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Abstract. For individually motivated agents to work collaboratively to satisfy shared goals, they must
make decisions about actions and intentions that take into account their commitments to group activities.
This paper examines the role of social consciousness in the process of reconciling intentions to do group-
related actions with other, conflicting intentions. We operationalize the notion of social consciousness
and provide a first attempt to formally add social consciousness to a cooperative decision-making model.
We define a measure of social consciousness; describe its incorporation into the SPIRE experimental
system, a simulation environment that allows the process of intention reconciliation in team contexts to
be studied; and present results of several experiments that investigate the interaction in decision-making
of measures of group and individual good. In particular, we investigate the effect of varying levels of
social consciousness on the utility of the group and the individuals it comprises. A key finding is that an
intermediate level of social consciousness yields better results in certain circumstances than an extreme
commitment. We suggest preliminary principles for designers of collaborative agents based on the results.
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1. Introduction

In many situations, computer agents must interact with other systems and with
people to accomplish tasks, and for many applications, it is necessary to form teams
that comprise people and computer agents that work collaboratively to satisfy a
shared goal. As rational agents, individual team members must be able to make
individually rational decisions about their commitments and plans [16]. They must
also, however, be responsible to the teams in which they participate. In such settings,
agent designers need to construct computer agents that include a sense of group
commitment in their reasoning about actions and plans.
Various possibilities arise for externally influencing agents to act in the group’s

interest, including the imposition of sanctions on agents that default [19]. In this
paper, we investigate a different possible influence on decision-making, one that is
internally motivated and considers the consequences of multiple decisions within
a context in which team members may join forces repeatedly to work on group
activities. We examine the design of agents that incorporate a notion of social con-
sciousness into the ways they measure benefit and maximize individual outcome. In
informal terms, these socially conscious agents may make decisions that are locally,
individually suboptimal, because doing so engenders a society that is globally better
off, and thus optimal for them in the long term. Castelfranchi has argued for such
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social consciousness in agents [3]. After presenting the model of social conscious-
ness, we discuss the ways this notion differs from the notions of benevolence in
prior multi-agent work.
Our research aims to specify ways agent designers can create optimally socially

conscious, individually rational agents by examining the trade-off between individ-
ual, group, and total payoffs. We first describe the SPIRE (SharedPlans Intention
Reconcilation Experiments) simulation system which enables investigation of the
effectiveness of different decision-making strategies under various environmental
conditions [23]. We then provide a method for assigning a measure to social con-
sciousness in collaborative agents and define a model in which nonmonetary social
factors play a role in how agents make decisions about their intentions. We show
how this measure of social consideration can be made compatible with monetary
considerations to create agents whose level of social commitment can be altered
and studied using SPIRE.
The paper presents the results of several experiments in which the level of social

consciousness is varied, and the effect on different measures of group income is
determined. The experiments also consider environments with different densities of
tasks to be accomplished by the group. Contrary to expectations, we find under cer-
tain conditions a maximal, intermediate level of social consciousness. These exper-
iments have provided an initial foundation for future, more complex experiments
studying social consciousness in group decision-making [6]. We conclude by pro-
viding suggestions for creating agents that maximize group income subject to the
constraint of remaining individually rational.

2. Intention reconciliation

2.1. The problem

The experiments we describe in this paper extend previous work [8, 9, 17, 22, 25]
by addressing the need for collaborative agents to manage plans and intentions
in multi-agent contexts, reasoning jointly about commitments to individual plans
and commitments to group activities. Our investigation focuses on the problem of
intention reconciliation which arises because rational agents cannot adopt conflict-
ing intentions [2, 8]. If an agent has adopted an intention to do some action �, and
is presented the opportunity to do another action �, that would in some way pre-
clude its being able to do �, then the agent must decide between doing � and doing
�: it must reconcile intentions.
We will use an example from one of our application domains, Systems Adminis-

tration [10, 23] to illustrate the problem of intention reconciliation in the context of
group activities and to motivate our experiments. In this domain, teams of people
and computer systems work together to maintain a cluster of workstations. Their
overall group activity (which we will refer to as �) comprises many subtasks (�i)
including such actions as

— reading and replying to technical questions,
— upgrading hardware,
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— restoring files from backups,
— checking system security,
— maintaining printers (adding paper, toner).

The need for intention reconciliation would arise, for instance, if a human agent
who intends to perform an operating system upgrade as part of his commitment
to �, is subsequently offered an opportunity to attend a lecture by a Nobel Prize
winner at the same time. Similarly, in the case of a computer agent, the agent
could be asked to do a web search for an individual web user. Such a task is not
part of the job of a Systems Administration agent, but the agent would receive
an individual payment for completing the task. The agent must decide whether to
remain committed to the group, or to renege on its original intention in favor of
attending the lecture.
Because the agent is a member of a team, its income, and therefore its utility,

depends not just on the completion of its own subtasks, but also on the completion
of the full task, and thus, the successful completion of the subtasks of other team
members. Similarly, the utility of the other team members depends on the actions of
this agent. To reconcile intentions in a group context, an agent must have a method
of reasoning about future utility and the effect of its decisions on the group, as well
as about current utility. The agent must consider how other group members will view
its failure to honor a commitment, and must reason about future utility, considering
the costs it may incur as a result of the group’s reaction to its defaulting on a group-
related task. For instance, if the agent reneges on its task assignment, it may receive
less valuable task assignments in the future, decreasing its overall utility. The focus
of this paper is on another component of the agent’s calculations: in addition to
monetary utility from income earned, the agent may receive utility simply from
being a “good guy” and honoring its commitment to the group. Depending on the
level of social consciousness that the agent has, it may assign different weights to
this “good guy” factor in its utility calculation. As will be explained in Section 3.2,
this “good guy” utility is not just a “feel good” factor, but may ultimately, though
indirectly, affect an agent’s monetary utility.

2.2. Social-commitment policies

In interacting with one another, and particularly in working together, agents adopt,
either explicitly or implicitly, what we term social-commitment policies (SCPs) [23].
These policies govern various aspects of group behavior, including both rewards and
penalties for individual acts in the context of group activities. For instance, they may
specify such things as what defines a fair distribution of tasks among agents, the dis-
tribution of benefits from a group activity, and the penalties imposed on an agent
who defaults on its commitment to a group activity. While we could assume that
these policies are agreed on by a team when it forms, it seems more natural and
efficient to require that the community of agents embody these principles because,
in computational settings, we expect agent designers will build many agents, differ-
ent ones of which will, at different times, come together to form teams.
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Social-commitment policies are important in light of the assumption that agents,
even as team members, continue to be self-motivated; although they may consider
team utility, they are not necessarily team-utility maximizers. Therefore, there may
be tension between what is best for an individual in isolation, and what is best for
the team. By stipulating ways in which current decisions will affect both current
and future utility, social-commitment policies can influence the way agents evalu-
ate trade-offs between individual and group-oriented tasks. Thus, they provide a
mechanism for constraining individuals, so that group good plays a role in their
decision-making.
Social-commitment policies can also function in an additional way. Even though

agents are self-motivated, they may have a stake in maximizing the group utility,
because they may get a portion of their utility from the group. In such cases, a
larger group benefit means a larger share for each agent, and thus a larger individual
utility. Therefore, when facing a choice, it may be useful for an agent to consider
not only this single choice, but also the larger context of similar choices by itself and
others. While taking into account the impact on the group may appear suboptimal
by itself, everyone’s doing so when faced with similar choices may lead to optimal
outcomes for everyone in the group, a situation referred to in game theory literature
as a Prisoner’s Dilemma [1]. In such situations, if all team members opt to do what
is best for the group, even though it is individually suboptimal, then the team as a
whole will benefit, and each individual ultimately gains.
For example, in the Systems Administration domain, an individual may bene-

fit from choosing to abandon the group and attend the lecture, but if everyone
in the group made a similar choice, the group utility would suffer severely. Such
effects could occur either within a single interaction (for instance, if the whole group
defaults to attend the same lecture) or, more typically, over the long-term (different
members of the group default at different times in favor of such “outside” oppor-
tunities). In either case, ultimately, the individual’s utility would be lower, because
the group utility from which it derives part of its individual utility is lower. Such
social dilemmas have been studied among self-interested agents in computational
environments over single interactions [11]. The problem changes significantly in our
domain, where there are multiple decision points over time. We analyze this prob-
lem using methods from decision-theory so that agents can computationally reason
about larger number of agents without needing to unnecessarily simplify complex
decisions.

2.3. The SPIRE framework

The SPIRE system [23] enables manipulation of various agent properties and envi-
ronmental conditions and the examination of the effect of different decision-making
strategies under those conditions. In SPIRE, a team of agents (G1� � � � �Gn) work
together on group activities, called GroupTasks, each of which consists of doing a
set of tasks (task instances). Each task instance is of one of the types �1� � � � � �k and
occurs at one of the times T1� � � � � Tm. For example, a GroupTask in the Systems
Administration domain might consist of a week’s work (with the times Ti being
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the hours of the work week) doing various tasks �i. Some task types may have
only one instance in the week (e.g., printer maintenance); others may have multi-
ple instances (e.g., running backups). Agents receive income for the tasks they do,
and this income can be used in determining an agent’s current and future expected
utility.
A SPIRE simulation consists of a sequence of GroupTasks. To simplify the simu-

lations and the analysis, the same GroupTask is done repeatedly by the same group,
although the individual tasks within the GroupTask will not necessarily be done by
the same agent each time. SPIRE considers a given GroupTask to consist of a set
of tasks with time constraints on the tasks and capability requirements for agents
doing the tasks. To simplify the description that follows, we assume that a Group-
Task maps to a weekly task schedule. A simulation then consists of activity over a
sequence of weeks.
A weekly task schedule (WTS) is a set of pairs �taski� timei� where taski is to

be done at timei, and a weekly task schedule assignment (WTSA) is a set of triples
�taski� timei� agenti� where taski is to be done at timei by agenti. Each agent has a
set of task capabilities and a set of available times that constrain the assignment
of tasks in the WTS to produce a WTSA. An agent can only be assigned tasks for
which it has the needed capabilities and the time availability.
To model the need to reconcile intentions, a sequence of outside offers is gener-

ated. These offers correspond to actions that an agent might choose to do apart
from the GroupTask. Each outside offer � conflicts with some task � in the WTSA;
to accept an outside offer, an agent must default on one of its assigned tasks.
The central question we investigate is the ways in which different levels of social
consciousness influence the rates at which agents default, and their individual and
collective incomes, given a particular group time horizon and configuration of envi-
ronmental factors.
Each week, agents, chosen randomly, are offered opportunities to do �s that

conflicts with tasks (�) in the context of doing the overall group activity � that they
have been assigned in the WTSA. The income value of � is also chosen randomly
from a distribution with approximately the same shape as the distribution of task
values in the WTS. Using the same distribution for the choices of tasks �, and the
choices of outside offers �, allows us to vary the distribution between simulation
runs while still permitting us to maintain the comparative values of the two. To
provide an incentive to default, the distribution of outside offers is shifted, so that
it has a mean value that exceeds the mean value of the WTS tasks. If the agent
chooses the new opportunity, it defaults on the task � with which � conflicts. If
there is an agent that is available and capable of doing �, the task is given to
that agent; otherwise, � cannot be completed by the group, and therefore goes
undone.
The group as a whole incurs a cost whenever an agent defaults. In our simulations,

this cost is divided equally among the group’s members. The cost of a particular
default depends on its impact on the group. At a minimum, it equals a baseline
value that represents the cost of finding a replacement agent. If no replacement
is available, and so the task will not be done, the cost is increased by an amount
proportional to the value of the task.
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In the SPIRE system, the group’s reaction to an agent defaulting on its commit-
ment is represented by a social-commitment policy that constrains assignment of
tasks to agents, as defined in the previous section. Each week, agents are assigned
a portion of their tasks based on how responsible they have been thus far in the
simulation. Each agent has a rank that reflects the total number of times it has
defaulted, with the impact of past weeks’ defaults diminishing over time. The higher
an agent’s relative rank, the more valuable the tasks it receives. Because there is a
greater impact on the group when tasks go undone, an agent’s rank is reduced by
a larger amount if it defaults when no one can replace it.
To assign group tasks to agents, SPIRE makes use of an omniscient scheduler

that has total information about all of the agents’ ranks and history of defaults.1

It is important to note, however, that while the central scheduler has complete
information about all of the agents, the individual agent does not have access to this
knowledge. Thus, it must estimate the behavior of other agents based on publicly-
available information, as described in the next section.

3. Decision-making in SPIRE

3.1. Estimating monetary utility

In deciding whether to default on a task � and accept an outside offer �, an agent
weighs the impact of the choice on two monetary factors: current income (CI) and
future expected income (FEI).

3.1.1. Current income. CI only considers the income from the task or outside
offer in question, as well as the agent’s share of the group cost should it default.
The value of CI in the default (CIdef ) and no-default(CIno_def ) cases is thus:

CIdef ��� �� = value���−
group_cost���

n

CIno_def ��� = value����

where n is the number of agents in the group, value�x� is the payoff from completing
task x, and group_cost��� is the cost to the entire group from task � not being
completed.

3.1.2. Estimating income one week ahead. For the Future Expected Income (FEI)
calculation, an agent first needs to estimate its income in the following week, both
if it defaults on �, and if it does not. There are many factors that affect an agent’s
actual position in the rankings, including the behavior of other agents, and the offers
that the agent receives later in the same week. To model situations in which agents
have only limited information about each other, we assume that agents do not know
the ranks of other agents, nor the total number of defaults in a given week, but only
their own ranking in both the current and the previous week. Given the difficulty
of estimating an agent’s future ranking using such limited information, and the fact
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that any attempt to derive more accurate estimates from past experience runs into
game-theoretic complications, we adopted the simple approach described below.
Subsequent work explores other Social Commitment Policies which are easier for
agents to estimate, providing more accurate predictions of the effect of defaulting
on future income [24].
An agent begins its estimation by using the difference between its previous and

current weeks’ rankings to approximate the number of agents who defaulted last
week. It carries this estimate over to the current week, assuming that the same
number of agents will again default. Using this estimate, the agent creates four
equivalence classes: (1) the agents currently above it who will not default; (2) the
agents above it who will default; (3) the agents below it who will not default; and
(4) the agents below it who will default. The agent then adds itself to one of these
equivalence classes. To approximate what will happen if the agent does not default,
it adds itself to the second class. If it defaults with another agent replacing it, it
creates a new class for itself between the second and third classes. And if it defaults
with no replacement, it adds itself to the third class. Because we assume that agents
know the policy used by the scheduler to assign tasks, we allow them to call the
scheduling function. An agent calls this function once to compute the value of its
rank-assigned tasks if it does not default, and a second time to compute the value
of its rank-assigned tasks if it does default.
In the current system, an agent’s estimation does not consider the number of

times that it has already defaulted in the current week. Although this simplification
ignores the fact that agents should expect to drop more in the rankings the more
they default, it saves considerable computation by allowing agents to reuse their
estimations, avoiding repeated calls to the scheduler. Despite these assumptions
and limitations, we have found the agent’s estimations of F to be accurate enough
for the FEI calculation described below.

3.1.3. Future expected income. Once the agent has its estimation of the following
week’s income, F , the agent then extrapolates beyond the following week to make
a more complete estimation, discounting its estimates of subsequent weeks’ income
by an uncertainty factor � < 1. In this approach, if F is the original estimate of the
following week’s income, then the discounted estimate for the kth week after the
current one is �kF . The full FEI estimate in week i of a finite-horizon simulation is
thus:

FEIfinite�F � i� = �F + �2F + · · · + �M−iF

= ��+ �2 + · · · + �M−i�F �

where M is the number of weeks in the simulation.
Note that the expression in parentheses decreases as the simulation progresses,

reflecting the fact that an agent has less to lose from defaulting when there are
fewer weeks left in the GroupTask.
This FEI calculation, as noted in Sullivan et al. [23], assumes that an agent knows

the number of weeks the group will continue to work together. In some situations,
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however, agents will only have indefinite information about how long they will form
teams. These situations resemble group activity in an infinite time horizon, because
without knowledge of a final week, agents are forced to treat every week as an
intermediate week, equally far from the start as the finish [7]. To simulate this
infinite horizon, the FEI calculation can be modified so that it is an infinite sum. If
F is the original estimate of the following week’s income, and � is the uncertainty
factor, FEI in an infinite time horizon is:

FEIinfinite�F � = �F + �2F + �3F + · · ·
= ��+ �2 + �3 + · · · �F
=

(
�

1− �

)
F �

The relationship between FEIfinite and FEIinfinite is examined in Section 4.1.

3.1.4. Total estimated income. Once CI and FEI have been calculated, they are
combined into a total estimated income (TEI) to provide a way of measuring total
utility from these monetary measures. TEI in week i of the simulation in the default
and no-default cases is:

TEIdef ��� �� i� = CIdef ��� ��+ FEI�Fdef � i�
TEIno_def ��� i� = CIno_def ���+ FEI�Fno_def � i��

where Fdef and Fno_def are the agent’s estimates of its income for the following week,
if it does and does not default, respectively.

3.2. Utility from brownie points

In addition to direct monetary utility, agents’ decision making processes may take
into account a group commitment or social consciousness factor. The major chal-
lenges addressed in this paper are (1) how to compute a measure of social conscious-
ness, and (2) how to combine this measure with the monetary factors discussed in
the previous section. First, to compute social consciousness, we introduce a brownie
point model, in which socially conscious “good guys”—that is, agents willing to sac-
rifice short-term personal gain for the good of the group and, ultimately, their own
individual good—measure this social consciousness in addition to strictly monetary
factors. In this model, both monetary factors and social nonmonetary utility are
weighed during decision-making.
In the brownie point model, good guy agents maintain their own internal mea-

sure of social consciousness, giving themselves brownie points (BP) each time they
choose not to default. In addition, an agent loses brownie points when it does
default. This loss models an agent’s disappointment in itself for failing to be the
kind of agent it wants on its teams, i.e., failing to live up to its commitment to the
group. The number of brownie points an agent gains or loses at each decision point
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depends on the value of the task that it is considering defaulting on (�), and the
value of the outside offer that it is considering (�).
To represent an agent’s concern with its historical reputation, its utility from

brownie points is also dependent on the total number of brownie points that it has
stored up over time. If an agent has remained faithfully committed to the group
for a long time, storing up a lot of brownie points, the relative percentage loss in
brownie points that it will experience from defaulting will be lower.
Brownie points represent an agent’s own private evaluation of its reputation as

a responsible collaborator, not the perception of other agents. This factor is not a
social-commitment policy; it does not directly affect the value of the tasks that an
agent receives in the current collaboration or its direct monetary rewards. Rather,
brownie points allow agents to incorporate a measure of social consciousness into
their decisions. Experimenting with brownie points allows us to investigate the con-
ditions under which such an internal constraint on defaulting could be advanta-
geous for agent design. While it might be possible to express this element of an
agent’s utility in monetary terms, using a nonmonetary measure is simpler and more
intuitive.
Keeping these desirable properties in mind, we define one such function to com-

pute the BP value in the default and no-default cases. Other, similar functions
which also meet these properties would likely yield similar results, and are an area
for future research.
For these experiments, we define BP in the default and no-default cases as

follows:

BPdef ��� �� currentBP� = currentBP − value���2

value���
�

BPno_def ��� �� currentBP� = currentBP + value���
value���

�

where currentBP is the total number of brownie points that the agent has accu-
mulated thus far in the simulation, based on some initial amount allocated at the
beginning of the simulation.
These definitions have several important properties. First, if an agent does not

default, its BP value increases as value��� goes down or value��� rises, reflecting an
agent’s greater pride in turning down highly valued outside offers, and in committing
itself to less-valued tasks for the good of the group. Second, if an agent defaults on
some task � in favor of �, its BP value decreases as value��� goes up or value���
goes down. This factor thus reflects an agent’s greater willingness to forgive itself
for defaulting in favor of a highly valued outside offer, or a less-valued � task, and
vice versa. For example, an agent will punish itself more for neglecting to check
for security breaks than it would for not putting toner in the printer. Alternatively,
an agent will more readily forgive itself for defaulting on its group commitment in
order to do a highly-valued activity, like attend to a sick family member, than it
would for defaulting in order to attend a baseball game.
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In addition, BPdef ��� �� currentBP� changes quadratically in value���, rather
than linearly as in the no-default case. This change guarantees an adequate base
deduction in BP even for small value���, since the average value��� is smaller than
the average value���. In addition, a quadratic change in value���, as opposed to
any type of linear change, provides desirable percent changes in BP over time, pun-
ishing agents for defaulting even at the beginning of a simulation when their initial
BP level is still quite high.
BP is not just a constant measure over time, but rather is a variable metric based

on the situation faced by both the group and the specific agent. As a result, it is
not just a measure of individual persistence. Furthermore, by taking into account
both group benefit and individual gain in the long-term, BP differs from notions
of benevolence that are concerned with helping other agents and increasing their
utility [4, 14, inter alia].

3.3. Social consciousness in decision-making

In our studies, an agent’s intention-reconciliation strategy takes into account the
three factors just described: current income (CI); future expected income (FEI);
and good guy stature in the community (BP). CI and FEI have been aggregated to
form TEI . The previous section showed how our brownie point model addressed the
first challenge, that of computing a measure of social consciousness, BP. Combining
this social nonmonetary factor with TEI, which is entirely monetary, is the second
challenge addressed in this paper.
To combine these factors into a single utility function, we use an approach from

multi-attribute decision-making [26]. This approach is used so that factors with dif-
ferent units can be considered together within a single decision, without unit differ-
ences unexpectedly giving more weight to one than the other. The first step in this
approach is to normalize both factors using linear normalization, which effectively
removes unit differences in the two factors. To normalize TEI, which is in mone-
tary units, and BP, which is not, each factor is divided by the maximum of the two
possible values for that factor.
For instance, since BPno_def ��� �� currentBP� > BPdef ��� �� currentBP� in all cases,

normalized BP in each case is:

normBPno_def �� = 1�

normBPdef ��� �� currentBP� =
BPdef ��� �� currentBP�

BPno_def ��� �� currentBP�
�

An analogous calculation is used to normalize TEI, although no similar assump-
tions can be made concerning whether TEIdef ��� �� i� or TEIno_def ��� i� is larger.
Once these factors have been thus normalized, the second step in this multi-

attribute decision-making approach is to weight the factors relative to each other,
allowing varying emphasis to be placed on each factor. The impact of these relative
weights is empirically analyzed and discussed in Section 4.
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Table 1. Summary of functions used in decision-making

No Default Computations: CIno_def ��� = value���
FEIfinite�F� i� = ��+ �2 + · · · + �M−i�F

FEIinfinite�F� =
( �

1− �

)
F

TEIno_def ��� i� = CIno_def ���+ FEI�Fno_def � i�
BPno_def ��� �� currentBP� = currentBP + value���

value���
Uno_def ��� i� = �TEIweight × normTEIno_def ��� i��+ �BPweight × 1�

Default Computations: CIdef ��� �� = value���−
group_cost���

n
TEIdef ��� �� i� = CIdef ��� ��+ FEI�Fdef � i�
BPdef ��� �� currentBP� = currentBP − value���2

value���
Udef ��� �� i� currentBP� = �TEIweight × normTEIdef ��� �� i��

+ �BPweight × normBPdef ��� �� currentBP��
Default Condition: Udef ��� �� i� currentBP� > Uno_def ��� i�.

The SPIRE system thus uses the following formulas for the utility an agent
receives from defaulting, and from not defaulting, in week i of the simulation:

Udef ��� �� i� currentBP� = TEIweight × normTEIdef ��� �� i�
+ BPweight × normBPdef ��� �� currentBP��

Uno_def ��� i� = TEIweight × normTEIno_def ��� i�+ BPweight × 1�

where TEIweight and BPweight can be adjusted to create agents with varying levels
of social consciousness. Agents default when:

Udef ��� �� i� currentBP� > Uno_def ��� i��

For clarity, Table 1 contains a summary of the functions used by SPIRE during
decision-making.

4. Socially conscious agents

In earlier work [23], we were able to show that agents default less often and increase
their individual and group income when more tasks are assigned based on rank
or more weight is given by the agents to future income. We also showed a com-
plex relationship between the number of tasks scheduled concurrently (task density),
and agent default behavior and income. In this section, we present several exper-
iments that examine various aspects of socially conscious decision-making. Base
values for important SPIRE parameters in the majority of experiments are given
in Table 2; any departures from these values are noted in individual experiment
descriptions. These values were chosen after speaking with people who work in
Systems Administration, in an effort to faithfully model actual conditions in this
domain. These experiments all have the simplifying assumption that the agents are
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Table 2. Default SPIRE settings. Departures from these values are noted in experiment descriptions

52 weeks per simulation
12 agents
20 task types (values = 5� 10� 15� � � � � 100)
40 time slots per week

10 tasks per time slot = 400 tasks per week
10 tasks per agent per week assigned based on the agent’s rank; the rest

assigned randomly

250–350 outside offers per week

� weighting factor for FEI = 0�8

TEIweight = 0�5

BPweight = 0�5

homogeneous. Some early results in which we have begun to relax this assumption
can be found in another paper [24]. To maximize the contrast between socially con-
scious and socially unconcerned agents, SPIRE parameters for these experiments
were set to make a relatively large number of outside offers, and to impose rela-
tively large rank deductions and group costs when agents default.
The results presented below are averages of 30 runs that used the same parameter

settings, but had different, randomly-chosen, starting configurations (the values of
the tasks in the WTS, and the possible values of the outside offers). For each of
these runs, the WTS was formed by randomly selecting tasks from the stated task
types. The values of the outside offers for that run were then chosen to have the
same distribution as the associated random task types for that week. In each run,
the first ten weeks serve to put the system into a state in which the agents have
different ranks; these weeks are not included in the statistics that SPIRE gathers.

4.1. Varying time horizons

To provide a basis for further experiments, we investigated the effect of different
time horizons on the average number of defaults over the course of a multi-week
simulation (MWS). We compared two sets of runs: one with a known finite horizon
of 52 weeks, and one with an infinite horizon. The two differed in their FEI calcu-
lations: the finite horizon runs used FEIfinite with M = 52; the infinite horizon runs
used FEIinfinite.
A comparison of these two time horizons is shown in Figure 1. For the early

weeks of an MWS, when there are many weeks left, FEIfinite and FEIinfinite are very
close in value. The values diverge as the finite horizon approaches, because FEIfinite
becomes much smaller than FEIinfinite. This change reflects the fact that agents have
less to lose by defaulting in later weeks, when there is little time left during which
they can be punished for their defaulting on their commitment to the group. As
a result, in our experiments, during the first several weeks of the MWS, the two
default rates coincide, but later they diverge.
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Figure 1. Effect of different time horizons on the average number of defaults each week.

In particular, for our experiments, the number of defaults in both the finite and
infinite cases appears to generally increase until about week 25, when it reaches a
plateau. After this initial upward trend, the infinite case appears to reach a steady
number of defaults, while the finite case continues with an increasingly upward
trend. The major divergence in number of defaults occurs at week 41 (i.e., about 10
weeks from the end of the simulation). By the last week, the number of defaults in
the finite case is nearly three times higher than in the infinite horizon.
The plateau phenomenon may be explained in terms of an adjustment of brownie

point level. At the beginning of the simulation, agents are initialized with a starting
BP level. Different values for BPweight, however, dictate a different BP equilibrium
level for the agent. The initial rise in defaults indicates a period of time in which
the agents are gradually moving toward this stable BP level. The plateau occurs
when this stable level is reached.

4.2. Temporal changes in TEI and BP inclinations

When designing intelligent agents to cooperate in group activity over time, a sudden
increase in defaults at the end of the group commitment is usually not desirable.
Instead, as in the Systems Administration domain, agents may be expected to behave
uniformly over all of the weeks of the simulation, as a sudden increase in defaults
would deteriorate the overall accomplishments of the group. For instance, a portion
of the agent’s commitment decision is based on what it expects other agents to do
in the following week, as shown in its calculation of FEI . If the total number of
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defaults rises dramatically from week to week during the end of the simulation,
the agent’s estimations of the default behavior of the other agents will be extremely
inaccurate.
In particular, an agent’s estimation of income for the following week will be

imprecise as an indicator of future weeks. At the end of a simulation, when agents
are able to default with few remaining weeks in which to be punished, each step
closer to the end of the collaboration means the penalty becomes a smaller and
smaller percentage of the possible payoff from outside offers. This can be seen
clearly in the dramatic increase in defaults during the last 10 weeks. During this
rapidly-changing period of the simulation, the discounting factor �, which is meant
to account for uncertainty, becomes dwarfed by the large week-to-week differences
that do not occur earlier in the collaboration. This inability to predict future weeks
further weakens the agent’s ability to make rational decisions. Thus, it will be
unlikely to correctly predict maximal outcomes, even for its own individual utility.
To investigate how this deterioration in group commitment can be overcome in

a finite time horizon, and to provide more background data on the plateau effect
discussed in the previous section, we investigated the effect of increasing BPweight
in a finite horizon.
It is expected that as BPweight increases in the agent’s utility function, decreas-

ing the agent’s utility more for each default, an agent’s group commitment also
increases, and thus the agent’s overall number of defaults will decrease. Figure 2
validates this expectation, showing a drop in default levels as BPweight is increased
in an infinite time horizon.
The effect of increasing BPweight in the finite horizon is less clear. As explained

above and illustrated in Figure 1, the number of defaults per week in a finite horizon
will coincide with the analogous situation in an infinite horizon, for some time at
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Figure 2. Average number of defaults in an infinite time horizon for various values of BPweight in the
agents’ utility functions.
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Figure 3. Average number of defaults per week in a finite time horizon for various values of BPweight
in the agents’ utility functions.

the beginning of the MWS before diverging. To analyze factors contributing to this
divergence, our next experiments compared where this divergence happened for
communities of agents with various levels of BPweight in their utility functions. The
results can be found in Figure 3.
We found that, for high values of BPweight, the number of defaults does not

“plateau” as it does for lower values, and as was noted above. As BPweight decreases,
this plateau slowly becomes more and more pronounced, starting earlier in the simu-
lation and continuing for more weeks.
This result reflects the relative weight of different factors in the utility function

over time, and the resulting effect on default equilibrium. When BPweight is very
low, the agent is making its decision based almost entirely on monetary factors
(TEI). In a finite horizon, the agent will experience pressure to increase its number
of defaults as the simulation proceeds, and its drop in rank will affect fewer weeks.
However, BP is also indirectly affected by the week number in the simulation,

since the agent’s total store of BP changes with time. The more an agent defaults,
the lower its BP becomes. However, the absolute change in BP at each decision
point is not affected by the timing of that decision, relative to other decision points
or its occurence early or late in the simulation. By extension, then, late in the
simulation, if BP is low, each default will induce a larger percent change in total BP.
The result of this effect is that, although the TEI portion of the agent’s utility

function encourages it to default more often over time, the BP factor also changes
over time, encouraging the agent to default less and less. The plateau region indi-
cates where these two dueling factors, based on the relative percent change in each
at a given decision point, have reached equilibrium.
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Since the effect of each factor is governed by its relative weight, different values
of BPweight will cause this plateau to occur at different times, and for varying
durations. For all values of BPweight, as time progresses, there will be downward
pressure on BP from defaults, since defaulting causes a bigger change in BP than not
defaulting. In cases with a high value for BPweight, however, the number of defaults
typically starts out rather low. These cases also have fewer defaults overall. Since
high values of BPweight are thus accompanied by lower default rates, an agent’s total
store of BP will change much more slowly than for lower values of BPweight. It also
follows, then, that these agents will take longer to reach an equilibrium plateau,
where the weighted change in BP equalizes the weighted change in future income
(FEI). As BPweight decreases, and an agent’s overall level of default increases,
the agent reaches this equilibrium much more quickly, causing a more prolonged
plateau in number of defaults. Thus, in addition to altering average number of
defaults overall, manipulating BPweight allows us to alter agent behavior over time,
in a finite horizon environment.

4.3. Optimal group commitments

While altering behavior with respect to number of defaults is useful to agent design-
ers in some domains, in many other domains the number of defaults will be of less
interest than the actual income earned by the agents. Our next set of experiments
examined this income effect in the infinite time horizon case, where BPweight has a
more steady influence. The results in Figure 4 show how average group task income,
a phrase we use to refer to income just from group-assigned tasks, varies as BPweight
is increased. In this figure, and subsequently in the paper, incomes are normalized
with respect to the income that would have been earned if the originally assigned
tasks had all been completed. Group task income is the income earned from �-tasks
assigned by the group, minus the penalties incurred by the group from defaults.
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Figure 4. Effect of BPweight on mean group task income.
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Figure 5. Effect of BPweight on mean total group income.

It does not include income earned by agents for any outside offers (�) that they
complete. As expected, the results show that group task income strictly increases as
BPweight increases, and agents thus default less often.
In contrast to group task income, total income is an agent’s income from group-

assigned tasks and outside offers accepted. When we examine total income, we
find rather surprising results (Figure 5). Note that, since total group income is
normalized with respect to the income that would have been earned if the originally
assigned tasks had all been completed, agents may sometimes earn a normalized
total group income greater than 1, in cases where outside tasks completed more
than made up for group tasks that were defaulted on.
Instead of strictly increasing with increased BPweight, as with group task income,

total income reaches a maximum at BPweight = 0.3 (although differences between
this BPweight value and a few surrounding values are within error), and then begins
to drop. This result contradicts our original hypothesis, which was that the opti-
mal number of defaults for maximizing total income would correspond with a high
BPweight, near 1, where the impact on the group is the biggest factor in the agent’s
decision. Instead, this result shows that the optimal number of defaults actually
occurs when BPweight is less than 1.
On further analysis, this result can be explained based on task density and

the range of values of outside offers available in a given WTS. As explained in
Section 2.3, the mean value of the outside offers exceeds the mean value of the
group-assigned tasks. Thus, when deciding between � and �, it is possible that an
agent may be deciding between jobs that vary widely in value. When BPweight is
low, an agent’s decisions are driven mainly by TEI. For comparatively high outside
offers, then, the current income (CI) gained by defaulting will be much bigger than
the potential loss in future income (FEI). Thus, the agent will default.
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When BPweight is very high and social factors are being weighted very heavily in
the agent’s utility function, the brownie point factor in the agent’s utility function
may overcome this potential gain in income. As a result, the agent may give up
some very lucrative outside offers in order to stay committed to the group. In these
cases, value��� is actually high enough to offset any group penalties suffered from
the default, but the agent is, in a way, blinded to this fact by its unusually strong
conscience.
In addition, with a very high density of group tasks assigned each week, the effect

on future income of defaulting is decreased, because even irresponsible agents are
guaranteed to be assigned a large number of group tasks, and each individual task
therefore represents a smaller percentage of the agent’s overall possible income
[23]. In these situations, defaulting has a very small effect and brownie point con-
siderations may tend to over-emphasize this effect. When combined with a high
BPweight, then, the agent may not default even when it is truly beneficial to do so.
Thus, it seems that “good guys” do not finish first. Rather, communities made up
of less socially conscious, more balanced agents actually do better.

4.4. Optimality across different environments

Our final set of experiments extends this finding by varying an environmental fac-
tor, and observing the effect on the income-maximizing number of defaults. In these
experiments, the number of tasks scheduled in each time slot (task density) was var-
ied. As we varied the task density in these experiments, we also varied the number
of tasks assigned based on rank so that the percent of rank-based tasks was constant
across different task densities. In these experiments, the number of rank-based tasks
was kept to approximately 30 percent of the total group tasks, as was also the case
in the other experiments. The results are shown in Figure 6.
Given the results from the previous section, these results are unexpected. While

at the highest task density studied in this paper2 (10) there is a local maximum for
total group income for a BPweight value greater than 0, this result does not hold
for lower task densities. Instead, a pattern emerges in which a large range of values
for BPweight greater than 0 provides a total group income which is approximately
equal for a given task density. For example, for a task density of 2, the total group
incomes associated with the range of BPweight values from 0.1 to 0.7 are all roughly
the same, within error ranges.
This result points to an interesting conclusion. While we have shown that

BPweight has a large and consistent effect on the average number of defaults and
on group task income, Figure 6 shows that it does not have this same effect on
total income. Thus, when creating cooperative agents, designers do not have to
be as concerned about total group income as they are about these other factors.
Instead, within a fairly large range of BPweight values, self-interested agents can be
designed with utility functions that optimize for number of defaults or group task
income, with the assurance that total group income will remain near its maximum.
This conclusion does not hold, however, if one considers total income when

BPweight is 0. Figure 6 appears to show that income is maximized at this lowest
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Figure 6. Effect of BPweight on mean total group income across various task densities.

value for BPweight. It is unlikely, however, that this is the behavior that would
actually be desired in collaborative agents. Agents with low BPweight default much
more frequently than more socially conscious agents. Furthermore, Figure 4 shows
that group task income is at its lowest for this value of BPweight. Since most agent
designers would attempt to optimize all of these factors, keeping defaults low and
all measures of income high, this extreme behavior would be undesirable despite
the apparent payoff as measured by total group income.
The seemingly inconsistent change in total income as BPweight initially rises from

0 to 0.1 remains an open question. A similar “jump” over this same interval in
an otherwise smooth curve can also be observed in Figures 2 and 4, although to
a lesser extent. While we suspect that this behavior reveals the large effect that
adding brownie points at any weight has on agent behavior, the exact cause has not
been isolated. This result seems to indicate that agents with no social consciousness
(i.e., brownie points do not factor at all into their utility functions) have radically
different behavior from even mildly socially conscious agents. Analysis into this
behavior is an area for future investigation.

5. Related work

Kalenka and Jennings [15] propose several “socially responsible” decision-making
principles and examine their effects in the context of a warehouse loading scenario.
Our work, like theirs, compares agents with and without social commitments and is
concerned with “socially conscious” decision-making functions. However, our work
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differs from theirs in three ways: (1) their policies are domain-dependent and not
decision-theoretic; (2) they do not vary environmental factors; and (3) they do not
look at conflicting intentions or agents reneging on their tasks, but rather at whether
or not agents choose to help each other.
Sen [20] also considers decision-making strategies that encourage coopera-

tion among self-interested agents, but his work focuses on interactions between
pairs of individual agents, rather than between an individual and a group. Sen’s
“philanthropic” agents take the good of the group into account, but do not always
necessarily do what is best for the group.
There is a significant body of economics literature on rational choice and inten-

tion reconciliation. Iannaccone [13] examines social policies that alter individual
utility functions to encourage group commitment. While these policies are simi-
lar in spirit to the social-commitment policies that SPIRE incorporates, they are
aimed at group formation, not at conflicting intentions. Additionally, that approach
is not applicable to agents that face multiple decision points over time. Höllander
[12] studies incentives for encouraging group commitment and cooperation under
a more limited definition of cooperation, in which an agent is required to incur a
personal cost in order to cooperate. His model considers “emotional” cooperation
within this limited definition, but assumes a rigid standard shared by all players, a
requirement that we relax.
The social-commitment policies in SPIRE also differ from Shoham and Ten-

nenholtz’s [21] social laws. Social laws constrain the ways agents perform actions
whereas social-commitment policies constrain decision-making. Social laws, are by
their nature, domain specific; they constrain domain actions. In contrast, social-
commitment policies affect decision-making across domains and tasks. The conven-
tions Rosenschein and Zlotkin [18] present play a role in negotiation, similar to the
role social-commitment policies play in SPIRE.
Cooper et al. [5] examine social consciousness in an approach similar to the

brownie point model, referred to as the “warm glow” model, in which agents receive
a constant amount of added utility when they do the “right thing.” Our approach
differs from this warm glow model, in that an agent’s utility from brownie points
is task-value dependent, and depends not just on the number of points gained for
a given task, but also on the total number of brownie points that it has stored up
over time.

6. Conclusions

In this paper, we show how to take into account factors other than direct monetary
concerns in agent decision-making. The brownie point model provides a framework
in which nonmonetary social factors can be effectively considered alongside mone-
tary ones in collaborative, individually rational agents. By considering not just the
default itself, but also task value and agent history in the calculation of brownie
points, this operationalization of social consciousness realistically models the
behavior in which we are interested. Additionally, because this system uses social
consciousness over time, and allows it to play a variable role in utility functions,
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the effect of social consciousness on the behavior of the group as a whole can be
studied.
Our results show that agents should be created so that they occasionally abandon

their commitments in order to accept outside tasks. Their specific behavior regard-
ing how often they do so can be controlled by setting BPweight appropriately. The
exact weighting factor that should be used, however, depends on the goals of the
agent designer. Our results empower agent creators to make these decisions on
their own, based on the data that we have gathered about how agents behave in
different situations. We also conclude that infinite or unknown time horizons are
best, across all environments, indicating that agents should always be designed so
that they do not know the exact length of their group commitment.
Keeping these results in mind, agent designers can create optimal, self-interested

agents for any given domain by trading off desired default behavior with total group
income. Although in many domains designers will be primarily interested in max-
imizing total group income, in other domains where agent designers care about
defaults (whether because they care about how much of the overall group task
gets done, or because they really want agents to severely limit defaults) this behav-
ior can be controlled by adjusting social consciousness, without needing to com-
pletely redesign the agents or the group structure to get different behavior. Since
total group income remains relatively constant over a large range of brownie point
weights greater than 0, designers can focus more on desired default behavior, and
be assured that total income will remain near its maximum.
Finally, experiments with varied task densities show that these results hold over

multiple environments. Thus, when designing collaborative agents, designers can
concentrate on creating desired default behavior and maximizing income, knowing
that the basic principles outlined above will not be greatly affected by changes in
the agents’ task environment.
Current work in extending these findings to heterogeneous societies in which

agents have different levels of social consciousness can be seen in [24]. Heteroge-
nous societies that encourage group-conscious behavior are, however, susceptible
to manipulation. In particular, the free-rider problem can arise: because agents are
self-motivated, each would prefer that other agents do the work required to increase
the group utility. A free rider wants its teammates to act in the team’s interest, pro-
viding overall gains to the entire group, while opting out itself. If everyone but the
free rider cooperates, its utility is maximized. However, if all the agents attempt
to be free riders, they all will suffer. Initial investigations of the free-rider problem
in the SPIRE system show that in heterogeneous groups of agents, less responsible
agents are able to take advantage of their more group-conscious counterparts, reap-
ing the full benefit of the outside offers they accept, while shifting a portion of the
resulting group costs on the more responsible agents [24]. These results also show,
however, that less responsible agents do only slightly better as individuals than their
more responsible collaborators.
Furthermore, if all the agents choose to be less responsible, then each individ-

ual does worse than if they all chose to be responsible, i.e., homogenous groups of
responsible agents do better than homogenous groups of irresponsible agents. Addi-
tional work in experimenting with agents that learn and adapt to the environment,
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adjusting decision-making to fit the communities in which they are collaborating,
can be viewed in [6].
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Notes

1. This central scheduler is used only for convenience. Many domains requiring cooperative agents
would most likely not rely on a central scheduler in this way, but would instead negotiate each
week’s schedule based on (possibly incomplete) information about each agent. Since this negotiation
is beyond the intended scope of the current SPIRE system, and we wish to study aspects of group-
commitment scenarios which come after the initial schedule is made, we simplified this aspect of
the problem for these experiments. We do not expect that this simplification has had any impact on
our results.

2. In previous experiments [23], the highest possible task density in which all agents are busy all of
the time, proved to be a special case, and thus was not experimented with here.
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