J-step), the free energy F(Q) is maximized with respect to QJ

while Qa is fixed. The solution is given by

QJ Jð Þ~exp hlogP J ;A;BÞia	:ð½ ð23Þ

In the second step (a-step), the free energy F(Q) is maximized

with respect to Qa while QJ is fixed. The solution is given by

Qa Að Þ~exp logP J ;A;Bð Þ½ 	J
� �

: ð24Þ

The above J- and a-steps are repeated until the free energy

converges.

B.2. Hierarchical prior with smoothness constraints

We assume the following probabilistic model for the source

currents:

P BjJ ; bð Þ~exp � 1

2
b B� G d Jð ÞVd �G d B� G d Jð Þ

� �
;

ð25Þ

where b�Gð Þ�1
denotes the covariance matrix of the sensor noise.

��1
G is the normalized covariance matrix satisfying Tr ��1

G

	 �
¼ M ,

and b�1 is the average noise variance.

The direct application of the VB method to Eqs. (11) and (12)

cannot be solved in a closed form because the inverse covariance

matrix �A is a nonlinear function of A and L. To get the closed

form solution, we rewrite the smoothness prior by introducing an

auxiliary internal variable Z(t) = {Zn(t)jn = 1:N}:

P0 J 1:T jZ1:T ;A; bð Þ

~exp

"
� 1

2
b
XT
t ¼ 1

J tð Þ �W d Z tð Þð ÞV d A d ðJ tð Þ �W d Z tð ÞÞ
#
;

P0 Z1:T jL; bð Þ~exp � 1

2
b
XT
t ¼ 1

ZV tð Þ d K d Z tð Þ
" #

: ð26Þ

The inverse noise variance b is also introduced in Eq. (26) as a

coefficient of A and K to get the closed form solution. Therefore,

the definitions of A and L in this Appendix are different from those

in the text by a factor b. Integration over Z in the prior (26) can be

accomplished as

P0 J1:T jA; b;Lð Þ ¼
Z

dZ1:TP0 J1:T jZ1:T ;A; bð ÞP0 Z1:T jL; bð Þ

~exp � 1

2
b
XT
t ¼ 1

JV tð Þ d �A d J tð Þ
#
:

"

Namely, the prior (26) is equivalent to the smoothness prior

(11) and (12). Parameters A and L are estimated by introducing the

ARD hierarchical prior,

P0 Að Þ ¼ P
N

n ¼ 1
C anjā0n; c0nað Þ; P0 Lð Þ ¼ P

N

n ¼ 1
C knjk̄0n; c0nkð Þ:
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The inverse noise variance parameter b is also estimated by

assuming the non-informative prior:

P0 bð Þ ¼ b�1:

B.3. Free energy

To calculate the joint posterior P(J1:T, Z1:T, A, b, LjB1:T), the

free energy for the trial distribution Q J 1:T ;Z1:T ;A; b;Lð Þ is

defined as

F Qð Þ ¼
Z

dJ1:TdZ1:TdbdAdL Q J1:T ;Z1:T ;A; b;Lð Þ

� log
P J1:T ;Z1:T ;A; b;L;B1:Tð Þ

Q J1:T ;Z1:T ;A; b;Lð Þ

� �
;

P J 1:T ;Z1:T ;A; b;L;B1:Tð Þ ¼ P B1:T jJ 1:T ; bð Þ

� P0 J 1:T jZ1:T ;A; bð ÞP0 Z1:T jL; bð Þ

� P0 bð ÞP0 Að ÞP0 Lð Þ:

ð27Þ

In this case, we assume the factorization

Q J1:T ;Z1:T ;A; b;Lð Þ ¼ QJ J 1:T ;Z1:T ; bð ÞQa A;Lð Þ:

The maximum free energy can be obtained by alternately

maximizing the free energy F Qð Þ with respect to QJ and Qa. In the

first step (J-step), the free energy F Qð Þ is maximized with respect

to QJ . The maximum solution of QJ is a Normal-Gamma

distribution:

QJ J1:T ;Z1:T ; bð Þ ¼ QJ jb J1:T ;Z1:T jbð ÞQb bð Þ:

The conditional posterior distribution QJ jb J 1:T ;Z1:T jbð Þ is the

Normal distribution for (J1:T, Z1:T) with the noise variance

parameter b�1. The posterior distribution for b, Qb(b), is the

Gamma distribution. The expectation values of these param-

eters are calculated in the J-step. In the second step (a-step),

the free energy F Qð Þ is maximized with respect to Qa. The

maximum solution of Qa is the Gamma distribution for A and

L. The expectation values of A and L are calculated in the

a-step.

B.4. VB algorithm

The VB algorithm for the hierarchical prior with the smooth-

ness constraint, (11) and (12), is summarized here (Fig. 1E). All of

the quantities in the following equations represent the expectation

value with respect to the posterior distribution. In the J-step (Fig.

1E), the inverse filter L(�A
�1) is calculated using the estimated

covariance matrix �A
�1 in the previous iteration:

�J ¼ GV d �G d G þ�A;

�B ¼ G d ��1
A d GVþ��1

G ;

L ��1
A

	 �
¼ ��1

J d GV d �G ¼ ��1
A d GV d ��1

B : ð28Þ
The expectation values of the current J(t) and the noise

variance b�1 are estimated using the inverse filter (28).

J tð Þ ¼ L ��1
A

	 �
d B tð Þ;

Z tð Þ ¼ K�1 d WV d �A d J tð Þ;

;b ¼ 1

2
NT;

;b b�1 ¼ 1

2

XT
t ¼ 1

"
B tð Þ � G d J tð Þð ÞV d �G d ðB tð Þ � G d J tð ÞÞ

þ J tð Þ �W d Z tð Þð ÞV d A d ðJ tð Þ �W d Z tð ÞÞ

þ ZV tð Þ d A d Z tð Þ
#
: ð29Þ

In the a-step (Fig. 1E), the expectation values of the variance

parameters are estimated as

cna ¼ c0na þ
T

2
; cna ¼ c0na þ

T

2
;

cnaa
�1
n ¼ c0naa

�1
n þ T

2
a�1
n 1� A�1 d GV d ��1

B d G
	 �

n;n

h i

þ 1

2
b
XT
t ¼ 1

J tð Þ �W d Z tð Þð Þ2n;

cnkk
�1
n ¼ c0nkk

�1
0 þ T

2
k�1
n

� 1� K�1 d WV d GV d ��1
B d G d W

	 �
n;n

h i

þ 1

2
b
XT
t ¼ 1

Z2
n tð Þ: ð30Þ

The covariance matrix ��1
A is then recalculated as

��1
A ¼ A�1 þW d K�1 d WV: ð31Þ
The above J- and a-steps are repeated until the free energy

converges. In the simulations, we further imposed a constraint L =

jA, which implies that the correlation in the current activities is

proportional to the current variance, to reduce the number of

unknown parameters. Under this constraint, the expectation values

of A, j, and L are calculated in the a-step by applying the

following update rule after the update of (30):

a�1
n ¼ cnaa

�1
n þ cnkk

�1
n j

	 �
= cna þ cnkð Þ;

j�1 ¼ 1

N

XN
n ¼ 1

an=kn;

kn ¼ jan:

fMRI information was imposed as

a�1
0n ¼ amaxV

2
n þ amin

	 �
=G2

ave ð32Þ
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where Vn denotes the fMRI signal for the nth current. It is

normalized by the average of the lead field norm

G2
ave ¼

PN
n ¼ 1

PM
m ¼ 1 G

2
m;n

� 
=N . The hyperparameters amax

and amin control the maximum and minimum of the prior

mean variance, respectively. The optimal value of the hyper-

parameters (amax, amin) can be determined by maximizing the

free energy with respect to (amax, amin). (1) The free energy is

maximized for a given MEG signal and a sampled value of

(amax, amin). (2) Then, the optimal value of (amax, amin) that

maximizes the free energies obtained for the sampled values in

the first step is determined.

B.5. Posterior distribution for the source current

After the free energy converges, the posterior distribution for

the current J1:T is obtained by integrating the internal variable Z1:T

and the inverse noise variance parameter b:

Q J1:Tð Þ ¼ j�J jT=2

2pcb

	 �NT=2

C cb þ NT=2
	 �

C cb

	 � �
"
1þ b¯

2cb

�
XT
t ¼ 1

ðJ tð Þ � J̄ tð ÞÞV d �J J tð Þ � J̄ tð Þð Þ
#� cb þ NT=2ð Þ

;

where the expectation value of the current and the inverse noise

variance obtained in the above algorithm are denoted by J̄ and b̄ to

distinguish them from the variables J and b, respectively. The
distribution is the student t distribution. By using this posterior

distribution, it is possible to calculate the confidence interval and t

value statistics.
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