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Finding the means to efficiently summarize electroencephalographic

data has been a long-standing problem in electrophysiology. A popular

approach is identification of component modes on the basis of the time-

varying spectrum of multichannel EEG recordings—in other words, a

space/frequency/time atomic decomposition of the time-varying EEG

spectrum. Previous work has been limited to only two of these

dimensions. Principal Component Analysis (PCA) and Independent

Component Analysis (ICA) have been used to create space/time

decompositions; suffering an inherent lack of uniqueness that is

overcome only by imposing constraints of orthogonality or independence

of atoms. Conventional frequency/time decompositions ignore the

spatial aspects of the EEG. Framing of the data being as a three-way

array indexed by channel, frequency, and time allows the application of a

unique decomposition that is known as Parallel Factor Analysis

(PARAFAC). Each atom is the tri-linear decomposition into a spatial,

spectral, and temporal signature. We applied this decomposition to the

EEG recordings of five subjects during the resting state and during

mental arithmetic. Common to all subjects were two atoms with spectral

signatures whose peaks were in the theta and alpha range. These

signatures were modulated by physiological state, increasing during the

resting stage for alpha and during mental arithmetic for theta.

Furthermore, we describe a new method (Source Spectra Imaging or

SSI) to estimate the location of electric current sources from the EEG

spectrum. The topography of the theta atom is frontal and themaximum

of the corresponding SSI solution is in the anterior frontal cortex. The

topography of the alpha atom is occipital with maximum of the SSI

solution in the visual cortex. We show that the proposed decomposition

can be used to search for activity with a given spectral and topographic

profile in new recordings, and that the methodmay be useful for artifact

recognition and removal.
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Introduction

The electroencephalogram (EEG) is the reflection upon the scalp

of the summed synaptic potentials of millions of neurons (Lopes da

Silva, 1987). Most investigators agree (Lachaux et al., 1999; Varela

et al., 2001) that these neurons self-organize into transient networks

(‘‘neural masses’’) that synchronize in time and space to produce a

mixture of short bursts of oscillations that are observable in the EEG

record. A statistical description of the oscillatory phenomena of the

EEG was carried out first in the frequency domain (Lopes da Silva,

1987) by estimation of the power spectrum for quasi-stationary

segments of data. More recent characterizations of transient oscil-

lations are carried out by estimation of the time-varying (or evolu-

tionary) spectrum in the frequency/time domain (Dahlhaus, 1997).

These evolutionary spectra of EEG oscillations will have a topo-

graphic distribution on the sensors that is contingent on the spatial

configuration of the neural sources that generate them as well as the

properties of the head as a volume conductor (Nunez, 1993).

The purpose of the present study was to attempt the decompo-

sition of multichannel time-varying EEG spectrum into a series of

distinct components or modes. In the parlance of modern harmonic

analysis (Chen and Donoho, 2001), we performed a space/frequen-

cy/time ‘‘atomic decomposition’’ of multidimensional data. In

other words, we assume that each neural mass contributes a

distinctive atom to the topographic frequency/time description of

the EEG, so that the estimation of these atoms is possible by means

of signal-processing techniques. Each atom will be defined by its

topography, spectral content, and time profile; in other words, by

its spatial, spectral, and temporal signatures. We expect that these

extracted atoms ultimately will allow the identification of the

corresponding neural masses that produce them.

There is a long history of atomic decompositions for the EEG.

However, to date, atoms have not been defined by the triplet

spatial, spectral, and temporal signatures but rather pairwise

combinations of these components. Some of the current procedures

for these analyses are reviewed below.

Space/time atoms: PCA and ICA

Space/time atoms are the basis of both Principal Component

Analysis (PCA) and Independent Component Analysis (ICA) as



Fig. 1. Graphical explanation of the PARAFAC model. The multichannel

EEG evolutionary spectrum S is obtained from a channel by channel wavelet

transform. S is a three-way data array indicated by channel, frequency, and

time. PARAFAC decomposes this array into the sum of ‘‘atoms’’. The kth

atom is the tri-linear product of loading vectors representing spatial (ak),

spectral (bk), and temporal (ck) ‘‘signatures’’. Under these conditions,

PARAFAC can be summarized as finding the matrices A = {ak}, B = {bk},

and C = (ck), which explain S with minimal residual error.
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applied to multichannel EEG. PCA has been used for artifact

removal and to extract significant activities in the EEG (Lagerlund

et al., 1997; Soong and Koles, 1995). A basic problem is that atoms

defined by only two signatures (space and time) are not determined

uniquely. In PCA, orthogonality is therefore imposed between the

corresponding signatures of different atoms. This, however, is a

rather nonphysiological constraint. Even with this restriction, there

is the well-known nonuniqueness of PCA that allows the arbitrary

choice of rotation of axes (e.g., Varimax and Quartimax rotations).

More recently, ICA has become a popular tool for space/time

atomic decomposition (Cichocki and Amari, 2002; Hyvarinen et

al., 2001). It avoids the arbitrary choice of rotation (Jung et al.,

2001). Uniqueness, however, is achieved at the price of imposing a

constraint even stronger than orthogonality, namely, statistical

independence. In both PCA and ICA, the frequency information

may be obtained from the temporal signature of the extracted atoms

in a separate step.

Frequency/time atoms: wavelet analysis

There are many papers on the decomposition of single-channel

EEG into frequency/time atoms. For this purpose, the Fast Fourier

Transformation (FFT) with sliding window (Makeig, 1993) or the

wavelet transformation (Bertrand et al., 1994; Tallon-Baudry et al.,

1997) have been employed. In fact, any of the frequency/time atomic

decompositions currently available (Chen andDonoho, 2001) could,

in principle, be used for the EEG. However, these methods do not

address the topographic aspects of the EEG time/frequency analysis.

Space/frequency/time atoms: PARAFAC

Gonzalez Andino et al. (2001) improved previous analyses

by analyzing regions of the frequency/time plane where a single

dipole model is an adequate spatial description of the signal,

thus incorporating topographic information. Topographic fre-

quency/time decomposition of the EEG was introduced by

Koenig et al. (2001), which is the first work to estimate atoms

characterized simultaneously by a frequency/time and spatial

signature. In their analyses, it was possible to extract physio-

logically significant activity in the EEG. However, in order to

achieve a unique decomposition, they imposed the mathematical

constraints that the combined frequency/time signatures of all

atoms were required to be of minimum norm and the spatial or

topographic signatures were required to have maximal smooth-

ness. These constraints have been found to be unnecessary for

unique topographic time/frequency decomposition, a fact that

has motivated the work described in this paper.

It has long been known, especially in the chemometrics

literature, that unique multi-linear decompositions of multi-way

arrays of data (more than two dimensions) are possible under very

weak conditions (Sidiropoulos and Bro, 2000). In fact, this is the

basic argument for Parallel Factor Analysis (PARAFAC). This

technique was proposed independently by Harshman (1970, 1972)

and by Carroll and Chang (1970) who named the model Canonical

Decomposition, and recently has been improved by Bro (1998)

who also provided a Matlab toolbox (available as of this writing at:

http://www.models.kvl.dk/users/rasmus/). In PARAFAC, for three-

way arrays, the data is decomposed as a sum of components

(corresponding to our ‘‘atoms’’), each of which is the tri-linear

product of one score vector and two loading vectors

(corresponding to our ‘‘signatures’’). The important difference
between PARAFAC and techniques such as PCA or ICA is that

the decomposition of multi-way data is unique even without

additional orthogonality or independence constraints.

Thus, PARAFAC can be employed for a space/frequency/time

atomic decomposition of the EEG. This makes use of the fact that

multichannel evolutionary spectra are multi-way arrays, indexed by

electrode, frequency, and time. The inherent uniqueness of the

PARAFAC solution leads to a topographic time/frequency decom-

position with a minimum of a priori assumptions.

Here, we use PARAFAC for the purpose of simultaneous space/

frequency/time decompositions. Previous applications of PAR-

AFAC to EEG data have analyzed only space/time, and some

additional external dimensions provided by subject and drug dose,

among other factors (Achim and Bouchard, 1997; Estienne et al.,

2001; Field and Graupe, 1991). A special interpretation of this

model is also the Topographic Components Model (TCM) (Möcks,

1988a,b), which gives justification for the PARAFAC model in the

context of evoked potentials analysis, based on biophysical con-

siderations (Möcks, 1988b). In this field, a relevant proof of the use

of TCM over PCA using only synthetic noiseless data was given in

Achim and Bouchard (1997).

To illustrate the usefulness of PARAFAC, we applied the

decomposition of time-varying EEG spectrum to the comparison

of resting EEG to that recorded while the subject performed mental

arithmetic. Mental arithmetic produces theta activity in the frontal

area and a suppression of alpha activity in the occipital area, while

the converse occurs when the eyes are closed in the resting

condition (Harmony et al., 1999; Ishihara and Yoshii, 1972; Sasaki

et al., 1996). The PARAFAC atomic decomposition should be able

to extract these components, localize them correctly, and detect the

corresponding level of activity in these bands in each physiological

state. Once estimated, the spatial and spectral signatures of the

identified atoms may be used to search for similar types of activity

in new data sets. Here, this procedure will be called ‘‘screening’’

for the presence of an atom.

Our focus is on space/time/frequency decompositions tailored

to the description of oscillatory phenomena. These are not the only

interesting phenomena in the EEG, transient activity being another

example. The methods described in this paper may be generalized

to this application by exchanging the basic dictionary that

describes oscillations.

This paper is organized as follows. We first describe the

experimental methods. Then, we consider the basic theoretical

development of the space/frequency/time atomic decomposition
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and the use of estimated factors to screen for activity in new data

segments. The results and discussion follow.
Methods

Data acquisition

Five male right-handed subjects (mean age 25.8 F 3.96 years)

that produced clear theta activities during a mental task were

studied in this work. All subjects signed an informed consent form

approved by the RIKEN Human Subject Protection Committee

before EEG recording. All subjects were required to concentrate,

for 3 min, on mental arithmetic (subtraction by serial 7 from 1000)

with closed eyes. They were asked the final residual number at the

end of the task. The resting EEG with closed eyes was also

recorded for comparison. During the recording, we provided no

visual nor auditory stimulation for the subjects.

EEG recordings were carried out with a standard 64-channel

system (NeuroScan Syn Amps Model 5083) referred to linked
Fig. 2. Spectral signature bk of atoms of Parallel Factor Analysis (PARAFAC) for

and alpha bands. The horizontal axis is frequency in Hz and the vertical axis is t
earlobes. The EEG data were sampled at 500 Hz and bandpass

filtered from 1 to 30 Hz.

Theory

In our application to EEG data, the data matrix S(Nd
� Nf

� Nt)
is the

three-way time-varying EEG spectrum array obtained by using the

wavelet transformation, where Nd, Nf, and Nt are the number of

channels, steps of frequency, and time points, respectively. For the

wavelet transformation, a complexMorlet mother function was used

(Jensen and Tesche, 2002; Kronland-Martinet and Morlet, 1987;

Tallon-Baudry et al., 1997). The energy S(d, f,t) of the channel d at

frequency f and time t is given by the squared norm of the

convolution of a Morlet wavelet with the EEG signal v(d,t)

Sðd; f ; tÞ ¼ Awðt; f Þ*vðd; tÞA2; ð1Þ

where the complex Morlet wavelet, w(t, f ) is defined by

wðt; f Þ ¼
ffiffiffi
p

p
rbexp � t

� �2
� �

� exp i2pftð Þ with rb being the-
rb

each subject. Note the recurrent appearance of frequency peaks in the theta

he normalized amplitude.



Fig. 3. Temporal signatures, ck, of theta and alpha atoms of Parallel Factor

Analysis (PARAFAC) for a typical subject. The first five segments were

chosen randomly from the rest condition; the second five segments were

selected so as to contain typical theta bursts. Each segment is 1-s long,

containing 100 time frames. The horizontal axis is time t, and the vertical

axis is the value of ck, which is dimensionless.
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bandwidth parameter. The width of the wavelet, m = 2prb f is set to

7 in this study.

We closely follow here the detailed description of PARAFAC

found in Bro (1998). The basic structural model for a PARAFAC

decomposition of the data matrix S(Nd
� Nf

� Nt)
of elements Sdft is

defined as:

Ŝdft ¼
XNk

k¼1

adkbfkctk ð2Þ

The problem is to find the loading matrices, A, B and C, whose

elements are adk, bfk, and ctk. In our application, each component k

will be designated as an ‘‘atom’’ and the corresponding vectors

ak = {adk}, bk = {bfk}, ck = {ctk} will be the spatial, spectral, and

temporal signatures of each atom (Fig. 1). The uniqueness of the

solution is guaranteed when rank (A) + rank (B) + rank (C) z
2Nk + 2. As can be seen, this is a less-stringent condition than

either orthogonality or statistical independence (Sidiropoulos and

Bro, 2000). The decomposition (Eq. (2)) is achieved by finding

min
adkbfk ctk

kŜdft �
PNk

k¼1 adk bfk ctkk: Since the Ŝdft are spectra, this

minimization must be carried out under the non-negativity con-

straint for the loading vectors. This particular variant of PARAFAC

has been developed by Bro (1998). PARAFAC produces the vectors

ak(Nd
� 1), which is the kth component loading vector that can be

seen as topographical maps, bk(Nf
� 1) is the spectrum for kth

component and ck(Nt
� 1) is the temporal signature for component k.

The main advantage of this method is that it provides us with a

unique decomposition of the time-varying EEG spectrum

corresponding to the best model in the least-squares sense. The

only indeterminacy in the least-square solution is the order of the

atoms and the relative scaling of the signatures. On the other hand,

it has also been proved that if the data is approximately tri-linear,

then the algorithm will show the true underlying phenomena, if the

correct number of components is used and if the signal-to-noise

ratio is appropriate (Harshman, 1972; Kruskal, 1976, 1997).

An important point is the selection of the most appropriate

number Nk of components. Several methods have been developed

for this purpose only (Bro, 1998). The Core Consistency Diagnos-

tic (Corcondia) is an approach that applies especially to PARAFAC

models, and has been shown to be a powerful and simple tool for

determining the appropriate number of components in multiway

models. In this work, we will use not only Corcondia but also the

evaluation of systematic variation left in the residuals of the model.

Validation of the method

As described by Harshman (1984) and Bro (1998), the

validation of a particular analysis can be seen as part of the

analysis itself and can be divided into levels: zero-fit diagnostics

(related to data before fitting any model, selection of proper

model); one-fit diagnostics (validate the consistency of the

model applied); many-fit diagnostics (comparisons between

different models, use of statistical inferences on the results).

Given some general considerations of the PARAFAC modeling

of the time-varying EEG spectrum, we shall make a deeper

analysis of the appropriateness of this procedure following these

levels and the general guidelines for validating the application

of multi-way models given in Bro (1998).

The usual way to assess the multiway (three-way in this case)

nature of the data in study is the exploration of results provided by

bi-linear analysis of the data. In particular, the application of PCA
to the unfolded three-way array will provide a matrix of loadings in

which a global behavior can be detected, indicating the existence of

dimensional structure in the explored dimensions. For data similar

to those treated here, this is clearly shown in Estienne et al. (2001),

and with a more complete analysis in Field and Graupe (1991).

Another way of assessing the tri-linear structure of the data is by

means of the Core Consistency Diagnostic (Corcondia) (Bro, 1998;

Estienne et al., 2001). This is a tool provided automatically in the

implementation of PARAFAC and other related multi-way algo-

rithms contained in the Matlab Toolbox used here. Corcondia was

utilized for successfully demonstrating the presence of multiway

structure in our data.

In this work, we have chosen PARAFAC among several multi-

way models, (e.g., PARAFAC2, PARATUCK2, TUCKER1,

TUCKER3) (Bro, 1998). This is an application of Occam’s razor

as PARAFAC is the simplest and most restricted model. As we only

consider it in our analysis, whether other versions of PARAFAC or

TUCKER models can give better results in terms of explanation of

the systematic variation of the data and interpretability of the results

remains an open question.

On the other hand, other drawbacks of the application of

PARAFAC model include the need for careful preprocessing of

the data and for checking residuals, leverages and other parameters

in the search of constant factors, outliers, and degeneracy. We do

not detail these problems here, as such analyses appear in the

literature, e.g., exhaustive ways of exploring degeneracy and

model mis-specifications can be found in Field and Graupe

(1991). The Matlab Toolbox used here provided us of these tools

for many-fit diagnostics (residuals, leverages, Corcondia, conver-

gence, explained variation).

What is missing in the present study is a rigorous analysis of the

uniqueness of the model in our case, but it is well-known that

through the use of PARAFAC, uniqueness is almost always present.



Fig. 5. Maximum-intensity projections of the Source Spectra Imaging solution of the spatial signature, ak, of the theta atom for each subject.

Fig. 4. Spatial signatures, ak, for the theta and alpha atoms of Parallel Factor Analysis (PARAFAC) of a typical subject. In (a) and (b), each signature is

displayed as a topographic map; (c) and (d) are the corresponding Source Spectra Imaging solutions. The cross sections of brain were prepared for better

visualization of the maximally activated regions. These are illustrated with a normalized color scale of the magnitude of Jk.
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Although a sufficient condition was given above, usually, unique-

ness can be assessed by checking the convergence of the algorithm

and the interpretability of the results. A strong sufficient condition,

but easier to verify, is that no two loading vectors are linearly

dependent.

Screening and artifact detection

PARAFAC can be used not only for extracting significant

activities from EEG, but also for searching for the presence of atoms

in a new data set, which were not used for estimating the loadings

and can be either from the same or from a different subject. If the

spatial and spectral signatures of an atom are fixed, they can be used

as templates for screening. Formally, after estimating atoms in a

training data set, this can be reconstructed as

Ŝ ¼ CðBA	 AAÞT ; ð3Þ

here, Bj	jA = [b1 	 a1b2 	 a2 . . . bnk 	 ank] is the Khatri-Rao

product of B and A, and represents the convolution of space and

frequency. XT denotes the transpose of matrix X. For the definition

of a template, not all atoms are necessary; that is, for the sake of

screening, atoms that are not of interest may be eliminated. Let BV
and AV be fixed spectral and spatial signatures (with some atoms
Fig. 6. Panels (a) and (b) illustrate the reconstructed decomposed component by V

two largest eigenvalues. Panels (c) and (d) are the reconstructed alpha and theta at

The first five segments were randomly selected from the resting condition; the sec

segment is 1-s long and contains 100 time frames.
possibly eliminated). The temporal signature, CV, can then be

estimated by using least squares in a new data set X,

CVT ¼ ðPTPÞ�1PTX; P ¼ ðBVA	 AAVÞT ð4Þ

P can be regarded as a template for screening for the presence of the

atoms of interest. The new temporal signature, CV, will then be an

estimate of the detected activities corresponding to each atom in the

new data set.

If certain atoms obtained by PARAFAC decomposition contain

artifact (e.g., eye movements, eye blinking, electromyogram, etc. . .)
their space/frequency reconstructions can be used as templates for an

artifact detector. The reconstruction, obtained by eliminating the

component that corresponds to artifacts, will be an artifact removal

method.

Inverse solution for the spatial signatures of atoms: source spectra

imaging

Each column ak of matrix A can be seen as the topography of

atom k. Thus, it would be desirable to obtain the sources inside the

brain that can produce these topographies to highlight more precise

anatomical details. The difficulty here is that the spatial signatures

are all positive values, as they are the differential topographic
arimax rotated Principal Component Analysis (PCA) corresponding to the

oms of PARAFAC decomposition in the frequency/time plane, respectively.

ond five segments were selected so as to contain typical theta bursts. Each
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profiles of EEG spectra, i.e., the variances of complex Fourier

coefficients, and therefore the inverse solutions in this case are not

the ordinary estimates for the current densities. However, a simple

exploratory analysis can be performed in which, under certain

assumptions and simplifications, the underlying sources for these

topographies can be obtained by an inverse solution. Furthermore,

these sources will be shown to be the spectra of electric current

densities.

The well-known relation between the electric current densities

inside the brain and the electric potentials measured by a set of

electrodes on the scalp is:

Vf ¼ KJf ð5Þ

Here we have written Eq. (5) directly in the frequency domain, i.e.,

Vf(Nd
� 1) and Jf(3Nv

� 1) are the vectors of Fourier coefficients of the

voltages and electric current density time series, respectively. Nv is

the number of voxels of a regular grid inside the brain. The matrix

K(Nd
� 3Nv)

is the electric lead field, which is unaffected by the

Fourier transformation. As the absolute value of the electric

potential has no physical meaning, the average value of voltages

was taken as the reference. From Eq. (5), we can find the spectra of

voltages as a = diag(VfVf*):

a ¼ diagðKJf J
*
f KT Þ ð6Þ

If we assume that there is no correlation between the current

densities in different voxels, i.e., Jf Jf * is a diagonal matrix, we

can obtain their spectra as c = diag(Jf Jf *). Eq. (6) then becomes:

a ¼ K�^2; ð7Þ

where K�^2 indicates the operation of squaring each element of the

matrix, K. This represents a linear relation between a (spatial
Fig. 7. Theta and alpha activities detected by the screening procedure, based on p

screening was applied for 1 min of continuous data sets in the resting and task co

alpha bursts in the task state, while the converse relationship holds in the resting
signatures obtained by PARAFAC decomposition), and the spectra

of current sources that generate the scalp voltages. For the sake of

simplicity, it may be assumed that the spectrum vector of the

current density has the same magnitude in all directions for each

voxel. Therefore, Eq. (7) may be rewritten as:

A ¼ MM ð8Þ

Here, matrix M(Nd
� Nv)

was obtained by averaging every three

columns of matrix K�^2, and l(Nx
� 1) is the spectrum of current

densities for each voxel.

From Eq. (8), the spectra of current sources can be found by

an inverse solution procedure. Note here that spectra a and l
are non-negative vectors, allowing us to solve Eq. (8) as a

minimum least squares problem under the non-negativity con-

straint for l. Eq. (8) is undetermined; thus, we shall constrain

the solution to be the smoothest one. In this case, the under-

lying sources (lk) for the topographic signature (ak) of atom k,

can be obtained from

Mk ¼ arg min
Mk z 0

Aak � MMkA
2 þ kALMk

N2 ð9Þ

where L is the discrete Laplacian operator as described in

Pascual-Marqui et al. (1994) and k is a regularization parameter.

In general, we shall call this approximation to the source

reconstruction for spectra of voltages the ‘‘Source Spectra Imag-

ing’’ (SSI) solution. Despite the assumption of independence of

electric current densities, finding the SSI solution for the spatial

signatures implies the a priori assumption of spatial smoothness of

the spectrum of current densities. Moreover, for this work, the SSI

solution for each atom was obtained by imposing anatomical

constraints using the Montreal Neurological Institute Probabilistic

Brain Atlas as described in Casanova et al. (2000). This set of
reviously identified spatial and spectral signatures for each component. The

ndition of a new data set of Subject 2. There are more theta bursts and less

state.
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assumptions has been amply used widely in the so-called distrib-

uted inverse solutions, which find the best applicability in the

reconstruction of activation of wide areas in the brain. Advantages

and shortcomings of these methods have been discussed exten-

sively in the literature (Fuchs et al., 1999; Pascual-Marqui 1995,

1999; Pascual-Marqui et al., 1994).
Results

Parallel Factor Analysis

To evaluate the performance of PARAFAC for extracting alpha

and theta activities in EEG, two different states were prepared in a

benchmark data set. For this purpose, 10 segments of 1 s each were

selected from the wavelet-transformed data (after wavelet transfor-

mation the time-varying EEG spectrum data set was subsampled to

100 Hz to reduce the computational cost of PARAFAC). Clear

alpha activity is observed continuously during resting and task

condition; however, strong theta activity appears only intermittent-
Fig. 8. To train the screening algorithm for the detection of eye movement artifacts, P

as well as eye blinks. Using the spatial and spectral signatures of these three compon

resting condition, which was not used for estimating factors. The data set recorded f

fewer in the task condition. On visual inspection of the raw data, it appears that

PARAFAC atomic decomposition showed that this is due to eye blink, as the many
ly during task condition. Therefore, five segments were selected

randomly from the resting condition and the other five segments

were selected from the portions that contain typical theta bursts

during the task. The segments were concatenated into the bench-

mark data set consecutively to form the three dimensional matrix

S(Nd
� Nf

� Nt
).

In the PARAFAC decomposition of S, two atoms appeared for all

subjects with spectral signature peaking in the alpha and theta range

(Fig. 2).

The analyzed frequency range was 0.5–20 Hz step by 0.5 Hz,

which is sufficient to extract theta and alpha activity. The use of the

Corcondia index suggested that in three subjects, these two atoms

were sufficient to explain the data set. In two subjects, an

additional atom was needed. The Corcondia was more than 90%

in all cases (optimally it should be 100%). The alpha and theta

peaks were around 11 and 7 Hz, respectively. Subject 1 is typical of

those who showed strong alpha and little theta activity during rest

conditions. Temporal signatures (Fig. 3) show that during the task

condition, this subject produced strong theta activities and reduced

alpha activity.
ARAFACwas applied to a data set containing typical theta and alpha activity,

ents as a template, we screened 1 min of continuous data sets obtained in the

rom Subject 1 contained many eye blink artifacts in the resting condition and

there are more theta bursts during rest than during the task condition. The

peaks in the temporal signature of theta and eye blink atom coincide.
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Figs. 4(a) and (b) show the spatial signatures of the alpha and

theta atoms as topographic maps for this subject.

The alpha and theta atoms appear in occipital and frontal area,

respectively. Figs. 4(c) and (d) are the corresponding SSI solutions

for these spatial signatures. The sources for the alpha and theta atoms

are in the calcarine sulcus and in the anterior middle frontal cortex,

respectively. These spatial distributions were relatively stable for all

subjects. Fig. 5 shows the estimated SSI solutions for the spatial

signatures of all subjects, corresponding to the theta atom. The

activated region had a predominantly frontal distribution in all

subjects.

Principal Component Analysis

To compare it with PARAFAC, we also carried out PCA of S.

For this purpose, the data were transformed into a matrix by

unfolding the three dimensional array. Results from our PARAFAC

decomposition of S were matched with corresponding results

obtained by applying PCA to the unfolded data set. Figs. 6(a) and

(c) show the reconstructed components in the frequency/time plane

that correspond to the two largest eigenvalues of PCA. The first

component showed strong alpha activities during the resting con-

dition. The second component shows strong theta activities and

reduced alpha activity during the task condition. These components

had a marked resemblance to the frequency/time reconstructed

plane of the alpha and theta atoms of PARAFAC (Figs. 6(b) and (d)).

The peaks of these activities, as well as the order of appearance of

the atoms, were the same in PARAFAC and PCA decompositions.

The topographies of the PCA components were also very similar to

the spatial signature of the PARAFAC atoms (Figs. 4(a) and (b)).

Screening

Using the screening procedure described above, it was possible

to use PARAFAC to search for the presence of atoms in a new data

set, whichwere not used for estimating the loadings. In this study, we

consider new data from the same subject and only theta and alpha

atoms were of interest. The spatial and spectral signatures for the

templates of theta and alpha atomswere estimated by using Subject 2

data as a benchmark. Reconstruction of the temporal signature for

new data was carried out by screening 1 min of continuous data in

the resting and task conditions. Fig. 7 shows the appearance of

pronounced theta bursts and the decrease of alpha bursts in the task

state. In the resting state, the theta burst disappeared and the alpha

bursts increased.

Artifact detection

If PARAFAC is applied to a data set that contains artifact, some

of the atoms will correspond to such activity (e.g., eye blink, eye

movement, EMG, etc. . .). Using these atoms as templates, artifact

detection can be carried out by the screening procedure. As an

example, PARAFAC was applied first to a training data set from

Subject 1 that contained theta and alpha oscillations as well as eye

movement artifact (this was assessed empirically by an experienced

electrophysiologist). The number of atoms was chosen such they

could be identified easily as theta, alpha, and eye movement artifact.

Using the spatial and spectral signatures of these three atoms as

templates, 1 min of continuous data in resting and task conditions

were screened. Fig. 8 shows the corresponding temporal signature of

the three atoms for Subject 1.
The data set recorded from this subject contained many eye

movement artifacts in the resting condition and far fewer in the

task condition. A superficial analysis would lead to the conclu-

sion that there are more theta bursts during the resting than the

task condition. However, these are probably due to the presence

of artifacts, because there are many coincident peaks in the

temporal signatures of the theta and artifact atoms.
Discussion

This paper introduces a new type of space/frequency/time

atomic decomposition of the EEG. It takes advantage of the fact

that three-way arrays of data may be decomposed into a sum of

atoms of which is a trilinear combination of factors or signatures.

This decomposition will be unique if the number of atoms is less

than half the sum of the ranks of the three matrices formed by

concatenating the signatures. The application of this concept to

obtain unique space/frequency/time decomposition for the EEG is

possible by arranging the multichannel evolutionary spectrum of

the EEG in a three-way data array with dimensions indexed by

channel, frequency, and time. The underlying theoretical require-

ment is that of a moderate amount of linear independence for

atom topographies, spectra, and time courses. This is a much

milder requirement than previous models underlying space/time

atomic decompositions (PCA or ICA). This is the first intrinsi-

cally unique space/frequency/time atomic decomposition proposed

in the literature.

A physiological interpretation of the model presented here is

intuitively appealing. It assumes neural sources with a fixed

geometrical relation to the sensors that produce oscillatory activity

with a fixed spectral whose amplitude is temporally modulated.

This model is not a completely general; for example, a frequency-

modulated chirp would require a large number of components,

such that the rank condition would be violated.

On the other hand, at most three space/frequency/time atoms are

necessary for an adequate description of the EEG data analyzed in

this paper. The use of the Corcondia index facilitates the selection of

the number of components, an issue that is still difficult for most

decomposition methods including PCA and ICA. Also, for the data

set analyzed in this paper, two of the spectral signatures had a clear

and common interpretation as theta and alpha oscillatory activity.

Other components were not so constant and were sometimes

difficult to interpret. It may be that more a priori information must

be built into the model to avoid identification ambiguity. In this

regard, PARAFAC shares with ICA the lack of inherent ordering of

the extracted components. In the case of ICA, clustering techniques

have been applied to identify common modes (Makeig et al., 2002).

In the future, this approach might be used also for the space/

frequency/time decomposition.

Our work also shows that the temporal signatures of the theta

and alpha atoms may be used as indicators of physiological states.

A comparison with a PCA-Varimax analysis shows that the results

of the latter may sometimes be similar to those of PARAFAC in

terms of description of space and frequency/time profiles. PAR-

AFAC, however, provides a more parsimonious description of the

data in a qualitatively simpler manner.

An important application of the space/frequency/time atomic

decomposition is the screening of new data sets for the presence of

particular atoms. In other words, PARAFAC offers the opportunity

to screen recordings for bursts of oscillatory activity with a given
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topographic and spectral content. The results shown here demon-

strate the feasibility of this technique, not only to detect physio-

logical activity but also for the ever-present problem of artifact

removal.

One limitation of the implementation of the method presented

here is the estimation by the least-squares techniques. Embed-

ding the model in a Bayesian framework would allow more

flexibility in incorporating a priori knowledge and a principled

testing of different hypotheses about signatures within and

between subjects.

Are these results ‘real’?

As noted above, it has been proven that if the data is approx-

imately trilinear, if the correct number of components is used, and

if the signal-to-noise ratio is appropriate, then the true underlying

phenomena will be found with PARAFAC (Harshman 1972;

Kruskal, 1976, 1997). Also, there have been examples in which

the PARAFAC model coincides with a physical model, e.g.,

fluorescence excitation–emission, chromatography with spectral

detection, and spatiotemporal analysis of multichannel-evoked

potentials (Field and Graupe, 1991).

The usual and stronger way to validate the truthfulness of

results given by the application of multiway models is by split-half

analysis (Harshman, 1984; Harshman and De Sarbo, 1984). Due to

the uniqueness of the PARAFAC model, the same loadings must be

obtained in the non-split modes from models of any suitable subset

of the data. This analysis was not accomplished in this work.

Although we do not have definitive proof that our results reflect

exactly the real physical phenomena underlying the data, there are

some aspects of the method we can lean upon for assessing the

robustness of the model.

First, the algorithm is implemented such that we can select

different initial values. We obtain the same results by applying the

method with initial values given by direct trilinear decomposition of

the data as we do by random guesses. Second, changing the

convergence criterion over four orders of magnitude did not affect

the results. Finally, the interpretability of the results, their agreement

with previous studies of this kind of electrophysiological experi-

ment, and their robustness with constraints to the loadings like non-

negativity and orthogonality; as well as the small variability among

subjects, all give additional evidence in this regard.

From this perspective, we think that PARAFAC space/frequen-

cy/time atomic decomposition of multichannel evolutionary spec-

trum of the EEG can reliably and uniquely extract meaningful and

significant physiological activities, although this does not ensure

that the results correspond to the physical sources that generated

the data. Furthermore, the application of this technique requires

careful preprocessing of the data, exploration of outliers and

degenerate solutions, use of constraints, selection of appropriate

model order, and validation of the results as this cannot be

accomplished easily without prior knowledge of, or a theoretical

basis for, of the expected results. PARAFAC should be simply

considered another promising addition to the Neuroimaging anal-

ysis toolkit.
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