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This article presents an agent-based computational model of civil
violence. Two variants of the civil violence model are presented. In
the first a central authority seeks to suppress decentralized rebel-
lion. In the second a central authority seeks to suppress communal
violence between two warring ethnic groups.

This article presents an agent-based computational model of
civil violence. For an introduction to the agent-based mod-

eling technique, see Epstein and Axtell (1). I present two variants
of the civil violence model. In the first a central authority seeks
to suppress decentralized rebellion. Where I use the term
“revolution,” I do so advisedly, recognizing that no political or
social order is represented in the model. Perforce, neither is the
overthrow of an existing order, the latter being widely seen as
definitive of revolutions properly speaking. The dynamics of
decentralized upheaval, rather than its political substance, is the
focus here.‡ In the second model a central authority seeks to
suppress communal violence between two warring ethnic groups.
And, as in model I, I am interested in generating certain
characteristic phenomena and core dynamics; I do not purport
to reconstruct any particular case in detail, although, as dis-
cussed in Epstein et al. (6), that is an obvious long-term objective.

Civil Violence Model I: Generalized Rebellion Against Central
Authority
This model involves two categories of actors. ‘‘Agents’’ are
members of the general population and may be actively rebel-
lious or not. ‘‘Cops’’ are the forces of the central authority, who
seek out and arrest actively rebellious agents. Let me describe the
agents first. As in all agent-based models, they are heteroge-
neous in a number of respects. The attributes and behavioral
rules of the agents are as follows.

The Agent Specification. First, in any model of rebellion there must
be some representation of political grievance. My treatment of
grievance will be extremely simple and will involve only two
highly idealized components, which, for lack of better terminol-
ogy, will be called hardship (H) and legitimacy (L). Their
definitions are as follows:

H is the agent’s perceived hardship (i.e., physical or economic
privation). In the current model, this is exogenous. It is assumed
to be heterogeneous across agents. Lacking further data, each
individual’s value is simply drawn from U(0,1), the uniform
distribution on the interval (0,1). Of course, perceived hardship
alone does not a revolution make. As noted in the Russian
revolutionary journal, Narodnaya Volya, ‘‘No village ever re-
volted merely because it was hungry’’ [quoted in Kuran (7) and
deNardo (8)]. Another crucial factor is:

L, the perceived legitimacy of the regime, or central authority.
In the current model, this is exogenous and is equal across agents,
and in the runs discussed below, will be varied over its arbitrarily
defined range of 0 to 1.

The level of grievance any agent feels toward the regime is

assumed to be based on these variables. Of the many functional
relationships one might posit, we will assume:

G � H�1 � L�.

Grievance is the product of perceived hardship (H) and per-
ceived ‘‘illegitimacy,’’ if you will (1 � L).§ The intuition behind
this functional form is simple. If legitimacy is high, then hardship
does not induce political grievance. For example, the British
government enjoyed unchallenged legitimacy (L � 1) during
World War II. Hence, the extreme hardship produced by the
blitz of London did not produce grievance toward the govern-
ment. By the same token, if people are suffering (high H), then
the revelation of government corruption (low L) may be ex-
pected to produce increased levels of grievance.

Of course, the decision to rebel depends on more than one’s
grievance. For example, some agents are simply more inclined to
take risks than others. Accordingly, I define R as the agent’s level
of risk aversion. Heterogeneous across agents, this (like H) is
assumed to be uniformly distributed. Each individual’s level is
drawn from U(0,1) and is fixed for the agent’s lifetime.

All but the literally risk neutral will estimate the likelihood of
arrest before actively joining a rebellion. This estimate is as-
sumed to increase with the ratio of cops to already rebellious—
so-called ‘‘active’’—agents within the prospective rebel’s vision.
To model this, I define v as the agent’s vision. This is the number
of lattice positions (north, south, east, and west of the agent’s
current position) that the agent is able to inspect. It is exogenous
and equal across agents. As in most agent-based models, vision
is limited; information is local. Letting (C�A)v denote the
cop-to-active ratio within vision v, I assume the agent’s estimated
arrest probability P to be given by

P � 1 � exp� � k(C�A)v].

The constant k is set to ensure a plausible estimate (of P � 0.9)
when C � 1 and A � 1. Notice that A is always at least 1, because
the agent always counts himself as active when computing P. He is
asking, ‘‘How likely am I to be arrested if I go active?’’ Again, the
intuition behind this functional form is very simple. Imagine being
a deeply aggrieved agent considering throwing a rock through a
bank window. If there are 10 cops at the bank window, you are much
more likely to be arrested if you are the first to throw a rock (C�A �
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10) than if you show up when there are already 29 rock-throwing
agents (C�A � 1�3). For a fixed level of cops, the agent’s estimated
arrest probability falls the more actives there are. This simple idea
will play an important role in the analysis.

Clearly, in considering whether or not to rebel, a risk-neutral
agent won’t care what the estimated arrest probability is, whereas
a risk-averse agent will. It will therefore prove useful to define
N � RP, the agent’s net risk—the product of his risk aversion and
estimated arrest probability. [This can be considered the special,
� �0, case of N � RPJ�, where J is the jail term, as discussed
in Epstein et al. (6).] These ingredients in hand, the agent’s
behavioral rule is summarized in Table 1.

If, for an agent in state Q, the difference G � N exceeds some
non-negative threshold T, which could be zero, then that qui-
escent agent goes active. Otherwise, he stays quiescent. If, for an
agent in state A, the difference exceeds T, then that active agent
stays active. Otherwise, he goes quiescent. In summary, the
agent’s simple local rule is:

Agent rule A: If G � N � T be active; otherwise, be quiet .

This completes the agent specification.
Bounded rationality. It is natural to interpret this rule as stipu-

lating that the agent take whichever binary action (active or
quiescent) maximizes expected utility where, in the spirit of Kuran
(7), G � N is the expected utility of publicly expressing one’s private
grievance, and T is the expected utility of not expressing it (i.e., of
preference falsification, in Kuran’s terminology). Typically, T is set
at some small positive value. Notice, however, that if it takes
negative values, like �G (i.e., the frustration level associated with
preference falsification equals the grievance level itself), agents may
find it rational to rebel knowing that they will suffer negative utility.
It’s simply worse to ‘‘sit and take it anymore.’’ Agents weigh
expected costs and benefits, but they are not hyperrational. One
might say [with all due respect to Olsen (10)] that individual
rationality is ‘‘local’’ also, in the sense that the agent’s expected
utility calculation excludes any estimate of how his isolated act of
rebellion may affect the social order. Notice, very importantly, that
deterrence is local in this model and depends on the local (indi-
vidually visible)—not the global—ratio of cops to actives, which is
highly dynamic in this spatial model with movement.

The Cop Specification. The cops are much simpler than prospective
rebels. Their attributes are as follows:

v*, the cop vision, is the number of lattice positions (north, south,
east, and west of the cop’s current position) that the cop is able to
inspect. It is exogenous and equal across cops. The cops’ v* need not
equal the agents’ v, but will typically be small relative to the lattice
size: cop vision is local also. The cops, like the other agents, have
one simple rule of behavior:

Cop rule C: Inspect all sites within v* and arrest a
random active agent .

Cops never defect to the revolution in this model.

Movement and Jail Terms. Although the range of motion will vary
depending on the numerical values selected for v and v*, the syntax
of the movement rule is the same for both agents and cops:

Movement rule M: Move to a random site within your vision.

Although the range of vision (v) is fixed, agent information (the
number of cops and actives they see) is heterogeneous because
of movement.

Regarding jail terms for arrested actives, these are exogenous
and set by the user. Specifically, the user selects a value for the
maximum jail term, J�max. Then, any arrested active is assigned
a jail term drawn randomly from U(0,J�max). J�max will affect
the dynamics in important ways by removing actives from
circulation for various durations. However, for the present
version of the model with alpha implicitly set to zero (see remark
above), there is no deterrent effect of increasing the jail term.
Setting alpha to a positive value would produce a deterrent
effect. In addition to having no deterrent effect, it is assumed
that agents leave jail exactly as aggrieved as when they entered.

Measurement. It is important to state forthrightly that I make
no pretense to measuring model variables such as perceived
hardship (9) or legitimacy. The immediate question is whether
this highly idealized model is sufficient to generate recognizable
macroscopic revolutionary dynamics of fundamental interest. If
not, then issues of measurement are moot. So, the first issue is
whether the model produces interesting output. In addition to
data generated by the model, run-time visualization of output is
very useful. My graphical strategy is as follows.

Graphics. Events transpire on a lattice. Agents and cops move
around this space and interact. I am interested in the dynamics
of grievance and—quite separately—in the dynamics of revolu-
tionary action. The point of separating these private and public
spheres is to permit illustration of a core point in all research on
this topic: public order may prevail despite tremendous private
opposition to—feelings of grievance toward—a regime. Given
this important distinction between private grievance and public
action, two screens are shown (see Fig. 1).

On the right screen, agents are colored by their private level
of grievance. The darker the red, the higher the level of
grievance. On the left screen, agents are colored by their public
action: blue if quiescent; red if active. Cops are colored black on
both screens. Simply to reduce visual clutter, all agents and cops
are represented as circles on the left screen and squares on the
right. Unoccupied sites are sand-colored on both screens.

Runs. To begin each run of the model, the user sets L, J, v, v*,
and the initial cop and agent densities. To ensure replicability of
the results, input assumptions for all runs are provided in Table
2. Agents are assigned random values for H and R, and cops and
(initially) quiescent agents are situated in random positions on
the lattice. The model then simply spins forward under the rule
set: {A, C, M}. An agent or cop is selected at random (asyn-
chronous activation) and, under rule M, moves to a random site
within his vision, where he acts in accord with rule C (if a cop)
or A (if an agent). The model simply iterates this procedure until
the user quits or some stipulated state is attained. What can one
generate in this extremely simple model?

Fig. 1. Action and grievance screens.

Table 1. Agent state transition

State (G � N) State transition

Q �T QfA
Q �T QfQ
A �T AfA
A �T AfQ
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Individual Deceptive Behavior. Despite their manifest simplicity,
the agents exhibit unexpected deceptive behavior: privately
aggrieved agents turn blue (as if they were nonrebellious) when
cops are near, but then turn red (actively rebellious) when cops
move away. They are reminiscent of Mao’s directive that revo-
lutionaries should ‘‘swim like fish in the sea,’’ making themselves
indistinguishable from the surrounding population. Ex post facto,
the behavior is easily understood: the cop’s departure reduces
the C�A ratio within the agent’s vision, reducing his estimated
arrest probability, and with it his net risk, N, all of which pushes
G � N over the agent’s activation threshold, and he turns red. But
it was not anticipated. Moreover, it would probably not have
been detected without a spatial visualization (see ref. 6); indi-
vidual deception would not be evident in a time series of total
rebels, for example.

Free Assembly Catalyzes Rebellious Outbursts. With both agents and
cops in random motion, it may happen that high concentrations
of actives arise endogenously in zones of low cop density. This
can depress local C�A ratios to such low levels that even the
mildly aggrieved find it rational to join. This catalytic mechanism
is illustrated in Fig. 2.¶

Random spatial correlations of activists catalyze local outbursts.
This is why freedom of assembly is the first casualty of repressive
regimes. Relatedly, it is also the rationale for curfews. The mech-
anism is that local activist concentrations reduce local C�A (cop-
to-active) ratios, reducing (via the equation for P above) the risk of
joining the rebellion. To be the first rioter, one must be either very
angry or very risk-neutral, or both. But to be the 4,000th—if the
mob is already big, relative to the cops—the level of grievance and
risk-taking required to join the riot is far lower. This is how, as Mao
Tse Tung liked to say, ‘‘a single spark can cause a prairie fire’’
(quoted in ref. 7). Coincidentally, the Bolshevik newspaper founded
by Lenin was called Iskra, the spark! The Russian revolution itself
provides a beautiful example of the chance spatial correlation of
aggrieved agents. As Kuran (7) recounts, ‘‘On February 23, the day
before the uprising, many residents of Petrograd were standing in
food queues, because of rumors that food was in short supply.
Twenty thousand workers were in the streets after being locked out
of a large industrial complex. Hundreds of off-duty soldiers were
outdoors looking for distraction. And, as the day went on, multi-
tudes of women workers left their factories early to march in
celebration of Women’s Day. The combined crowd quickly turned
into a self-reinforcing mob. It managed to topple the Romanov
dynasty within 4 days.’’ A random coalescence of aggrieved agents
depresses the local C�A ratio, quickly emboldening all present to
openly express their discontent.

A time series of total rebels is also revealing. It displays one

of the hallmarks (12) of complex systems: punctuated equilib-
rium (Fig. 3). Long periods of relative stability are punctuated
by outbursts of rebellious activity. And indeed, many major
revolutions (e.g., East German) are episodic in fact.

The same qualitative pattern of behavior—punctuated equi-
librium—persists indefinitely, as shown in Fig. 4, which plots the
data over some 20,000 iterations of the model.

Waiting time distribution. Is there any underlying regularity to
these complex dynamics? For many complex systems, it turns out
to be of considerable interest to study the distribution of waiting
times between outbursts above some threshold. In this analysis,
we set the threshold at 50 actives. An outburst begins when the
number of actives exceeds 50 and ends when it falls below 50. I
am interested in the time between the end of one outburst and
the start of the next. Sometimes, one must wait a long time (e.g.,
100 periods) until the next outburst. Sometimes, the next out-
burst is nearly immediate (e.g., a gap of only two periods). The
frequency distribution of these inter-outburst waiting times, for
100,000 iterations of the model, is shown in Fig. 5.

In the complexity literature, one often encounters the notion
of an ‘‘emergent phenomenon.’’ I have argued elsewhere (13)
that substantial confusion surrounds this term. However, if one
defines emergent phenomena simply as ‘‘macroscopic regulari-
ties arising from the purely local interaction of the agents’’ (1),
then this waiting time distribution surely qualifies. It was entirely
unexpected and would have been quite hard to predict from the
underlying rules of agent behavior. For instance, Fig. 5 suggests
a Weibull or perhaps Lognormal distribution. Although rigorous

¶All animations screen-captured in this article (Figs. 2 and 13) can be viewed in full as
QuickTime movies on the CD to be published with ref. 11. Fig. 2. Local outbursts.

Table 2. Input assumptions for runs

Model one Model two

Run 1 Run 2 Runs 3 & 4 Run 5 Run 6 Run 7 Run 8

Variable name
Cop vision 1.7 7 7 7 1.7 1.7 1.7
Agent vision 1.7 7 7 7 1.7 1.7 1.7
Legitimacy 0.89 0.82 0.9 0.8 0.9 0.8 0.8
Max. jail term 15 30 Infinite Infinite 15 15 15
Movement None Random site

in vision
Random site

in vision
Random site

in vision
Random site

in vision
Random site

in vision
Random site

in vision
Initial cop density 0.04 0.04 0.074 0.074 0 0 0.04

All models: lattice dimensions (40�40); topology (torus); cloning probability (0.05); arrest probability constant, k (2.3); max. age (200); agent “active”
threshold, for G-N (0.1); initial pop. density (0.7); agent updating (asynchronous); agent activation (once per period, random order). Departures noted in text.
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identification is a suitable topic for future research, these data
are clearly not uniformly distributed. But all distributions used
in defining the agent population—the distribution of hardship
and risk aversion—are uniform. In a uniform waiting time
distribution, one is just as likely to wait 100 cycles as 50; that is
not the case in my model, at least for these parameters. The mean
of these data—the average duration between outbursts—is 60.
(The SD is 55.) Clearly, most of the probability density is
concentrated around this value: this means that one is much
more likely to see successive outbursts within 60 cycles than
within 100.

If one is willing to truncate this distribution—throwing out the
most high-frequency events (waiting times less than 30 cycles),
the remaining distribution is well fit by the negative exponential.
In particular, the logged (truncated) data are shown in Fig. 6.

Ordinary least-squares regression yields an R-squared of 0.98
with slope �0.07 and intercept 3.5. The negative exponential
distribution is ubiquitous in the analysis of failure rates—the
rates at which electrical and mechanical systems break down. It
would be interesting if ‘‘social breakdowns’’ followed a similar
distribution. Another obvious issue is the sensitivity of this
distribution to variations in key parameters. For example, how
would an increase in the jail term deform the distribution? One
might conjecture that, by removing rebellious agents from
circulation for a longer period, increasing the jail term would
‘‘f latten’’ the distribution and raise its mean. All of these issues
could be fruitfully explored in the future. For the moment, the
core point is that a powerful statistical regularity underlies the
model’s punctuated equilibrium dynamics.

Outburst size distribution. A second natural statistical topic is
the size distribution of rebellious outbursts. To study this, I use
the same parameterization as above and adopt the same thresh-
old: 50 actives. But there are numerous ways to measure outburst
size for statistical purposes. For example, imagine a flare-up
lasting 5 days with the following number of actives per day: 60,

100, 120, 95, and 80. This outburst has a peak active level of 120.
It has average (daily) activation of 100 and total activation (the
sum) of 500. The size distribution of outbursts using the total
activation measure is shown in Fig. 7.

The mean and SD are, respectively, 708 and 230. The distribu-
tions using the peak and average data are qualitatively similar. As
in the case of the waiting time distribution, one could conduct
further analysis to identify the best fit to Fig. 7. The point to
emphasize here is not which distribution is best, but that some
macroscopic regularity emerges. A strength of agent models is that
they generate a wealth of data amenable to statistical treatment.

A ripeness index. Turning to another topic, we often speak of a
society as being ‘‘ripe for revolution.’’ In using this terminology, I
have in mind a high level of tension or private frustration. Does the
present model allow me to quantify this in an illuminating way? As
a first cut, I noted earlier that society can be bright red on the right
screen (indicating a high level of grievance) while being entirely
blue on the left (indicating that no one is expressing, or ‘‘venting,’’
their grievance). So, if this combination of high average grievance
G� on the right and high frequency of blues B� on the left were the
best indicator of high tension, a reasonable ‘‘ripeness’’ index would
be simply their product: G� B� . This, however, ignores the crucial
question, why are agents blue? If they are inactive simply because
they are risk averse and have no inclination to go active, then they
are not truly frustrated in the inactive blue state. So, for fixed G� and
B� a good tension index should increase as average risk aversion falls
(more agents want to act out, but are nonetheless staying blue).
Hence, a better simple measure is: G� B� �R� , where R� is average risk
aversion. In Fig. 8, I plot this against a curve of actives designed to
exhibit high volatility. It is clear that a buildup of tension precedes
each outburst and might be the basis of a warning indicator.

I turn now to a comparison of two runs involving reductions

Fig. 3. Punctuated equilibrium.

Fig. 4. Punctuated equilibrium persists.

Fig. 5. Waiting time distribution.

Fig. 6. Logged data (truncated).
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in legitimacy.� Both runs begin with legitimacy at a high level. In
the first, I execute a large absolute reduction (from L � 0.9 to
L � 0.2) in legitimacy, but in small increments (of a percent per
cycle). In the second, I reduce it far less in absolute terms (from
L � 0.9 to L � 0.7), but do so in one jump. Which produces the
more volatile social dynamics, and why?

Salami Tactics of Corruption. Fig. 9 shows the results when I reduce
legitimacy in small increments. It displays three curves. The
downward sloping upper curve plots the steady incremental
decline in legitimacy over time. (To make these graphs clear, I
actually plot 1,000 L.) The horizontal red curve just above the
time axis shows the number of actives in each time period. Even
though legitimacy declines to zero, there is no red spike, no
explosion, because—as discussed earlier—each new active is
being picked off in isolation, before he can catalyze a wider
rebellion. And this is why the middle curve—representing the
total jailed population—rises smoothly over time.

The same variables are plotted in Fig. 10. However, the
scenario is different. I hold legitimacy at its initially high level (of
0.90) for 77 periods. Then, in one jump, I reduce it to 0.70, where
it stays. The upper legitimacy curve is a step function. Even
though the absolute legitimacy reduction (of 0.30) is far smaller
than before, there is an explosion of actives, shown by the red
spike. And, in turn, there is a sharp rise in the jailed population,
whose absolute size exceeds that of the previous run.

Now, why the difference? In the incremental legitimacy
reduction scenario, the potentially catalytic agents at the tail of
the grievance distribution are being picked off in isolation,
before they can stimulate a local contagion. The sparks, as it
were, are doused before the fire can take off. In the second—
one-shot reduction—case, even though the absolute legitimacy
decline is far smaller, multiple highly aggrieved agents go active
at once. And by the same mechanism as discussed earlier, this
depresses local C�A ratios enough that less aggrieved agents
jump in. Hence, the rebellious episode is greater, even though
the absolute legitimacy reduction is smaller. It is the rate of
change—the derivative—of legitimacy that emerges as salient.

This result would appear to have important implications for the
tactics of revolutionary leadership. Rather than chip away at the
regime’s legitimacy over a long period with daily exposés of petty
corruption, it is far more effective to be silent for long periods and
accumulate one punchy exposé. Indeed, the single punch need not
be as ‘‘weighty,’’ if you will, as the ‘‘sum’’ of the daily particulars.
(The one-shot legitimacy reduction need not be as great as the sum
of all of the incremental deltas.) Perhaps this is why Mao would
regularly seclude himself in the mountains in preparation for a
dramatic reappearance, and why the return of exiled revolutionary

leaders—like Lenin and Khomeini—are attended with such trep-
idation by authorities. Perhaps this is also why dramatic ‘‘triggering
events’’ (e.g., assassinations) loom so large in the literature on this
topic; often, they are instances in which the legitimacy of the regime
suddenly takes a dive. By the same token, the earlier run (incre-
mental legitimacy reductions) explains the counterrevolutionary
value of agent provocateurs: they incite the most aggrieved agents
to go active prematurely, allowing them to be arrested before they
can catalyze the wider rebellion.** While often sufficient, sharp
legitimacy reductions are not the only inflammatory mechanism.

Cop Reductions. Indeed, ‘‘it is not always when things are going from
bad to worse that revolutions break out,’’ wrote de Tocqueville (14).
‘‘On the contrary, it oftener happens that when a people that has
put up with an oppressive rule over a long period without protest
suddenly finds the government relaxing its pressure, it takes up arms
against it.’’ According to Kuran (7), in the cases of the French,
Russian, and Iranian revolutions, ‘‘substantial numbers of people
were privately opposed to the regime. At the same time, the regime
appeared strong, which ensured that public opposition was, in fact,
unalarming. What, then, happened to break the appearance of the
invincibility of the regime and to start a revolutionary bandwagon
rolling? In the cases of France and Iran, the answer seems to lie, in
large measure, in a lessening of government oppression.’’ Indeed,
de Tocqueville wrote that ‘‘liberalization is the most difficult of
political arts.’’ Here I interpret liberalization as cop reductions.
Beginning at a high level, I walk the level of cops down. Fig. 11
shows the typical result.

Unlike the case of incremental legitimacy reductions above
(salami tactics), there comes a point at which a marginal reduction
in central authority does ‘‘tip’’ society into rebellion. The dynamics
under reductions in repressive potential (cops) are fundamentally
different from the dynamics under legitimacy reduction in this

�I thank Miles T. Parker for this comparison.

**I thank Robert Axelrod for this point.

Fig. 7. Total activation distribution.

Fig. 8. Tension (blue) and actives (red).

Fig. 9. Large legitimacy reduction in small increments.
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model—and perhaps in societies. Because both types of reduction
are emboldening to revolutionaries, one might have imagined that
reductions in the regime’s repressive power—the cop level—would
produce dynamics equivalent to those under legitimacy reduction.
As we see, however, the dynamics are fundamentally different.

Stylized Facts Generated in Model I. Although model I is exploratory
and preliminary, it does produce noteworthy phenomena with some
qualitative fidelity and therefore seems, at the very least, promising.
It showed, first, the unexpected emergence of individually deceptive
behavior, in which privately aggrieved agents hide their feelings
when cops are near, but engage in openly rebellious activity when
the cops move away. In general, the model naturally represents
political ‘‘tipping points’’—revolutionary situations in which the
screen is blue on the left (all agents quiescent) but red on the right.
Surface stability prevails despite deep and widespread hostility to
the regime. When pushed beyond these tipping points, the model
produces endogenous outbursts of violence and punctuated equi-
libria characteristic of many complex systems. For some parameter
settings, the size distribution of rebellious outbursts and the distri-
bution of waiting times between outbursts exhibit remarkable
regularities. The model explains standard repressive tactics like
restrictions on freedom of assembly and the imposition of curfews.
Such policies function to prevent the random spatial clustering of
highly aggrieved risk-takers, whose activation reduces the local
cop-to-active ratio, permitting other less aggrieved and more timid
agents to join in. This same catalytic dynamic underlies the intrigu-
ing ‘‘salami tactic’’ result: Legitimacy can fall much farther incre-
mentally than it can in one jump, without stimulating large-scale
rebellion. The reason is that, in the former (salami) case, the tails
of the radical distribution—the sparks—are being picked off before
they can catalyze joining by the less aggrieved, and this had
implications for both revolutionary and counterrevolutionary tac-
tics. The model bears out de Tocqueville’s famous adage that
‘‘liberalization is the most difficult of political arts,’’ showing that
(quite unlike legitimacy reductions) incremental reductions in
repressive potential (cops) can produce large-scale tipping events.

It should be added that the individual-level specification is quite
minimal, imposing bounded demands on the agent’s (and cops)
information and computing capacity, while still insisting that the
agent crudely weigh expected benefits against expected costs in
deciding how to act. Agents are boundedly rational and locally
interacting; yet interesting macroscopic phenomena emerge.

As noted at the outset, the model seems most promising for
cases of decentralized upheaval. Although one could argue that
certain effects of revolutionary leadership—reductions in per-
ceived legitimacy through rousing speeches or writings that
expose regime corruption—are captured, explicit leadership as

such is really not modeled. That could be a weakness in
cases—for example, the communist Chinese revolution—where
central leadership was important, although some would argue
that, even there, the main issue was not the individual leader, but
society’s ‘‘ripeness for revolution.’’ As Engels wrote, ‘‘in default
of Napoleon, another would have been found’’ (cited in ref. 7).
My tension index might be a crude measure of this ripeness.

Let me turn now to situations of interethnic violence.

Civil Violence Model II: Inter-Group Violence
Although distinct cultural groups have been generated in agent-
based computational models (1, 15), here, I will posit two ethnic
groups: blue and green. Agents are as in model I and turn red when
active. But now, ‘‘going active’’ means killing an agent of the other
ethnic group. The killing is not confined to agents of the out-group
known to have killed. It is indiscriminant. In this variant of the
model, legitimacy is interpreted to mean each group’s assessment
of the other’s right to exist, and for the moment, L is exogenous and
the same for each group. [In Epstein et al. (6), we indicate how the
model might be extended to endogenize legitimacy, allowing it to
vary over time, and to take different values for each group.] For
model II, I also introduce some simple population dynamics.
Specifically, agents clone offspring onto unoccupied neighboring
sites with probability p each period. Offspring inherit the parent’s
ethnic identity and grievance. Because there is birth, there must be
death to prevent saturation. Accordingly, agents are assigned a
random death age from U(0, max�age). Here, max�age � 200. Cops
are as before, and arrest—evenhandedly—red agents within their
vision. (This assumption of even-handedness can, of course, be
relaxed.) There is no in-group policing in this version of the model,
although Fearon and Laitin (16) argue convincingly that this may
be important in many cases.

Peaceful Coexistence. For the first run of model II, I set legitimacy
to a high number, just to check whether peaceful coexistence
prevails with no cops. Fig. 12 depicts a typical situation.

Fig. 10. Small legitimacy reduction in one jump, t � 77.
Fig. 11. Cop reductions.

Fig. 12. Peaceful coexistence.
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The left screen clearly shows spatial heterogeneity and peace-
ful mixing of groups with no red agents. On the right, only the
palest of pink shades, indicating low levels of grievance, are seen.
Harmonious diversity prevails. However, with no cops to regu-
late the competition, if L falls, even to 0.8, the picture darkens
substantially. Indeed, ethnic cleansing results.

Ethnic Cleansing. The sequence of five panels in Fig. 13 clearly
shows local episodes of ethnic cleansing, leading ultimately to the
annihilation of one group by the other: genocide.

Over a large number of runs (n � 30), genocide is always
observed. The victor is random. The phenomenon is strongly
reminiscent of ‘‘competitive exclusion’’ in population biology
(see ref. 17). When two closely related species compete in a
confined space for the same resource, one will gain an edge and
wipe the other out. If, however, the inter-species competition is
regulated by a predator that feeds evenhandedly on the com-
petitors, then both can survive. Peacekeepers are analogous to
such predators. I introduce them presently.

Safe Havens. I begin this run exactly as in the previous genocide
case. But, at t � 50, I deploy a force of peacekeepers. They go
to random unoccupied sites on the lattice. And this typically
produces safe havens. A representative result is shown in Fig. 14.

Rather than begin with no cops initially, as in the previous run,
a case with high initial cop density was also examined. Once a
stable pattern had emerged, the cops were withdrawn. Here,
with heavy authority from the start (a high cop density of 0.04),
a stable, but nasty, regime emerges. The presence of cops
prevents either side from wiping the other out, but their coex-
istence is not peaceful: ethnic hostility is widespread at all times.
When (ceteris paribus) all cops are withdrawn—the peacekeep-
ers suddenly go home—there is reversion to competitive exclu-
sion and, eventually, one side wipes out the other.

Clearly, peacekeeping forces can avert genocide. But what is the
overall relationship between the size of a peacekeeping presence
and the incidence of genocide? As an initial exploration of this
complex matter, a sensitivity analysis on cop density is conducted.

Cop Density and Extinction Times. For purposes of this analysis, all
cops are in place at time 0. But there will be random run-to-run
variations in their initial positions and, of course, in their subse-
quent movements. These initial cop densities are systematically
varied from 0.0 up to 0.1, in increments of 0.002. For each such
value, the model was run 50 times until the monochrome—
genocide—state was reached. (If it was not reached after 15,000
cycles, the run was terminated.) The data appear in Fig. 15.

There are three things to notice. First, at low force densities
(0 to 0.02), convergence to genocide is rapid. Second, the same
rapid convergence to genocide is observed at all force densities.
Third, reading vertically, at high force densities (0.08 and above),
there is high variance. One can have high effectiveness (delays
of over 15,000 cycles) or extremely low effectiveness (conver-
gence in tens of cycles). The devil would appear to be in the
details in peacekeeping operations.

As noted earlier, the model was run 50 times at each density
(with a different random seed each time). So, at each density,
there is a sample distribution of waiting times over the 50 runs.
I plot the means of these distributions at each initial density in
Fig. 16, along with the best linear fit to the same data.

On average, the larger the initial force of peacekeepers, the
more time one buys. At the same time, however, the SD is also
rising, as shown in Fig. 17. Hence, the confidence interval about
the mean is expanding. Thus, as the mean waiting time to
genocide grows, we have decreasing confidence in it as a point
estimate of the outcome, all of which is to say, perhaps, that the
peacekeeping process is highly path dependent and uncertain.
(Giving cops the capacity to communicate could affect these
results.)

This entire analysis proceeds from the assumption that all
forces are in place at time 0. The same analysis could be
conducted for different arrival schedules. At the moment, the
claim is simply that the agent-based methodology permits one to
study the effects of early and late interventions of different

Fig. 13. Local ethnic cleansing to genocide.

Fig. 14. Safe havens emerge under peacekeeping.
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scales, which is obviously crucial in deciding how to size, design,
and operate peacekeeping forces.

Summary Of Model II Results. With high legitimacy (mutual percep-
tion by each ethnic group of the other’s right to exist), peaceful
coexistence between ethnic groups is observed; no peacekeepers
are needed. However, if the force density is held at zero, and
legitimacy is reduced (to 0.8), local episodes of ethnic cleansing are
seen, leading to surrounded enclaves of victims, and ultimately to
the annihilation of one group by the other. With early intervention

on a sufficient scale, this process can be stopped. Safe havens
emerge. With high cop density from the outset, the same level of
legitimacy (0.8) produces a stable society plagued by endemic
ethnic violence. If cops are suddenly removed, there is reversion to
competitive exclusion and genocide. The statistical relationship
between initial cop densities and the waiting time to genocide was
studied. Although the mean relationship was positive, quick con-
vergence to genocide at extremely high force levels, it was shown,
is not precluded, because of the path-dependent and highly variable
dynamics of interethnic civil violence.

Conclusion
Agent-based methods offer a novel and, I believe, promising
approach to understanding the complex dynamics of decentral-
ized rebellion and interethnic civil violence, and, in turn, to
fashioning more effective and efficient policies to anticipate and
deal with them.††

††A number of model refinements and extensions are proposed in Epstein et al. (6), where
the goal of empirical calibration on the model of Dean et al. (18) is discussed.
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Fig. 15. Waiting time and initial cop density data.

Fig. 16. Waiting time mean and initial cop density.

Fig. 17. Waiting time standard deviation and initial cop density.
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