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Independent Component Analysis of Noninvasively
Recorded Cortical Magnetic DC-Fields in Humans

Gerd Wubbeler, Andreas Ziehe, Bruno-Marcel Mackert, Klaus-Robert Miiller*, Lutz Trahms, and Gabriel Curio

Abstract—\We apply a recently developed multivariate statis- In addition this technique has been successfully applied to

tical data analysis technique—so called blind source separation reduce artifacts in multichannel electroencephalography (EEG),

(BSS) by independent component analysis—to process magne-
toencephalogram recordings of near-dc fields. The extraction magnetoencephalography (MEG) and magnetoneurography

of near-dc fields from MEG recordings has great relevance for (MNG) recordings [6]-[8] and also to analyze evoked responses

medical applications since slowly varying dc-phenomena have (9l

been found, e.g., in cerebral anoxia and spreading depression in  In this work we will show that ICA provides an efficient, un-

animals. _ supervised tool to extract an interesting physiological phenom-
Comparing several BSS approaches, it turns out that an en6n from near-dc neuromagnetic data. A chance for de-coupled

algorithm based on temporal decorrelation successfully extracted brai itoring is of hiah dical rel b
a dc-component which was induced in the auditory cortex by rain monitoring 1S of nigh medical relevance because many

presentation of music. The task is challenging because of the Pathophysiological processes have their main energy in the fre-
limited amount of available data and the corruption by outliers, quency range below 0.1 Hz. Therefore, it is of utmost impor-

which makes it an interesting real-world testbed for studying the tance to further improve the signal extraction from dc-MEG
robustness of ICA methods. data.

Index Terms—Biomagnetism, biomedical data processing, The biomagnetic recording technology employed here is
blind source separation, dc-recordings, independent component based on a mechanical modulation of the head, respectively.
analysis, magnetoencephalography (MEG). . . S T e

body position relative to the sensor. This yields a high sensi-
tivity which is both chance and challenge since it will not only
I. INTRODUCTION enable physicians to detect minute (patho-) physiological fields
[10], [11] but also poses interesting problems for data analysis

registration of near-dc (below 0.1 Hz) magnetic field§ince the magnetic fields of a multitude of different biological

from the human cortex using superconducting quantupﬁocesses and noise superimpose the signal of interest. It_ is
interference devices (SQUID's) has been shown [1]. Su@hhelpful matter of fact that many of these processes vary in

near-dc phenomena may have importance for metabd’ﬁEensityipdepenQentlny each other. ) )
injuries of brain cells in stroke or migraine [2]-[4]. Since YWhen introducing the present paradigm of prolonged audi-

magnetoencephalography (MEG) records the spatio-tempdfly (Music) stimulation for de-MEG [1] we sought a physio-
neuromagnetic field with an array of biomagnetometers off@ic@l dc-source in the brain which we could 1) switch on
can apply multivariate statistical methods for the data analysd off arbitrarily, and 2) which had a field pattern that could
A popular method is independent component analysis (ICAB? predicted by comparison to other (phasic) evoked activities

where the continuous-valued latent variables of input data 4F8M auditory cortices [12]. This paradigm defines a measure-

inferred by imposing statistical independence on the outpuf@ent and analysis scenario with almost complete knowledge

ICA has received great attention in various technical applicati@out Poth the spatial pattern and the time course of a cerebral

domains like acoustic source separation or telecommunicatfofiSource which on the other hand is fully embedded in the bio-

[5]. logical and ambient noise background. Hence it may serve as a
testbed for a critical comparison of advanced ICA approaches

_ , _ facing the “real world” problems of low signal-to-noise ratio
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SQUID-sensor array can be modeled as a linear combination®f Details of TDSEP

component vectors The TDSEP algorithm uses the property that the cross-cor-
relation functions vanish for mutually independent signals. As-
x(t) = As(t) 1) suming further that the signaig¢) have a temporal structure
i.e., a “nondelta” autocorrelation function all time-delayed cor-
wherex = [z1,...,2p|",s = [s1,...,sn]",m > n. Forin-  relation matricesk, () should be diagonal. This knowledge is

dependent component analysis we assume that the observedigd to calculate the unknown mixing mate in (1) by a
nalsx(t) are linear mixtures of underlying sources(t), that simultaneous diagonalization ofsetof correlation matrices
are mutually statistically independent, i.e.,theirjointprobabilitygT(X) = (x(t)xT (¢t — 7)) for different choices ofr. Since

density function factorizes. the mixing model in (1) is just a linear transformation we can
Furthermore, it is assumed that each comporghts zero gybstitutex(t) by As(t) and get

mean. Within these assumptions one can separate the@ata
int.o.independem:omponentsn(t) = Wx(t).. This recovers thg Ry = <As(t) (As(t - r))T> — AR HAT. (2
original sources(t) from the observed mixtures up to scaling

and permutation. As both the mixing process&nd the sources
s(t) are unknown, these techniques are caiisad source sep-
aration (BSS) [13].

For the special case ¢fvo lagged correlation matrices, e.g.,
7 = 0 andT # 0 one can achieve a joint diagonalization by
solving the general eigenvalue probléﬁlr;éo(x)R;lo(x))A =
AA [22].
B. Three Algorithms for BSS The quality of the signal separation varies strongly with the
In the following we will shortly review three representative/€ry choice ofr [21]. However, solving (2) for several by
types of source separation algorithms that take different apmultaneous diagonalization eliminates this problem.
proaches to achieve a demixing. An approximate simultaneous diagonalization of several
A substantial amount of research has been conducted BAtrices can be achieved in two steps: 1) whitening and 2) a
algorithms using higher order statistics for estimation of ICRUMber of Jacolb|2 rotations. First a whitening transformation
[13], [5]. For off-line (batch) computation, Cardostal.[14] W = Rr—o(x)~ /? achieves a white basig(t) = Wx(t) on
developed theJADE algorithm based on the (joint) diago-& unit sphere. The remaining set of time delayed correlation
nalization of matrices obtained from “parallel slices” of théhatricesk.,) can be diagonalized subsequently by a unique
fourth-order cumulant tensor. This algorithm often perfornfdthogonal transformatiorQ, since in the white basis all
very efficiently on low dimensional data if sufficiently manydegrees of freedom left are rotations. For details we refer to
sample points are available. However, for high dimensiondi?]: [21], and [24].
problems like MEG the effort for storing and processing Conca}tgnation (_)f both transforms_, finally yields. an estimate
the fourth-order cumulants i©(m*) and computation may Of the mixing matrixA. = W~'Q, which has to be inverted to
become prohibitive. As a remedy for this problem, Hyvarine#et the demixing matritVv = A~*.
and Oja developed an algorithm utilizing a fixed-point iteration AS & side remark: one can carry the thought of simultaneous
[15] termedFastiCA which uses kurtosis as a contrast functiofiagonalization of matrices even further. In principle, any two

(see [16] for extensions to generalized contrasts). In matf®" more) matrices that are diagonal for the sources are sufficient
notation, FastICA takes the form to find a proper demixing transfori¥w . Matrices that could be

used apart from the time-delayed correlations introduced before
are, e.g., correlation matrices of filtered signals [25] or slices of
W =W + F[diag(—ﬁi) n E{g(u)uT}]W a higher order cumulant tensor [14], [26].
whereu = Wx, 8 = E{uig(u;)} andT = diag(1/(5; — D. Limits and Problems for Source Separation Algorithms
E{¢'(u;)})) whereg(u;) is a nonlinear contrast function. This  While using ICA techniques one has to be aware of their
version of FastICA has been shown to be equivalent [17] to thgori assumptions, limits and difficulties.
maximum likelihood approach for ICA given by a stochastic 1) A particularly hard practical problem is the limited
gradient descent as advocated in [18]-[20]. availability of data points in combination with a high-di-
The previously described set of methods utilizes higher order  mensional sensor input, the latter being a problem of
moments to exploit the non-Gaussian distribution of the sources  computational complexity that can be overcome by,
to achieve a separation. In contrast, the Temporal Decorrelation e.g., TDSEP or FastICA algorithms, while the former
SEParationTDSEP) algorithm [21] relies on distinctive spec- is a ubiquitous systematic statistical problem (“curse of
tral/temporal characteristics of the sources using second-order dimensionality”).
statistics only (see also [22]-[25]). Such inherent time struc- 2) Channel noise is potentially a rather serious harm to ICA
ture of signals can be found particularly in neurophysiolog- algorithms as it effectively doubles the number of inde-
ical recordings. The advantage of second-order methods is their  pendent sources. Often, however, the application problem
computational simplicity and efficiency. Furthermore, for a re-
liable estimate of covariances only comparably few samples are
needed. IHere(-) denotes the time average.
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allows to construct an approximate noise model and pro-
jections to signal spaces orthogonal to the noise space ce dnianas IR
be performed [26], [27]. ]

3) Any projection algorithm can only retrieve and denoise At e i e
signalswithin the subspace defined by its prior assump- 1 N I N
tions. E.g. an orthogonality assumption leads to principal MM Ui U e N
component analysis (PCA), orthogonality in some feature N N W o
space to nonlinear PCA (cf. [28]) and enforcing mutual HARUSAN RO } t

independence of the components defines ICA.

" JUTETRY B M' W &N-PJ
4) The number of sources that can be unmixed has to b DA AU ' ¢

equal or smaller than the number of sensors. Although ir i

MEG the recorded signals are generated by a multitude = !

of microscopic sources, these can often be collapsed int ]
. 1 At AN haaa

a few macroscopic sources. R SR PV TV S

5) The mixing model as defined in (1) might be too T
simple-minded and models that include noise terms3eT
(see discussion above) or cope with convolutive or ever 10005
nonlinear mixtures would be more appropriate. For a1
MEG/EEG recordings, however, a linear model is suffi-
cient, due to the linearly superimposing magnetic/electrigy. 1. input data used for ICA after dc preprocessing (demodulation and
fields. reconstruction); arranged according to sensor positions; diameter of sensor array
6) Outliers can strongly decrease the performance of |CAO mm.
algorithms, in particular methods that use higher order

statistics explicitly (e.g., JADE, FastICA with kurtosis). sensor was centered tangentially approximately over the left au-
ditory cortex. The acoustic stimulation was achieved by pre-
senting alternating periods of music and silence, each of 30 s
lIl. A PPLICATION length, to the subjects right ear during 30 min of total recording
This section first gives some medical background otrlwme' Th_e de m_agnetlc field va_lues were acqwred_ .by using a
. . mechanical horizontal modulation of the body position with a
dc-recordings, then the experimental set-up and preproces§|n . .
) . : . X re%uency of 0.4 Hz and an amplitude of 75 mm. This mod-
is described and finally we apply different ICA techniques to,_ . o .
. o ulation transposed the dc magnetic field of the subject to the
the data and discuss our findings. : — . .

modulation frequency, which is less contaminated by noise. The

recorded magnetic field data were processed by digital lock-in

A. Clinical Background of DC-Recordings techniques in order to extract the modulation induced frequency

Near-dc phenomena are expected in metabolic injuries @Mmponents [32]. Then the dc-field of the subject was recon-
brain cells in stroke or migraine, e.g., in anoxic depolarizatiofitructed from these frequency components by using a transfor-
peri-infarct depolarization or spreading depression [2]-[4ation technique based on a virtual magnetic field generator
Noninvasive electrical recordings of near-dc phenomena 1d. These reconstructed dc magnetic field values, sampled at
prone to large drift artifacts due to electrochemical instabilitiég€ modulation frequency of 0.4 Hz, gave a total number of 720
at the electrode-skin interface. Up to now this limitatio§@mple points per channel for the 30-min recording time and
could be overcome only by invasive approaches [29], [30y€re used as input for the ICA-algorithms.

In contrast, SQUID’s allow for a noninvasive magnetic reg- Le€tus examine the time courses of 30 min for all 49 channels
istration of near-dc magnetic fields. Using this technolo f. Fig. 1). At the first glance, the signals have an obvious trend
biomagnetic fields below 0.1 Hz (near-dc) arising from “injur ehavior (slow drift) while possible components of interest are
currents” of traumatized tissue, e.g., muscle and nerve, h&gvered by other strong signals of unknown origin, i.e., the re-
been measured noninvasivety vitro [10], [11]. Biomagnetic SPONse to the stimulus is completely hidden in the data.

fields in this frequency range were detected, quantified andT0 @pply ICA algorithms to this data we have to ensure that
continuously monitored noninvasively also from the humaihe criteria of the checklist from Section 1I-D are fulfilled. The
brain by employing an acoustical stimulation paradigm tgardest problem is posed by 1) since we have 49 channels and

induce a prolonged auditory cortex activation (for detaile@nly 720 data points per channel. Additive channel noise 2) is
physiological background see [1]). a minor problem due to the experimental set-up, but slow base-

line drifts are certainly present. As we are looking for a signal
that is time-locked with the stimulus and due to linear superposi-
tion of biomagnetic fields our assumption of temporal decorrela-
The neuromagnetic field data were recorded in a conventioti@n/independence and a linear mixing model 3) holds. Also, the
magnetically shielded room (AK3b) in a clinical environmenbhumber of sources 4) has to be less than the number of sensors.
using 49 low noise first-order SQUID gradiometers (70-mrven though the exact number is unknown, at least the eigen-
baseline) covering a planar area of 210-mm diameter [31]. Thalue spectrum of the covariance matrix decayed rapidly,

B. Data Acquisition and Validation
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Fig. 2. Spatial field patterns, waveforms and frequency contents of folig. 3. Spatial field pattern, frequency content and time course of ICA10.
selected components obtained by TDSEP. For units and details of ICA10 cf.
Fig. 3.

One might argue that our comparison in this specific context

indicating few dominating sources. Finally, as we see from tien2dequate, as dc signals contain by definition a strong tem-

occasional spikes in various channels shown in Fig. 1, outlidt@ral correlation and may have a Gaussian distribution. How-
5) pose a problem in this data set. ever, the extracted component (ICA 10) from which we be-

lieve that it corresponds to interesting brain activity has a clear
C. Results and Discussion non-G_aussian structur&yrtosis= —0.6). _
W Iv TDSEP [21 he d duced 32-di In Fig. 4, we show the performance of the three algorithms

€ how apply [21] to t € ata}, reduced to a 32- as different numbers of PCA components were used for sub-
men_smnal subspace by PCA, using 50 tw_ne—lagged Correlat'%‘ace projection. Clearly, TDSEP is the only algorithm which
ma_tncgs €= 1 --50 sample points) for simultaneous dl";‘go'reliably extracts a component which is highly correlated to the
nalization. In Fig. 2 some selected ICA components are showg, . " given a sufficient amount of components (i20)
Not surprisjngly, the first comp_or_1ent_ (ICAL) "“"?“”'Y capturg e also Ljsed the Molgedey—Schuster algorithm [22], which can
the slow drift, that was already v.|S|bIe in the datainFig. 1. Wh",Se seen as the simplest variant of TDSEP, performing a simulta-
most other_ components shpw irregular tlmg courses reflchHgous diagonalization of the equal-time covariance matrix and
the dynamics of undetermined processes it is noteworthy t tly one delayed covariance matrix by solving a generalized

their field maps feature spatially coherent field patterns whi genvalue problem. However, the performance of this method

clearly distinguish them from random channel noise pattemsdepends strongly on the choi,ce of the delay parametend
Remarkably, one component (ICA10) shows a (noisy) r ®fariations between the best and the worst result are extremely

angular waveform. Its time course and frequency (see Fig. 3\ [21]. For the best value (which is not accessiblepriori)

clearly displays thé& /30 s “on/off” characteristics of the stim- Wi " T
L S . e obtain a curve which lies about 2% below the TDSEP solu-
ulus. The spatial field distribution of ICA10 shows a blpolié) >

. . o on in Fig. 4, whereas for the worstvalue only a rather bad
pattern, located at the expected position of cortical activity [ erformance is achieved—lying in the interval 0.3-0.4 of the
[12]. Both findings give direct evidence that ICA10 represen

h h cal stimul rrelation coefficient like FastICA or JADE (both curves are
the response to the acoustical stimulus. not shown to keep Fig. 4 simple).

Even though we do not expect that the cortical responseFig_ 5 shows the dependency of the separation result for

resembles the stimulus completely, computing the correlati%SEP as a function of the sample size. Already for 300

coefficient between the “on/off” stimulus and the I1CA t'mesamples we observe an enhanced correlation, which is even

courses provides a u_seful measure.to evalugte and Com%é?]er than the respective correlation coefficient obtained by
the performance of different separation algorithms. Applying . 50pE or FastiCA algorithm for all 720 data points.
the three algorithms from Section II-B, we find that only the

TDSEP algorithm is able to recover a signal that is highly
correlated to the stimulus, while FastICA and JADE fail for
this specific task (for correlation coefficients see also Fig. 4). The presented results provide deeper insights into strengths
There might be a number of reasons for this finding. On oraad limitations of ICA approaches to process dc-magnetoen-
hand the limited number of sample points is a serious probleraphalography data.

for algorithms based on higher order statistics, as they have t@Considering this dc-MEG scenario as a testbed for evaluating
estimate a larger amount of parameters from the same amatinet performance of source separation methods we find that the
of data. On the other hand, the low SNR is problematic as w@lDSEP approach appears remarkable in its performance under
and makes the distinction between different sources solédyo test-the-limits conditions: 1) Even for a substantially re-
relying on the probability density very difficult. Furthermoreduced dimensionality of the data TDSEP identifies the stimulus
we note a number of outliers in Fig. 1 that may harm theesponse with high confidence (Fig. 4). 2) When keeping the
estimation of higher order moments. Unfortunately, simplgumber of channels fixed (49) but reducing the number of data
removing potential outliers did not improve the results, as osamples entering the ICA, TDSEP showed only a slight degra-
might erroneously remove also data points which are importaddtion for the correlation of its best matching component with
for a proper estimate of the higher order statistics. the target signal (Fig. 5). In this test case, higher order-based

IV. CONCLUSION AND OUTLOOK
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. flecting an automatic brain response to switches in the stimulus
T Tosep channel, rather its amplitude can be modified by higher cogni-
« - - FastiCA(Gauss tive brain functions, such as attention directed by subject to or

FasuCA tanh) away from the auditory input [33], [34]. It shall be emphasized
that the component of interest in the present paradigm had only
rank ten in a list ordered according to the L2-norm of component
W power. Since many of the ICA components with larger power
show up with maps featuring spatially coherent fields (i.e., they
. : : did not resemble random sensor noise patterns) a further physi-
v : L . L y v ological analysis of possibly underlying biological sources can
be reasonably based on such decompositions.

Concluding, the general problem that arises when applying
Fig. 4. A PCA projection to a given number of components is performedlgorithms developed under mathematically strict assumptions
prior to ICA in this subspace. We show the correlation coefficient betwedo real-world scenarios was sufficiently handled by the TDSEP
stimulus and the best matching ICA component vs number of components. Th&sion of ICA for the case of dc-magnetoencephalography.
correlation to the best matching PCA component is shown as a baseline. . . L

Hence the conjunction of dc-MEG and ICA holds a promising
potential for assessing slowly varying neuroelectric brain
processes both in health and disease, in particular concerning
stroke patients.

correlation to stimulus

number of components
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