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Single Evoked Somatosensory MEG Responses
Extracted by Time Delayed Decorrelation

Tilmann H. Sander, Martin Burghoff, Gabriel Curio, and Lutz Trahms

Abstract—Measurable magnetoencephalographic responses
of the cortex due to an electrical stimulus at the wrist start 20
ms after the stimulus. This early magnetic response is known
as the N20m, which can be seen by averaging over hundreds of
stimulation epochs. Applying Independent Component Analysis
(ICA) based on time-delayed decorrelation to such data allows
the extraction of the single responses starting 20 ms after the
stimulus without the need for averaging. One of the independent
components has a field pattern that is very similar to the N20m.
Using this independent component, it is found that the response
at 20 ms is stable over a measurement session lasting 4000 s and
containing 12 000 stimulations, whereas later responses show
highly significant changes over time. To suppress slower activity
and noise in the data, a high pass of 55 Hz is applied to the data.
One of the subsequently calculated independent components
shows that the response at 20 ms is much clearer than before
filtering. Analyzing the amplitude distribution of this response
yields that 97% of the stimulations have a measurable response
above base line level, whereas for conventional methods such as
projection and notch filtering, only 91% of the responses are
detectable. The high degree of measurable responses indicates the
signal separation power of independent component analysis, and
it supports the hypothesis that the early stages of sensory cortical
processing can be described as a linear processing chain with
small variability, at least from a macroscopic point of view.

Index Terms—Independent component analysis, magnetoen-
cephalography, medianus stimulation, somatosensory evoked
fields, temporal decorrelation.

I. INTRODUCTION

THE noninvasive study of brain functions on a millisecond-
timescale is most easily done using Electroencephalog-

raphy (EEG) or Magnetoencephalography (MEG). This time
resolution is partially lost as evoked brain responses can be ob-
scured by spontaneous brain activity, other physiological sig-
nals, and technical noise sources. Individual brain responses due
to a single stimulus can generally not be isolated, and only an
average over several tens to thousands of identical stimulations
yields a picture of the brain response. Naturally, the average
cannot show variations in timing and amplitude in the response
to consecutive individual stimulations. The assessment of vari-
ations in timing and amplitude is of great importance for un-
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derstanding brain function in more detail as there exist, even
for early cortical responses, the competing models of i) linear
input–output processing with minimal variability and of ii) tem-
porally and spatially distributed and highly variable processing.
To isolate single responses from a stream of unaveraged mul-
tichannel data, Independent Component Analysis (ICA) is fre-
quently applied. ICA is a method that decomposes a multivariate
dataset such as multichannel EEG or MEG measurements into
a superposition of spatially stationary patterns with statistically
independent amplitude functions [1].

The ICA model has proven to be of great importance in
the analysis of biomedical data such as MEG, EEG [1], [2],
or functional magnetic resonance imaging [3], [4]. In the case
of EEG/MEG, the ICA requirement for spatial stationarity is
fulfilled for some brain activations generating noninvasively
detectable signals. Although the neural signals are propagating
along axons and dendrites, there exist macroscopic processing
centers such as the somatosensory cortex, which are function-
ally and anatomically well circumscribed. The assumption of
statistical independence between a stimulated response from,
e.g., the somatosensory cortex and an unrelated response from
the visual cortex due to the subject perceiving his/her envi-
ronment is a plausible one. The same assumptions hold for
certain types of noise and unwanted signals such as, e.g., eye
and cardiac activity [1] and spontaneous brain activity [5], [6].

Thus far, few works have applied ICA to electrophysiological
measurements of the early and weak brain responses due to
somatosensory stimulation. An example of these responses is
the somatosensory evoked field (SEF), which is caused by
an electrical stimulation at the wrist. A short electrical pulse
delivered to the median nerve on one hand leads to a sequence of
neuronal activations in the somatosensory cortex contralateral
to the stimulated side. The earliest cortical response observable
in the MEG due to this type of stimulation can be seen at
20 ms. This so-called N20m is a very stable response that is
essentially independent of the state of alertness, and it can
be measured even during sleep. It was described in [7] using
a seven-channel gradiometer, and the average response has
been thoroughly studied [8], [9]. Recently, contradictory results
have appeared in the literature with respect to the variability
of individual somatosensory responses at 20 ms: In [10], it
is found that the response at 20 ms even changes sign on
consecutive stimulations, whereas the data shown in [11] imply
large variability with rare occurrences of an amplitude close to
zero. To further investigate the response variability at 20 ms,
in this work, ICA is applied to unfiltered and highpass filtered
SEFs. The averaged response at 20 ms typically has a width
of only a few milliseconds, suggesting that the main features
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of this response will not be altered by highpass filtering the
signal with a cutoff of up to 100 Hz.

Among several available ICA algorithms, the time-delayed
decorrelation (TDD, TDSEP, SOBI) [12]–[14] has been ap-
plied frequently to MEG data [6], [15]–[21]. Only three of
those studies are an application of ICA to SEF raw data. The
TDD-ICA components due to tactile stimuli on the thumb
after a press button action are studied in [17] and [18], and the
third [21] studies interhemispheric connectivity phenomena
by applying TDD-ICA to data obtained from unilateral elec-
trical medianus nerve stimulation. The encouraging agreement
between anatomical and physiological knowledge and param-
eters derived from TDD components due to somatosensory
stimulation is described in [22] for high-density EEG data
similar to the MEG data presented here. In contrast to these
earlier reports, we focus on the best possible extraction of the
single trial response at 20 ms using time domain filtering as a
preprocessing tool before the TDD-ICA is applied. Note that
filtering as preprocessing is compatible with the ICA model [1].

As a first step, the TDD algorithm is applied to SEF mea-
surements, and the TDD result is validated using secondary in-
formation such as the conventional average. Then, individual
TDD time series that can be associated with the N20m and later
responses are characterized using a visualization of each indi-
vidual response (single trial plot). The stability of the response
sequence in the course of the experiment is assessed using a
simple statistical measure applied to subgroups of individual re-
sponses. Finally, single trial statistics are calculated for the set
of responses at 20 ms extracted from a single TDD component,
which was obtained from highpass filtered data. These single
trial statistics are compared with the result using the more con-
ventional projection method.

II. METHODS

A. Time-Delayed Decorrelation

The MEG signal in each sensor is a superposition of the
signal from a number of brain and (external) noise sources
with unknown time dependence and of unknown spatial origin.
Assuming stationarity as it is required for applying ICA [1],
the data can be written as a sum of sources of the form

, where is a time-independent field pattern related
to the -channel sensor system, and describes the time
dependence of the source. These sources are abstract objects in
a -dimensional signal space, and generally, they should not
be regarded as cortical sources. The pattern can be visualized
as a field map using the sensor locations. Combining the
into the vector and the into matrix , the vector of
the measured MEG time traces is given by

(1)

The source amplitudes and their maps are gener-
ally unknown. ICA algorithms aim to calculate for the case of
an identical number of sources and sensors, i.e., , a
demixing matrix fulfilling

(2)

where the are identical to the if disregarding an inde-
terminacy in scale and ordering. For clarity, note that the term
“ICA component” means the function , where the base
vector can be visualized as a field map. The demixing matrix
can be used in two ways for further data processing: i) signal re-
jection by setting columns corresponding to unwanted signals in

to zero and then applying the modified matrix to and ii)
time domain signal analysis on selected one-dimensional (1-D)
amplitude functions . The second case is pursued in this
work.

For signals with characteristic spectra or even periodic sig-
nals with harmonic spectra, an ICA algorithm was suggested,
exploiting the nonzero time-lagged cross-correlations between
different measured channels. The TDD [12]–[14] algorithm is
essentially an approximate simultaneous diagonalization of sev-
eral delayed covariance matrices

(3)

for a fixed set of time delays . For computational efficiency,
the diagonalization is performed on the set of whitened sym-
metrized delayed covariance matrices, where the whitening uses
the covariance matrix (i.e., ).

In [23], it was shown that the symmetrized delayed covari-
ance matrices have the following general form in
Fourier space:

(4)

where and are the real and imaginary part of
the complex valued spectrum of . The expression in (4) is
equivalent to a correlation between a spectrum of one signal fil-
tered with and the unfiltered spectrum of a second
signal. The frequency response of the filter can be seen as a fre-
quency comb due to the periodicity of the cosine. Then, the de-
layed covariance matrices can be viewed as the correlation of
spectra from different measurement channels weighted by a fre-
quency comb, which favors harmonic spectra. This means that
TDD can separate sources only if their spectra are different [13],
[23]. This suits our experimental situation as we expect a peri-
odic response from the brain at 3 Hz due to the periodic elec-
trical stimulation (see Section II-C) and a different spectrum
for noise signals such as, e.g., the heartbeat with a frequency
around 1 Hz or power line noise at 50 Hz. All of the three men-
tioned signals contain harmonics of their respective base fre-
quency, leading to comb-shaped spectra differing in the distance
between individual peaks. For the comb-shaped filter function

, a frequency resolution can be defined as the
distance between two adjacent maxima of the cosine, which is

. To achieve a certain frequency resolution, the nec-
essary can be estimated using this simple rule.

B. Projection

To suppress or enhance certain field patterns in a multidimen-
sional signal vector space, the signal space projection (SSP) was
introduced in [24] and [25]. SSP is motivated by the observation
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that brain signals and noise signals have very different field pat-
terns, which means that they can be almost orthogonal toward
each other in the signal space. In the SSP, a set of base vectors

is split into two groups, which are denoted as parallel and or-
thogonal ( , ). Then, projection operators and are de-
termined, which separate the signal into orthogonal subspaces:

and .
A matrix is formed using the -patterns as column

vectors, and its singular value decomposition is calculated:
. The columns of form an orthonormal basis for the

column space of , and the operators read

(5)

In Section V-B, only a 1-D SSP is used as the group
consists of a single vector, which is chosen from averaged data.
The application of a 1-D operator to the measured data
is similar to the scalar product between the data vector and a
second time-independent vector, where only the normalization
is different in the SSP, preserving the signal magnitude of the
resulting 1-D time series.

C. SEF N20m Measurements

In five healthy volunteers, the somatosensory MEG was
recorded using a planar system described in [26]. It consists
of 49 axial superconducting quantum interference device gra-
diometers arranged on a plane in a hexagonal grid with the
gradiometer orientation nearly perpendicular to the plane. The
planar system does not cover the whole head, but it is ideally
suited to measure over a known anatomical location in close
proximity to the head, and large MEG signal amplitudes can be
obtained.

An electrical pulse of 100- s duration was applied to the me-
dianus nerve with a strength of 5–10 mA, which is well above
the motor threshold. The stimulation was on the right side with
a frequency of 3 Hz. The MEG system was positioned with its
central sensor over the somatosensory cortex contralateral to
the stimulation (position C3 in the 10–20 system). The mea-
surement of 4000 s was split into four blocks of 1000-s dura-
tion each. The data were sampled at 2 kHz after analog filtering
with a bandpass of 0.1 to 1 kHz. We display the data from one
subject consistently through all stages of analysis, as similar re-
sults were obtained for the other subjects. Data obtained using a
whole head MEG system were found to be noisier and to appear
less stationary. This is possibly due to a larger distance between
cortex and sensors and a higher sensor noise level in the whole
head system compared to the planar system. The whole head
data will not be discussed here.

D. Application of TDD

Before applying the TDD algorithm, each individual channel
of the multichannel raw data set was digitally bandpass filtered
using two different passbands: i) A filter with a passband of 2 to
500 Hz and 60-dB damping points at 1 Hz and 1 kHz was used
to reduce the influence of the cardiac signal with a dominant fre-
quency around 1 Hz and to reduce noise above 500 Hz. These
data are denoted by WB wideband . ii) To reduce the influ-
ence of the 50-Hz line noise, which is the strongest signal in the

Fig. 1. (a) Maps from the averaged WB data measured during electrical
stimulation at the medianus nerve showing at around 20 ms a dipolar pattern
known as the N20m, and different dipolar structures appear at later times. (b)
Average of the HP data. The dipolar structure at 20 ms is fairly similar to the
WB data shown in (a), and the later activity is no longer present in (b).

TDD decomposition of the WB data, and to suppress commonly
occurring 10 and 20 Hz brain signals ( , , or oscillations), a
second filter was applied. It had a passband of 55 to 500 Hz and

60-dB damping points at 50 Hz and 1 kHz. These data will be
denoted by HP highpass .

As time-delayed covariance matrices, a set of 500 matrices
with ms was chosen empirically in
the TDD calculation as there is no general rule for the choice of
the set . For the the largest , the corresponding frequency
resolution introduced in Section II-A is ms
0.5 Hz. This should be sufficient to distinguish harmonic
spectra with a 1-Hz peak distance due to the cardiac activity
from spectra with a 3-Hz peak distance due to the stimulation.
Increasing the resolution further did not change the results.

A full recorded dataset consists of about 8 sampling
points for each of 49 channels of the MEG system. To reduce
the computing time, the TDD components were calculated using
the data from the second measurement block only. A dimension
reduction, e.g., using PCA, to achieve a further computing time
reduction was abandoned as inferior results were obtained. With
as little as 10 s of data, a useful TDD decomposition results;
nevertheless, the 1000 s of data used yield a statistically better
founded estimate.

III. AVERAGED WB AND HP DATA

The conventional analysis for an SEF measurement is given
in Fig. 1, which shows maps from the average over 3000 epochs
for the WB data in (a) and for the HP data in (b). A 5-ms base-
line starting at 5 ms after the stimulus was subtracted. This base-
line window is neither influenced by the stimulus artifact nor by
early Thalamic activity [27]. Starting at 18 ms, activity is seen
in (a), reaching its first maximum at 20 ms: the N20m. The map
shows the well-known dipolar structure of the N20m, which can
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be attributed to a point-like current source in the cortex [28],
[29]. The distance between the field maxima is 8 cm (diameter
of planar sensor array 20 cm), and a source depth of about 2
cm below the skull can be estimated [29]. Later activity at 40,
60, and 80 ms shows maps that are different from the N20m.

The average over the HP data is shown in Fig. 1(b). The map
at 20 ms is similar to the map obtained from the WB data in
(a). The activity visible between 40 to 80 ms in the WB data in
(a) is no longer present in the HP data in (b). This later activity
belongs apparently to signal components below 55 Hz.

IV. RESULTS FOR WB DATA

A. Selected WB-TDD Components

Three TDD components calculated from the WB data are
shown in Fig. 2, which are attributed to the medianus stimula-
tion due to their spectra and their field map, as will be explained
below. In this figure, each component is represented by its field
map (left), an 8-s section of its time series (bottom right), and the
spectrum of the full time series of 1000 s used in the TDD calcu-
lation (top right). The spectrum of component SEF1wb is shown
in two parts for ease of interpretation. The scaling of the time
series in units of femto Teslas (fT) was obtained after rescaling
the maximum of the field map to one, i.e., the time series corre-
sponds to the signal in the strongest sensor with respect to the
field map.

The spectrum of SEF1wb has peaks starting at 3 Hz, the stim-
ulation frequency, and nearly every harmonic of 3 Hz up to
200 Hz. The multitude of higher harmonics in the spectrum of
SEF1wb implies that this component has very narrow peaks in
the time domain, as will be discussed in Section V. These higher
harmonics are not due to the stimulus artifact at 0 ms, which is
a spike in the measured data due to the electrical stimulation
pulse at the wrist. It is isolated by TDD into a separate stimulus
artifact component, which is given in Fig. 5 as STIMhp for the
HP data. The spectrum of STIMhp in Fig. 5 shows the 3-Hz har-
monics without decreasing peak amplitude up to 300 Hz, and
further peaks exist beyond the displayed range.

The structure of the dipolar map of SEF1wb in Fig. 2 clearly
indicates a cortical source (cf. Section III). The maps of com-
ponent SEF2wb and SEF3wb suggest that they represent brain
activity as well. Their spectra contain a peak at 3 Hz on a broad
background, and therefore, they are attributed to the medianus
stimulation as well. These components seem to represent stim-
ulus-related brain activity from a different location compared to
SEF1wb.

The map of component SEF1wb is evidently similar to the
averaged WB data at 18 and 20 ms in Fig. 1(a). To have a
quantitative measure for the similarity of two patterns in the
signal vector space an angle can be calculated from

[24], [30], where is the TDD base vector SEF1wb,
and is the averaged WB data vector at 20 ms, which is shown
as a map in Fig. 1(a). The resulting value shows the
high degree of similarity.

Despite the results shown, other TDD components could be
attributed to power line noise and the cardiac artifact discussed
in [19].

Fig. 2. Selected TDD components calculated from the raw WB data, which
are attributed to the medianus stimulation. Each component pattern (field map,
left) is shown together with a section of its time series (bottom right) and the
power spectrum (top right) of the time series (the spectrum of SEF1wb is given
in two parts). Component SEF1wb is clearly related to the stimulation as its map
is similar to the N20m in Fig. 1(a), and its spectrum contains a harmonic series
of peaks starting at 3 Hz.

B. Single Trial Plots

The single trial (ST) plot introduced and applied in [2], [17],
[18], and [31] is a tool to visualize the common behavior in
repetitive signals. Multiple sections of a time series are dis-
played as stacked grey shaded scan lines with the function value
coded by the grey shade. The sections of the time series are
aligned at a set of markers, which are the time points of the me-
dianus stimulation in the present case. The abscissa of the plots
is the time relative to the marker, and the ordinate counts the
displayed sections of the time series. No smoothing across ad-
jacent lines, i.e., along the ordinate axis, was performed for the
ST plots.

The ST plots and averages for TDD components SEF1wb to
SEF3wb are shown in Fig. 3. The upper panels show the re-
sponse to 300 consecutive stimulations within the first measure-
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Fig. 3. ST plots and averages of components SEF1wb–SEF3wb shown in
Fig. 2. The upper panels show the ST plots of 300 consecutive individual
responses to the medianus stimulation. The lower panels are the averages over
the epochs in the upper panels, and the width of the trace gives the SEM. Note
the different scales. A strong response at 20 ms is observed for SEF1wb in the
ST plot and the average.

ment block. The coding between grey shade and field value is
given by the vertical bar on the right. The lower panels show the

average over the epochs in the upper panel with up to 10% of
outlying epochs with amplitudes larger than 850 fT rejected for
the average. The baseline was calculated in the window used for
the averaged data (5–10 ms after the stimulus). This leads to the
reduced variance of the grey shades along the ordinate in the ST
plots between 5 and 10 ms as zero time corresponds to the elec-
trical stimulus. The line width of the average in the lower panel
is the SEM of the individual values in the ST plot (outliers ex-
cluded).

The ST plot for SEF1wb shows a thin vertical line at 20 ms,
leading to a narrow peak in the average indicated by the dotted
vertical line. This response, labeled SEF1wb20, is, in the TDD
analysis, the equivalent of the N20m of the conventional av-
erage. Later and much broader responses can be seen both in
the ST plot and the average at 30, 70, and 170 ms.

In contrast to that, SEF2wb shows no activity at 20 ms, as
can be seen best in the average, where the dotted vertical line is
plotted again at 20 ms. This component is related to the stim-
ulus artifact at 0 ms and activity at 30 ms. Component SEF3wb
represents a slow up and down sequence between 20 and 250
ms and is clearly stimulus related. The average amplitude of
SEF2wb and SEF3wb is only a fraction of the amplitude of
SEF1wb (note the adjusted scales for the averages only). Inspec-
tion reveals that the absolute SEM values of the three compo-
nents displayed are in the range of 6–10 fT, which suggests a
similar variability for all components. Calculating the kurtosis
for each time instance gave consistently positive kurtosis values
for SEF2wb and SEF3wb, i.e., their amplitude distribution has
non-Gaussian wings. The difference between a Gaussian and
non-Gaussian distribution leads to the clear response picture
in the ST plot for SEF1wb and the rather blurred images for
SEF2wb and SEF3wb.

The spectra of components SEF2wb and SEF3wb in Fig. 2
show a peak at 3 Hz, which is not suprising as the averages of
both components in Fig. 3 contain prominent slow stimulus-re-
lated activity. The multitude of harmonics of 3 Hz in the spec-
trum of SEF1wb is directly reflected in the small width of the
SEF1wb20 peak in Fig. 3.

The ST plots and averages in Fig. 3 show that several TDD
components carry stimulus-related activity, i.e., at least a three-
dimensional (3-D) stimulus related signal space was found. This
is in agreement with [32], where several cortical areas were
found, contributing to the typical measured sequence of N20m,
P35m, P60m, and later responses.

C. TDD Component Trend Analysis

In Fig. 3, only 300 of the 12 000 recorded epochs are dis-
played, and the physiologically interesting question arises
whether the responses observed are stable over the full set of
epochs. As an example, a trend analysis is shown in Fig. 4 for
two groups of 500 epochs from component SEF1wb chosen
from the beginning and the end of the experiment (note the
reduced time axis compared to Fig. 3). The averages over the
two ST plots in Fig. 4(a) are shown in (b) (solid line: epoch
1000–1500, dotted line: epoch 10500–11 000), together with
their SEM. The SEF1wb20 response introduced in the previous
section is almost identical in the averages in Fig. 4(b) for both
groups of epochs, but a large difference is observed between
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Fig. 4. Trend analysis for component SEF1wb. (a) ST plots of two groups of
500 individual stimulation epochs chosen as indicated. (b) Respective averages
(solid line: epoch 1000–1500, dotted line: epoch 10 500–11 000) together with
their SEM (small error bars).

30 and 60 ms for the two groups. This difference is clearly
visible in the ST plots in Fig. 4(a) and the averages in (b),
and it is highly significant, as can be easily estimated using a
standard t-test: At 45 ms, the difference of the averages in
(b) is 100 fT, SEM 10 fT, and number of epochs 300,
then a significance of better than 99.99% results. In contrast
to that, the difference of 10 fT in the SEF1wb20 response
of both groups is not even close to significance. Changes in
the attentional focus or habituation effects might explain the
observed effect between 30 and 60 ms. Note that the calculation
of a significance level for a difference between subaverages is
not possible using the standard method of averaging.

V. RESULTS FOR HP DATA

A. Selected HP-TDD Components

In Fig. 5, two selected TDD components calculated from the
HP data are shown. In the time series (lower right trace) of
SEF1hp, evenly spaced peaks are visible above the noise level.
The spacing is about 330 ms, as can be seen best between the
second 2 and 3. These peaks are interpreted as the individual
responses at 20 ms after the stimulation, as will be discussed in
Section V-B. The angle defined in Section IV-A between the
map of SEF1hp and the map of the averaged signal at 20 ms in

Fig. 5. Selected TDD components calculated from the HP raw data. The layout
of the figure is the same as in Fig. 2. Component SEF1hp is evidently related
to the stimulation as its map is similar to the map at 20 ms in Fig. 1(b), and
its spectrum contains the harmonics of the 3 Hz stimulation frequency. The
stimulus artifact leads to component STIMhp exhibiting harmonics of 3 Hz in
its spectrum, which extend beyond the displayed range.

Fig. 1(b) is . This supports additionally that component
SEF1hp is related to the medianus stimulation. The dipolar field
pattern of SEF1hp again suggests a cortical origin.

As already discussed in Section IV-A, the component
STIMhp in Fig. 5 is due to the stimulus artifact. Close inspec-
tion reveals that it has peaks in its time series just before the
response peaks in the time series of SEF1hp. This delay can be
seen at 2 s in Fig. 5. The map of STIMhp is very irregular,
which is typical of a technical artifact signal.

B. Single-Response Statistics

The WB data discussed in Section IV have already shown that
at 20 ms, a clear stimulus-induced response can be observed
in the TDD components without averaging (see Fig. 3). The
single trial response is even more stable in the HP data, as can
be seen from the ST plots over 100 consecutive epochs in Fig. 6,
which gives a comparison between the results from conventional
methods of signal processing in Fig. 6(a) to the TDD result in
(b).

To obtain the result in Fig. 6(a), the HP data were notch fil-
tered at the harmonics of 50 Hz, i.e., Hz, followed
by a projection, as given in (5), Section II-B. To isolate the
response at 20 ms, it was a natural choice to use only the av-
erage map at 20 ms of the HP data in Fig. 1(b) as the projection
pattern for . The ST plot for the time series resulting from

is shown in the upper panel in Fig. 6(a). The stimulus arti-
fact is observed at 0 ms and a clear response at 20 ms, which
is labeled PRhp20. The average over the set of individual re-
sponses is given in the lower panel of Fig. 6(a), together with
the SEM (error bars line width). The SEM for the average of
component SEF1hp in Fig. 6(b) is almost too small to display,
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Fig. 6. (a) ST plot and average of a time series obtained by projection and
notch filtering (s. text). (b) ST plot and average of component SEF1hp. The
ST plots and the averages show a sharp response at 20 ms, which are labeled
PR1hp20 and SEF1hp20, respectively. The response at 20 ms is clearer in the
ST plot for SEF1hp in (b), corresponding to the lower SEM in the average (error
bars = line width).

and the SEM is clearly smaller than in the projection. The stim-
ulus artifact at 0 ms is nearly invisible in the ST plot of the TDD
component in Fig. 6(b), showing the superior signal separation
capabilities of the TDD-ICA compared with the projection.

The responses at 16 ms in Fig. 6(a) and (b) can be either
artifactual filter rebound or might be due to early signals from
the cerebellum [27]. Only signals at later times are discussed
here, and with the knowledge of the WB data, the PRhp20 and
SEF1hp20 responses can be safely attributed to a physiological
process.

The ST plot of SEF1hp20 in Fig. 6(b) seems to show a
positive response in each epoch at 20 ms. To investigate this
quantitatively, the amplitude distributions of the PRhp20 and
SEF1hp20 responses were calculated for all 12 000 stimula-
tions of the experiment. Fig. 7 shows these distributions for

Fig. 7. Amplitude distributions of the PRhp20 (dotted line) and SEF1hp20
(dash dotted line) responses for all 12 000 stimulations measured. The
distribution is clearly narrower for the SEF1hp20 response, as quantified by
the fitted Gaussian functions (solid lines). The sum of detectable responses is
defined by the area under the distribution for fields above the average baseline
RMS. With this measure, 97% of the responses are detectable for SEF1hp20
and 91% for PRhp20.

the sample point at 20 ms using a bin width of 5 fT. The
distribution for the SEF1hp20 response (dash dotted line) is
clearly narrower compared with the distribution for the PRhp20
response (dotted line). The distributions can be approximated
by a Gaussian, as can be seen from the solid lines, which are
least-squares fits, resulting in the parameters given in the figure.
As the data at 20 ms in Fig. 6 are contained in the distributions
in Fig. 7, the means of the distributions are similar to the
averages at 20 ms in Fig. 6.

To give a quantitative assessment, whether each individual
stimulation leads to a response, a threshold was defined as the
average RMS value of the projection and SEF1hp time series
in the baseline interval between 5 and 10 ms. These thresholds
are given in Fig. 7 by the vertical lines. All responses below this
threshold, i.e., to the left of the respective vertical lines in Fig. 7,
will be defined as nondetectable. The number of nondetectable
responses is found to be 1067 for the PRhp20 and only 317
for the SEF1hp20 response, which are about 8.9% and 2.6%,
respectively, of the total number of stimulations. This shows that
97% of the stimulations lead to a response above base line noise
level at 20 ms in the TDD component SEF1hp and 91% using
the conventional projection method.

VI. CONCLUSION

Applying the TDD algorithm to MEG data measured under
electrical stimulation of the medianus nerve, we were able to
isolate individual signal peaks occurring typically 20 ms after
the stimulation. This can be seen in the ST plots in Figs. 3 and
4 and best in Fig. 6. The typical field patterns from the con-
ventionally averaged data in Fig. 1 are very similar to the TDD
components in Figs. 2 and 5, as the angle between TDD com-
ponent and average pattern is for the WB and
for the HP data. Therefore, it can be concluded that the TDD
components containing the individual signal peaks and the av-
erage reflect the same underlying brain responses. The variation
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in the ST plots in Fig. 3, together with the SEM of the respective
averages, showed that the SEM alone is not a good quantity to
characterize the statistical properties of the TDD components.

The trend analysis in Fig. 4 can be compared with the results
for similar experimental data obtained using a maximum like-
lihood estimator in [11] and a single channel ST plot in [31].
A continuous trend analysis is performed in [11] for early re-
sponses between 20 and 35 ms and later responses starting at 30
ms. The early responses show trends in both directions for the
nine subjects studied, and the later responses show a decrease.
The result in Fig. 4 differentiates between 20 and 30 ms with
no change at 20 ms and a decrease in strength at 30 ms, which
agrees with the result in [11]. The similarity between the re-
sults in [11] and the present work shows the validity of both
approaches. In [31], a decrease of activity is found between 50
and 100 ms, although no statistical analysis is presented. We
see a significant decrease at even earlier times in Fig. 4, which
is probably due to the better signal quality of the TDD compo-
nent and is evident by comparing our SEF1wb20 response with
the response in the single-channel ST plot at 20 ms in [31].

Early somatosensory response peaks due to tactile stimuli
were detected using TDD in [17]. A peak width of 20–40 ms
was found, and the peak latency of the single trials varied within
50 ms. The responses due to electrical stimulation found in our
work are rather different as they have a width 5 at 20 ms and
show an onset variation of only a few milliseconds, as can be
estimated from Figs. 4 and 6.

The ST plots in Fig. 6 and the statistical analysis in Fig. 7
show that for the subject displayed here, 97% of the stimula-
tions lead to a measurable cortical response at 20 ms. This re-
sult is not trivial, as only the application of the highpass filtering
and TDD-ICA allowed us to reach such a high percentage of
measurable responses. Our findings are experimental support
for the postulate that variability is minimal at the early stages
of cortical sensory processing [33]. The question requires fur-
ther study as other works using single trial methods find more
variability in the early stages of somatosensory [10], [11] and vi-
sual processing [34], although again, small variability is found
for auditory processing [35].
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