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Abstract

Neurophysiology reveals the properties of individual mirror neurons in the macaque while brain imaging reveals the presence of ‘mirror

systems’ (not individual neurons) in the human. Current conceptual models attribute high level functions such as action understanding, imitation,

and language to mirror neurons. However, only the first of these three functions is well-developed in monkeys. We thus distinguish current

opinions (conceptual models) on mirror neuron function from more detailed computational models. We assess the strengths and weaknesses of

current computational models in addressing the data and speculations on mirror neurons (macaque) and mirror systems (human). In particular, our

mirror neuron system (MNS), mental state inference (MSI) and modular selection and identification for control (MOSAIC) models are analyzed in

more detail. Conceptual models often overlook the computational requirements for posited functions, while too many computational models adopt

the erroneous hypothesis that mirror neurons are interchangeable with imitation ability. Our meta-analysis underlines the gap between conceptual

and computational models and points out the research effort required from both sides to reduce this gap.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many neurons in the ventral premotor area F5 in macaque

monkeys show activity in correlation with the grasp1 type

being executed (Rizzolatti, 1988). A subpopulation of these

neurons, the mirror neurons (MNs), exhibit multi-modal

properties responding to the observation of goal directed

movements performed by another monkey or an experimenter

(e.g. precision or power grasping) for grasps more or less

congruent with those associated with the motor activity of the

neuron (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996;

Rizzolatti, Fadiga, Gallese, & Fogassi, 1996). The same area

includes auditory mirror neurons (Kohler et al., 2002) that

respond not only to the view but also to the sound of actions

with typical sounds (e.g. breaking a peanut, tearing paper).

The actions associated with mirror neurons in the monkey seem
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1 We restrict our discussion to hand-related neurons; F5 contains mouth-

related neurons as well.
to be transitive, i.e. to involve action upon an object and apply

even to an object just recently hidden from view (e.g. Umilta

et al., 2001).

It is not possible to find individual mirror neurons in humans

since electrophysiology is only possible in very rare cases and

at specific brain sites in humans. Therefore, one usually talks

about a ‘mirror region’ or a ‘mirror system’ for grasping

identified by brain imaging (PET, fMRI, MEG, etc.). Other

regions of the brain may support mirror systems for other

classes of actions. An increasing number of human brain

mapping studies now refer to a mirror system (although not all

are conclusive). Collectively these data indicate that action

observation activates certain regions involved in the execution

of actions of the same class. However, in contrast to monkeys,

intransitive actions have also been shown to activate motor

regions in humans. The existence of a (transitive and

intransitive) mirror system in the human brain has also been

supported by behavioral experiments illustrating the so-called

‘motor interference’ effect where observation of a movement

degrades the performance of a concurrently executed incon-

gruent movement (Brass, Bekkering, Wohlschlager, & Prinz,

2000; Kilner, Paulignan, & Blakemore, 2003; see also Sauser

& Billard, this issue, for functional models addressing this

phenomenon). Because of the overlapping neural substrate for

action execution and observation in humans as well as other

primates, many researchers have attributed high level cognitive
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functions to MNs such as imitation (e.g. Carr, Iacoboni,

Dubeau, Mazziotta, & Lenzi, 2003; Miall, 2003), action

understanding (e.g. Umilta et al., 2001), intention attribution

(Iacoboni et al., 2005) and—on the finding of a mirror system

for grasping in or near human Broca’s area—(evolution of)

language (Rizzolatti & Arbib, 1998).2

We stress that, although statements are often made about

mirror neurons in humans, we have data only on what might be

called mirror systems in humans—connected regions that are

active in imaging studies both when the subject observes an

action from some set and executes an action from that set, but

not during an appropriate set of control tasks. Brain imaging

results show that mirror regions in human may be associated

with imitation and language (Carr et al., 2003; Fadiga,

Craighero, Buccino, & Rizzolatti, 2002; Iacoboni et al.,

1999; Skipper, Nusbaum, & Small, 2005), but there are no

corresponding data on mirror neurons. Moreover, monkeys do

not imitate (but see below) or learn language and so any

account of the role of mirror neurons in imitation and language

must include an account of the evolution of the human mirror

system (Rizzolatti & Arbib, 1998) or at least the biological

triggers that can unleash in monkeys a rudimentary imitation

capability that goes beyond those they normally exhibit, though

still being quite limited compared to those of humans

(Kumashiro et al., 2003). We thus argue that imitation and

language are not inherent in a macaque-like mirror system but

instead depend on the embedding of circuitry homologous to

that of the macaque in more extended systems within the

human brain.

A general pitfall in conceptual modeling is that an innocent

looking phrase thrown in the description may render the model

implausible or trivial from a computational perspective, hiding

the real difficulty of the problem. For example, terms like

‘direct matching’ and ‘resonance’ are used as if they were

atomic processes that allow one to build hypotheses about

higher cognitive functions of mirror neurons (Gallese, Keysers,

& Rizzolatti, 2004; Rizzolatti, Fogassi, & Gallese, 2001). One

must explain the cortical mechanisms which support the

several processing stages that transform retinal stimulation

caused by an action observation into the mirror neuron

responses. Another issue is to clarify what is encoded by the

mirror neuron activity. Is it the motor command, the meaning

or the intention of the observed action? In an attempt to explain

the multiplicity of functions attributed to mirror neurons, it has

been recently speculated that different set of mirror neurons are

involved in different aspects of the observed action (Rizzolatti,

2005).

We will review various ‘conceptual models’ that pay little

attention to this crucial reservation, and then review several

computational models in some detail: a learning architecture

with parametric biases (Tani, Ito, & Sugita, 2004); a genetic

algorithm model which develops networks for imitation while
2 Recent reviews of the mirror neuron and mirror system literature are

provided by Buccino, Binkofski, and Riggio (2004), Fadiga and Craighero

(2004) and Rizzolatti and Craighero (2004).
yielding mirror neurons as a byproduct of the evolutionary

process (Borenstein & Ruppin, 2005); the mirror neuron

system (MNS) model that can learn to ‘mirror’ via self-

observation of grasp actions (Oztop & Arbib, 2002) and is

closely linked to macaque behavior and (somewhat more

loosely) neurophysiology; and models which are not restricted

in this fashion: the mental state inference (MSI) model that

builds on the forward model hypothesis of mirror neurons

(Oztop, Wolpert, & Kawato, 2005), the modular selection and

identification for control (MOSAIC) model that utilizes

multiple predictor–controller pairs (Haruno, Wolpert, &

Kawato, 2001; Wolpert & Kawato, 1998), and the imitation

architecture of Demiris and Hayes (2002) and Demiris and

Johnson (2003).

2. Mirror neurons and action understanding

Mirror neurons, when initially discovered in macaques,

were thought to be involved in action recognition (Fogassi

et al., 1992; Gallese et al., 1996; Rizzolatti et al., 1996) though

this laid the basis for later work ascribing a role in imitation to

the human mirror system. Although the term ‘action under-

standing’ was often used, the exact meaning of ‘understanding’

as used here is not clear. It can range from ‘act according to

what you see’, to ‘infer the intentions/mental states leading to

the observed action’. In fact, the neurophysiological data

simply show that a mirror neuron fires both when the monkey

executes a certain action and when he observes more or less

congruent actions. In these experiments, he is given no

opportunity to show by his behavior that he understands the

action in either of the above senses.

Gallese and Goldman (1998) suggested that the purpose of

MNs is to enable an organism to detect certain mental states of

observed conspecifics via mental simulation. According to this

view, mirror neurons could be the precursor of mind-reading

ability, being compatible with the simulation theory

hypothesis.3 Again, this involves considerable extrapolation

beyond the available data. In particular, mind-reading might

involve a quite separate mirror system for facial expression as

much as a mirror system for manual actions. Although the

suggestion has achieved some positive reception, no details

have been provided on how this could be implemented as a

computational model. (The MSI model does address this issue,

see below).

In spite of the computational differences between recog-

nition (and imitation) of facial gestures and recognition

(imitation) of hand actions, many cognitive neuroscientists

address them both under a ‘generic mirror system’. The insula

has been found to be a common face-emotion region for both

production and understanding of facial gestures and emotions

(Carr et al., 2003; Wicker et al., 2003). Although it is tempting

to consequently take the insula as formed by instantiating
3 Two predominant accounts of mind-reading exist in the literature. ‘Theory

theory’ asserts that mental states are represented as inferred conjectures of a

naive theory whereas according to ‘simulation theory’, mental states of others

are represented by representing their states in terms of one’s own.
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an F5-like mirror system for emotion processing, there are

crucial differences in how these circuits develop in infancy

which shed doubt on the idea of a generic neural mirror

mechanism to unify social cognition (Gallese et al., 2004).

Manual actions can be compared visually and vocalizations

can be compared auditorially—the commonality being the

matching of an observed action with the output from an internal

motor representation through a comparison in the same

domain. Unlike hand actions, one’s own facial gestures can

only be seen with the help of a reflective material or otherwise

must be inferred. In fact, infants may learn much about their

own facial expressions from the propensity of caregivers to

imitate the child. We argue that the learning mechanism of

facial imitation is different from hand imitation, which

involves learning via social interaction of the kinds we

suggested elsewhere (Oztop et al., 2005):

You eat A/you have face expression X (visual).

I eat A/I feel disgust Y (internal state).

Therefore, X (visual) must be Y (feeling of disgust).

The elaboration of this mechanism in the brain is beyond the

scope of this review. However, the important message here is

that manual action understanding and facial emotion under-

standing pose different problems to the primate brain, which

might have found solutions in different organizational

principles.

3. Mirror neurons and imitation

Learning by imitation is an important part of human motor

behavior, which requires complex set of mechanisms (Schaal,

Ijspeert, & Billard, 2003). Wolpert, Doya, and Kawato (2003)

underline some of those as (i) mapping the sensory variables

into corresponding motor variables, (ii) compensation for the

physical difference of the imitator from the demonstrator, and

(iii) understanding the intention (goal) causing the observed

movement. Many cognitive neuroscientists view imitation as

mediated by mirror neurons in humans. Although this is a

plausible hypothesis, we stress again that this is not within the

normal repertoire of the macaque mirror system (but note the

discussion below of Kumashiro et al., 2003) and so must—if

true—rest on evolutionary developments in the mirror system.

It should also be emphasized that there is a considerable

amount of literature addressing imitation without explicit

reference to mirror neurons (e.g. see Byrne & Russon, 1998).

Since most mirror neurons are found in motor areas it is

reasonable to envision a motor control role for mirror neurons.

One possibility is that these neurons implement an internal

model for control. Current evidence suggests that the central

nervous system uses internal models for movement planning,

control, and learning (Kawato & Wolpert, 1998; Wolpert &

Kawato, 1998). A forward model is one that predicts the

sensory consequences of a motor command (Miall & Wolpert,

1996; Wolpert, Ghahramani, & Flanagan, 2001); while an

inverse model transforms a desired sensory state into a motor

command that can achieve it. The proposal of Arbib and

Rizzolatti (1997) that mirror neurons may be involved in

inverse modeling plays a central role in recent hypotheses
about the neural mechanisms of imitation, which were

accelerated by the increasing number of functional brain

imaging studies.

One recent proposal is that the mirror neurons may provide

not only an inverse model but a forward model of the body

which can generate action candidates in the superior temporal

sulcus (STS) where neurons have been found with selectivity

for biological movement (e.g. of arms, whole body) (Carr et al.,

2003; Iacoboni et al., 1999). The idea is that STS acts as a

comparator that can be used within a search mechanism that

finds the mirror neuron-projected action code that matches the

observed action best, which is in turn used for subsequent

imitation. It is further suggested that the STS-F5 circuit can be

run in the reverse direction (inverse modeling) to map the

observed action into motor codes (mirror activity) so that a

rough motor representation of the observed act becomes

available for imitation. According to this hypothesis, the F5-

STS circuitry must be capable of producing detailed visual

representation of the self-actions. From a computational point

of view, if we accept that an observed act can be transformed

into motor codes or if we accept the availability of an elaborate

motor/visual forward model then imitation becomes trivial.

However, the above conceptual model limits imitation to

actions already in the observer’s repertoire. It is one thing to

recognize a familiar action and quite another to see a novel

action and consequently add it to one’s repertoire. Another

concern is that the mirror neurons found with electrophysio-

logical recordings in monkeys are limited to goal directed

actions. Indeed, behavioral studies show that chimpanzees

cannot handle imitation tasks which do not involve any target

objects (Myowa-Yamakoshi & Matsuzawa, 1999). In their

efforts to release rudimentary imitation capability in monkeys

Kumashiro et al., (2003) used four tests based on objects

(cotton-separation, knob-touching, latched box opening and

removing the lid from a conical tube) and (with highly variable

success) three tests based on facilitating use of a specific

effector (tongue-protrusion model, hand-clench and thumb-

extension) and two based on the movement of a hand relative to

the body (hand to nose, hand clap, and hand to ear).

Miall (2003) suggested amending the conceptual model of

Iacoboni et al. by including the cerebellum. He proposed that

the forward and inverse computations required can be carried

out by the cerebellum and PPC (posterior parietal cortex). The

cerebellum has often been considered the likely candidate for

(forward and inverse) internal models (Kawato & Gomi, 1992;

Wolpert, Miall, & Kawato, 1998), but an alternative view

(related to Miall’s) is that cerebellar models act in parallel with

models implemented in cerebral cortex, rather than replacing

them (Arbib, Erdi, & Szentagothai, 1998). However, the

computational problem is still there: how the retinal image is

transformed to motor commands in a precise way (inverse

problem), and how a precise visual description of one’s own

body is mentally produced given a motor command (forward

problem). For inverse and forward models whose sensory data

are limited to the visual domain, the problems are quite severe

when the whole body is considered because one cannot

completely observe all of one’s own body. However,
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observation of the hand in action is possible, enabling forward

and inverse model learning. Presumably, the brain does not rely

on visual data alone, but integrates it with proprioceptive cues.

Although inverse learning is harder than forward learning, in

general this does not pose a huge problem, and by using certain

invariant representations in the visual domain, the learned

internal models can be applied to other individuals’

movements.4
4. Mirror neurons and language

Rizzolatti and Arbib (1998) built on evidence that macaque

F5 is homologous to human Broca’s area (an area often

associated with speech production) and that human brain

imaging reveals a mirror system for grasping in or around

Broca’s area to propose that brain mechanisms supporting

language in humans evolved atop a primitive mirror neuron

system similar to that found in monkeys. According to their

mirror system hypothesis, human Broca’s area’s mirror system

properties provide the evolutionary basis for language parity

(the approximate meaning-equivalence of an utterance for both

speaker and hearer). Arbib (2002, 2005) has expanded the

hypothesis into seven evolutionary stages:

S1: Simple grasping,

S2: A mirror system for grasping,

S3: A simple imitation system for grasping,

S4: A complex imitation system for grasping,

S5: Protosign, a hand-based communication system,

S6: Protospeech, a vocalization-based communication

system,

S7: Language, which required little or no biological evolution

beyond S6, but which resulted from cultural evolution in

Homo sapiens.

We do not have space here to comment on all the above

steps but one quite distinctive feature of the analysis of stage

S2 deserves attention. It asks the question ‘why do mirror

neurons exist?’ and answers ‘because mirror neurons are

(originally) involved in motor control’. These neurons are

located in the premotor cortex, interleaved with other motor

neurons, where distal hand movements are controlled. Indeed,

one may argue that the visual feedback required for manual

dexterity—based on observation of the relation of hand to goal

object—provided mechanisms that were exapted in primate

and hominid evolution first for action recognition and then for

imitation.

Although it is a daunting task to computationally realize this

evolutionary model in its complete form (an attempt not

without its critics—see the commentaries pro and con in Arbib

(2005)), the transitions from one stage to the next can be

potentially studied from a computational perspective.
4 In general it is not possible to infer the full dynamics from a kinematics

observation, but we may assume some approximate solution that yields similar

kinematics when applied by the observer.
5. Computational models involving MNs

We still lack a systematic neurophysiological study that

correlates mirror neuron activity with the kinematics of the

monkey or the demonstrator which would allow the compu-

tational modeler to test ideas about such correlations. More-

over, if (as we believe) the mirror properties of these neurons—

as distinct from the conditions which make their acquisition

possible—are not innate, then the study of the developmental

course of these neurons and their function would test

computational models of development that could help us better

understand the functional role of MNs.

A general but wrong assumption in many computational

studies of imitation is that mirror neurons are responsible for

generating actions (and even sometimes that area F5 is

composed only of mirror neurons). Indeed, F5 can be

anatomically subdivided into two distinct regions, one containing

the mirror neurons, and one containing canonical neurons. The

latter are like mirror neurons in their motor properties, but do

not respond to action observation. Muscimol injections

(muscimol causes reversible neural inactivation) to the part

of area F5 that includes mirror neurons do not impair grasping

and control ability, but causes only a slowing down of the

action (Fogassi et al., 2001).5 However, when the area that

includes the canonical neurons is the target of injection, the

hand shaping preceding grasping is impaired and the hand

posture is not appropriate for the object size and shape (Fogassi

et al., 2001).

In the following sections, we will review various

computational studies that relate (often at some conceptual

remove) to mirror neurons. Unfortunately, most of the

modeling is targeted at imitation. Only one, the MNS model

of Oztop and Arbib (2002) directly claims to be a model for

mirror neurons (although it does not provide computational

modules for motor control).

6. A dynamical system approach

The first model we review, due to Jun Tani et al. (2004), is

aimed at learning, imitation and autonomous behavior

generation. The proposed network is a generative learning

architecture called recurrent neural network with parametric

biases (RNNPB). In this architecture, the spatio-temporal

patterns are associated with so-called parametric bias vectors

(PB). RNNPB self-organizes the mapping between PBs and the

spatio-temporal patterns (behaviors) during the learning phase.

From a functional point of view the goal of RNNPB is similar

to dynamical movement primitive learning (Ijspeert, Naka-

nishi, & Schaal, 2003; Schaal, Peters, Nakanishi, & Ijspeert,

2004) in that the behaviors are learned as dynamical systems.

However, in the dynamical movement primitive approach,

dynamical systems are not constructed from scratch as
5 This may at first appear inconsistent with the view that mirror neurons may

assist the feedback control for dexterous movements, but note that the

muscimol studies were only carried out for highly familiar grasps whose

successful completion would require little if any visual feedback.
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in RNNPB; but rather (core) primitive dynamical systems are

adapted to match the demonstrated movements using local

learning techniques (Ijspeert et al., 2003; Schaal et al., 2004).

In this article, we focus on RNNPB as the representative of

dynamical system approaches since the authors have already

hinted that RNNPB captures some properties of the mirror

neurons (Tani et al., 2004). The RNNPB has three operational

modes; we review each of them starting from the learning

mode.
Fig. 2. The RNNPB in behavior generation mode. Given a fixed PB vector (thick

arrow) the network produces the corresponding stored sensory–motor stream.
6.1. Learning mode

The learning is performed in an off-line fashion by

providing the sensory-motor training stimuli (e.g. two

trajectories—one for the position of a moving hand and the

other for the joint angles of the arm) for each behavior in the

training set. The goal of the training is twofold (see Fig. 1): (1)

to adapt weight sets w and W such that the network becomes a

time series predictor for the sensory-motor stimuli, and (2) to

create PB vectors for each training behavior. Both adaptations

are based on the prediction error; the weights w and W are

adapted by back-propagation over all the training patterns as in

a usual recurrent neural network. The PB vectors, however, are

updated separately for each training pattern for reducing the

prediction error. Furthermore, the modulation of PB vectors are

kept slow to obtain a fixed PB vector for each learnt behavior.
6.2. Action generation mode

After learning, the model represents a set of behaviors as

dynamical systems tagged by the PB vectors created during the

learning phase. The behaviors are generated via the associated

PB vectors. Given a fixed PB vector, the network autono-

mously produces a sensory–motor stream corresponding to the

behavior associated with the PB vector (see Fig. 2). Note that

the behavior generation mode of RNNPB requires the sensory–

motor prediction to be fed back into the sensory–motor input as

shown in Fig. 2.
Fig. 1. The RNNPB network in learning phase. The weights W and w are

adapted so as to reduce the prediction error over all the behaviors to be learnt

(temporal sensory–motor patterns). The PB vectors are also updated to reduce

the prediction error, albeit separately for each behavior and at a slower rate to

ensure representative PB values for each behavior.
6.3. Action recognition mode

The task of the network in this mode is to observe an

ongoing behavior (sensory data) and compute a PB vector that

is associated with a behavior that matches the observed one as

much as possible. The arrival of a sensory input generates a

prediction of the next sensory stimulus at the output layer.

Then the actual next sensory input is compared with this

prediction creating a prediction error (see Fig. 3). The

prediction error is back-propagated to the PB vectors (i.e. PB

vectors are updated such that the prediction error is reduced).

The actual computation of the PB vectors is performed using

the so-called regression window of the past steps so that the

change of PB vectors can be constrained to be smooth over the

window. The readers are referred to Tani et al. (2004) for

further details of this step. If sensory input matches one of the

learned behaviors, the PB vectors tend to converge to the

values determined during learning (Tani et al., 2004). Note that

in this mode, the feedback from sensory–motor output to

sensory-motor input is restricted only to the motor component.
6.4. Relation to MNs and imitation

The model has been shown to allow a humanoid robot

to imitate and learn actions via demonstration. The logical link
Fig. 3. The RNNPB in behavior recognition mode. In the recognition mode the

sensory input is obtained from external observation (thick arrows). The

feedback from sensory–motor output to sensory–motor input is restricted only

to the motor component. The prediction error is used to compute the parametric

bias vector corresponding to the incoming sensory data.
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to mirror neurons comes from the fact that the system works as

both a behavior recognizer and generator after learning. PB

units are tightly linked with the behavior being executed or

observed. During execution, a fixed PB vector selects one of

the stored motor patterns. For recognition PB unit outputs

iteratively converge to the action observed. Although mirror

neurons do not determine the action to be executed in monkeys

(Fogassi et al., 2001), the firing patterns of mirror neurons are

correlated with the action being executed. Thus, PB vector

units may be considered analogous to mirror neurons. Ito and

Tani (2004) suggest that the PB units’ activities should be

under control of a higher mechanism to avoid unwanted

imitation, such as for dangerous movements. One prediction, or

rather a question posed to neurophysiology, is what happens

when a dangerous movement is observed by a monkey.

Although it is known that (initially) F5 mirror neurons do not

respond to unfamiliar actions, no data on the parietal mirror

neurons exists to rule out this possibility. However, we again

emphasize that mirror response does not automatically involve

movement imitation and so it is unlikely that the monkey

mirror neuron system is ‘an inhibited imitation system’; rather

imitation ability must have been developed on top of the mirror

neuron system along the course of primate evolution.
7. Motor learning and imitation: a modular architecture

The RNNBP of the previous section represents multiple

behaviors as a distributed code. Demiris and Hayes (2002) and

Demiris and Johnson (2003) chose the opposite approach

representing each behavior as a separate module in their proposed

imitation system. Following the organization of the MOSAIC

model (Wolpert & Kawato, 1998) (see Section 12), the key

structure of the proposed architecture is formed by a battery of

behaviors (modules) paired with forward models, where each

behavior module receives information about the current state (and

possibly the target goal), and outputs the motor commands that is

necessary to achieve the associated behavior (see Fig. 4). A

forward model receives output of the paired behavior module and

estimates the next state which is fed back to the behavior module
Fig. 4. The imitation architecture proposed by Demiris and Hayes (2002) and

Demiris and Johnson (2003) is composed of a set of paired behavior and

forward models. During imitation mode, the comparison of the predicted next

state (of the demonstrator) with the actual observed state gives an indication of

which behavior module should be active for the correct imitation of the

observed action.
for parameter adjustments. A behavior is similar to an ‘inverse

model’, although inverse models do not usually utilize feedback,

but output commands in a feed-forward manner. However, the

boundary between behavior and inverse model is not a rigid one

(Demiris & Hayes, 2002).

The architecture implements imitation by assuming that the

demonstrator’s current state (e.g. joint angles of a robot) is

available to it. When the demonstrator executes a behavior, the

perceived states are fed into the imitator’s available behavior

modules in parallel which generate motor commands that are

sent to the forward models. The forward models predict the

next state based on the incoming motor commands, which are

then compared with the actual demonstrator’s state at the next

time step. The error signal resulting from this comparison is

used to derive a confidence value for each behavior (module).

The behavior with the highest confidence value (i.e. the one

that best matches the demonstrator’s behavior) is selected for

imitation. When an observed behavior is not in the existing

repertoire, none of the existing behaviors reach a high

confidence value, thus indicating that a new behavior should

be added to the existing behavior set. This is achieved by

extracting representative postures while the unknown behavior

is demonstrated, and constructing a behavior module (e.g. a

PID controller) to go through the representative postures

extracted. This computational procedure to estimate the other

agent’s behavioral module by simulating one’s own forward

model and controller is essentially identical to the proposal by

Doya, Katagiri, Wolpert, and Kawato (2000). Demiris and

Simmons (this issue) describe a hierarchical architecture that

employs similar principles at its core. Although at a conceptual

level, this architecture has strong parallels with the MOSAIC

model (Haruno et al., 2001; Wolpert & Kawato, 1998),

MOSAIC takes learning and control as the core focus by

providing explicit learning mechanisms (see Section 12).

7.1. Relation to MNs and imitation

The architecture can be related to mirror neurons because

the behavior modules are active during both movement

generation and observation. However, all the modules are run

in parallel in the proposed architecture, so it is more reasonable

to take the confidence values as the mirror neuron responses.

Demiris and Hayes (2002) and Demiris and Johnson (2003)

arrived at several predictions about mirror neurons albeit

considering ‘imitation-ability’ and ‘mirror neuron activity’

interchangeable, while we think they must be analyzed

separately. One interesting prediction which has also been

predicted by the MNS model (Oztop & Arbib, 2002) (see

Section 10) is the following. ‘A mirror neuron which is active

during the demonstration of an action should not be active (or

possibly be less active) if the demonstration is done at speeds

unattainable by the monkey’. A further prediction states that

‘mirror neurons that remain active for a period of time after the

end of the demonstration are encoding more complex

sequences that incorporate the demonstration as their first

part’ (Demiris & Hayes, 2002). The other predictions—implied

by the structure of the architecture—are ‘the existence of other



Fig. 5. A generic associative memory for an agent (a robot or an organism).

When an agent generates a movement using motor code, the sensed stimuli are

associated with this code. At a later time a partial representation of associated

stimuli (e.g. vision) can be used to retrieve the whole (including the motor

code). The connectivity among the units representing different modalities could

be full or sparse.
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goal directed mirror neurons and the trainability of new mirror

neurons’.

8. An evolutionary approach

The evolutionary algorithms that Borenstein and Ruppin

(2005) used to explain mirror neurons and imitation are quite

different from the previous approaches. Evolutionary algorithms

incorporate aspects of natural selection (survival of the fittest) to

solve an optimization problem. An evolutionary algorithm

maintains a population of structures (‘individuals’) that evolves

according to rules of selection, recombination, mutation and

survival. A shared ‘world’ determines the fitness or performance

of each individual and identifies the optimization problem. Each

‘generation’ is composed of fitter individuals and their variants,

while fewer not-fit individuals and their variants are allowed to

reproduce their traits. After many generations one expects to find

a set of high performing individuals which represent close-to-

optimal solutions to the original problem. Within this framework,

Borenstein and Ruppin (2005) defined individuals as simple

neuro-controllers that could sense the state of the world and the

action of a teaching agent (inputs) and generate actions (outputs).

Individuals generated output with a simple 1-hidden-layer

feedforward neural network. The fitness of an individual was

defined as a random mapping from world state to actions, which

was kept fixed for the lifetime of an individual. The evolutionary

encoding (genes) determined the properties of individual network

connections (synapses): type of learning, initial strength, either

inhibitory or excitatory type, and rate of plasticity.

8.1. Relation to MNs and imitation

The simulation with populations of 200 individuals

evolving for 2000 generations showed interesting results. The

best individuals developed neural controllers that could learn to

imitate the teacher. Furthermore, the analysis of the units in the

hidden layer of these neuro-controllers revealed units which

were active both when observing the teacher and when

executing the correct action, although not all the actions

were mirrored. The conclusion drawn was that there is an

‘essential link between the ability to imitate and a mirror

system’. Despite the interest of the demonstration that evolving

neural circuitry to imitate yields something like mirror neurons

as a byproduct, we note again that even though monkeys have

mirror neurons they are not natural imitators. Thus, the

‘evolution’ of mirror systems on the basis of ‘evolutionary

pressure’ to imitate does not seem to capture the time course of

primate evolution.

9. Associative memory hypothesis of mirror neurons

In this section, we avoid choosing a single architecture for

extensive review since the core mechanism employed in all the

candidate models relies on a very simple principle deriving from

the classical view of Hebbian synaptic plasticity in the cerebral

cortex. Implementation of this view results in connectionist

architectures referred as associative or content addressable
memories (Hassoun, 1993), to which the models reviewed in this

section more or less conform. The crucial feature of an

associative memory is that a partial representation of a stored

pattern is sufficient to reconstruct the whole. In general a neural

network which does not distinguish input and output channels

can be considered as an associative memory (with possibly

hidden units). Fig. 5 schematizes a possible association that can

be established when a biological or an artificial agent acts. The

association can take place among the motor code, the

somatosensory, vestibular, auditory and visual stimuli sensed

when the movement takes place with the execution of the motor

code. If we hypothesize that mirror neurons are part of a similar

mechanism then the mirror neuron responses could be

explained: when the organism generates motor commands the

representation of this command and the sensed (somatosensory,

visual and auditory) effects of the command are associated

within the mirror neuron system. Then at a later time when the

system is presented with a stimulus that partially matches one of

the stored patterns (i.e. vision or audition of an action alone) the

associated motor command representation is retrieved automati-

cally. This representation can be used (with additional circuitry)

to mimic the observed movement. This line of thought has been

explored through robotic implementations of imitation using a

range of associative memory architectures. Elshaw, Weber,

Zochios, and Wermter (2004) implemented an associator

network based on the Helmholtz machine (Dayan, Hinton,

Neal, & Zemel, 1995) where the motor action codes were

associated with vision and language representations. The learned

association enabled neurons of the hidden layer of the network to

behave as mirror neurons; the hidden units could become active

with one of motor, vision or language inputs. Kuniyoshi,

Yorozu, Inaba, and Inoue (2003) used a spatio-temporal

associative memory called the ‘non-monotone neural net’

(Morita, 1996) to associate self generated arm movements of a

robot with the local visual flow generated. Billard and Mataric

(2001) used the DRAMA architecture (Billard & Hayes, 1999),

which is a time-delay recurrent neural network with Hebbian
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update dynamics at the core of their biologically inspired

imitation architecture. Oztop, Chaminade, Cheng, and Kawato

(2005) used an extension of a Hopfield net utilizing product

terms to implement a hand posture imitation system using a

robotic hand.
9.1. Relation to MNs and imitation

In spite of the differences in the implementation, the

common property among the aforementioned associative

memory models is the multi-modal activation of the associative

memory/network units. Thus, when these models are

considered as models of mirror neurons (note that not all

models claim to be models for mirror neurons, as the main

focus is on imitation) then the explanation of the existence of

mirror neurons becomes phenomenological rather than

functional (see Section 13). For example, the models of

Kuniyoshi et al. (2003) and Oztop et al. (2005) use self-

observation as the principle for bootstrapping imitation and

formation of units that respond to self-actions and observations

of others. We refer to this type approach as ASSOC so that we

can collectively refer to these models in Section 13, where we

propose a taxonomy based on the modeling methodology.
10. Mirror neuron system (MNS) model:

a developmental view

The models reviewed so far related to the mirror neurons

indirectly, through imitation. Here, we present a computational

model with anatomically justified connectivity, which directly

explores how MNs develop during infancy. It is quite unlikely

that the MNs are innate because mirror neurons have been

observed for tearing paper, for instance (Kohler et al., 2002).

With this observation, the MNS model (Oztop & Arbib, 2002)

takes a developmental point of view and explains how the

mirror neurons are developed during infancy. The main

hypothesis of the model is that the temporal profile of the

features an infant experiences during self-executed grasps

provides the training stimuli for the mirror neuron system to

develop.6 Thus, developmentally, grasp learning precedes

initial mirror neuron formation.7 Although MNS proposes

that MNs are initially evolved to support motor control, it does

not provide computational mechanisms showing this.
10.1. The Model

MNS is a systems level model of the (monkey) mirror neuron

system for grasping. The computational focus of the model is the
6 Only grasp related visual mirror neurons were addressed. A subsequent

study (Bonaiuto et al., 2005) has introduced a recurrent network learning

architecture that not only reproduces key results of Oztop and Arbib (2002) but

also addresses the data of Umiltá et al. (2001) on grasping of recently obscured

objects and of Kohler et al. (2002) on audiovisual mirror neurons.
7 Note again that monkeys have a mirror system but do not imitate. It is thus a

separate question to ask “How, in primates that do imitate, does the imitation

system build (both structurally and temporally) on the mirror system?”.
development of mirror neurons by self-observation; the motor

production component of the system is assumed to be in place and

not modeled using neural modules. The schemas8 (Arbib, 1981)

of the model are implemented with different level of granularity.

Conceptually those schemas correspond to brain regions as

follows (see Fig. 6). The inferior premotor cortex plays a crucial

role when the monkey itself reaches for an object. Within the

inferior premotor cortex area F4 is located more caudally than

area F5, and appears to be primarily involved in the control of

proximal movements (Gentilucci et al., 1988), whereas the

neurons of F5 are involved in distal control (Rizzolatti et al.,

1988). Areas IT (inferotemporal cortex) and cIPS (caudal

intraparietal sulcus) provide visual input concerning the nature

of the observed object and the position and orientation of the

object’s surfaces, respectively, to AIP. The job of AIP is to extract

the affordances the object offers for grasping. By affordance we

mean the object properties that are relevant for grasping such as

the width, height and orientation. The upper diagonal in Fig. 6

corresponds to the basic pathway AIP/F5 canonical/M1

(primary motor cortex) for distal (reach) control. The lower right

diagonal (MIP/LIP/VIP/F4) of Fig. 6 provides the proximal

(reach) control portion of the MNS model. The remaining

modules of Fig. 6 constitute the sensory processing (STS and area

7a) and the core mirror circuit (F5 mirror and area 7b).

Mirror neurons do not fire when the monkey sees the

hand movement or the object in isolation; the sight of the

hand moving appropriately to grasp or manipulate a seen

(or recently seen) object is necessary for the mirror neurons

tuned to the given action to fire (Umiltá et al., 2001). This

requires schemas for the recognition of the shape of the

hand and the analysis of its motion (performed by STS in

the model), and for the analysis of the hand-object relation

(area 7a in Fig. 6). The information gathered at STS and

areas 7a are captured in the ‘hand state’ at any instant

during movement observation and serves as an input to the

core mirror circuit (F5 mirror and area 7b). Although visual

feedback control was not built into MNS, the hand state

components track the position of hand and fingers relative

to the object’s affordance (see Oztop and Arbib (2002) for

the full definition of the hand state) and can thus be used in

monitoring the successful progress of a grasping action

supporting motor control. The crucial point is that the

information provided by the hand state allows action

recognition because relations encoded in the hand state

form an invariant of the action regardless of the agent of

the action. This allows self-observation to train a system

that can be used for detecting the actions of others and

recognizing them as one of the actions of the self.

During training, the motor code represented by active F5

canonical neurons was used as the training signal for the

core mirror circuit to enable mirror neurons to learn which

hand-object trajectories corresponded to the canonically
8 A schema refers to a functional unit that can be instantiated as a modular

unit, or as a mode of operation of a network of modules, to fulfill a desired

input/output requirement (Arbib, 1981; Arbib et al., 1998).



Fig. 6. A schematic view of the mirror neuron system (MNS) model. The MNS model learning mechanisms and simulations focus on the core mirror circuit marked

by the central diagonal rectangle (7b and F5 mirror), see text for details (Oztop & Arbib, 2002; reproduced with kind permission of Springer Science and Business

Media).
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encoded grasps. We reiterate that the input to the F5 mirror

neurons is not the visual stimuli as created by the hand and the

object in the visual field but the ‘hand state trajectory’

(trajectory of the relation of the hand and the object) extracted

from these stimuli. Thus, training tunes the F5 mirror neurons

to respond to hand-object relational trajectories independent of

the owner of the action (‘self’ or ‘other’).
10.2. Relation to MNs

The focus of the simulations was the 7b-F5 complex (core

mirror circuit). The input and outputs of this circuit was

computed using various schemas providing a context to

analyze the circuit. The core mirror circuit was implemented

as a feedforward neural network (1-hidden layer back-

propagation network with sigmoidal activation units; hidden

layer: area 7b; output layer: F5 mirror) responding to

increasingly long initial segments of the hand-state trajectory.

The network could be trained to recognize the grasp type from

the hand state trajectory, with correct classification often being

achieved well before the hand reached the object. For the

preprocessing and training details the reader is referred to

Oztop and Arbib (2002).

Despite the use of a non-physiological neural network,

simulations with the model generated a range of predictions

about mirror neurons that suggest new neurophysiological

experiments. Notice that the trained network responded not

only to hand state trajectories from the training set, but also

showed interesting responses to novel grasping modes. For

example Fig. 7 shows one prediction of the MNS model. An

ambiguous precision pinch grasp activates multiple neurons

(power and precision grasp responsive neurons) during the
early portion of the movement observation. Only later does the

activity of the precision pinch neuron dominate and the power

grasp neuron’s activity diminish.

Other predictions were derived from the spatial perturbation

experiment where the hand did not reach the goal (i.e. a ‘fake’

grasp), and the altered kinematics experiment where the hand

moved with constant velocity profile. The former case showed

a non-sharp decrease in the mirror neuron activity while the

latter showed a sharp decrease. The reader is referred to Oztop

and Arbib (2002) for the details and other simulation

experiments.

Recently, Bonaiuto, Rosta, and Arbib (2005) developed the

MNS2 model, a new version of the MNS model of action

recognition learning by mirror neurons of the macaque brain,

using a recurrent architecture that is biologically more

plausible than that of the original model. Moreover, MNS2

extends the capacity of the model to address data on audio–

visual mirror neurons (Kohler et al., 2002) and on response of

mirror neurons when the target object was recently visible but

is currently hidden (Umiltá et al., 2001).
11. The mental state inference (MSI) model: forward

model hypothesis for MNs

The anatomical location (i.e. premotor cortex) and motor

response of mirror neurons during grasping suggest that the

fundamental function of mirror neurons may be rooted in grasp

control. The higher cognitive functions of mirror neurons, then

should be seen as a later utilization of this system, augmented

with additional neural circuits. Although MNS of the previous

section adopted this view, it did not model the motor

component, which is addressed by the MSI model.



Fig. 7. Power and precision grasp resolution. (a) The left panel shows the initial

configuration of the hand while the right panel shows the final configuration of

the hand, with circles showing positions of the wrist in consecutive frames of

the trajectory. (b) The distinctive feature of this trajectory is that the hand

initially opens wide to accommodate the length of the object, but then thumb

and forefinger move into position for a precision grip. Even though the model

had been trained only on precision grips and power grips separately, its

response to this input reflects the ambiguities of this novel trajectory—the

curves for power and precision cross towards the end of the action, showing the

resolution of the initial ambiguity by the network. (Oztop & Arbib, 2002,

reproduced with kind permission of Springer Science and Business Media).
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11.1. Visual feedback control of grasping and the forward

model hypothesis for the mirror neurons

The mental state inference (MSI) model builds upon a visual

feedback circuit involving the parietal and motor cortices, with

a predictive role assigned to mirror neurons in area F5. For

understanding others’ intentions, this circuit is extended into a

mental state inference mechanism (Oztop et al., 2005). The

global functioning of the model for visual feedback control

proceeds as follows. The parietal cortex extracts visual features

relevant to the control of a particular goal-directed action (X,

the control variable) and relays this information to the

premotor cortex. The premotor cortex computes the motor

signals to match the parietal cortex output (X) to the desired

neural code (Xdes) relayed by prefrontal cortex. The ‘desired

change’ generated by the premotor cortex is relayed to

dynamics related motor centers for execution (Fig. 8, upper

panel). The F5 mirror neurons implement a forward prediction

circuit (forward model) estimating the sensory consequences of

F5 motor output related to manipulation, thus compensating for

the sensory delays involved in the visual feedback circuit.
This is in contrast to the generally suggested idea that mirror

neurons serve solely to retrieve an action representation that

matches the observed movement. During observation mode,

these F5 mirror neurons are used to create motor imagery or

mental simulation of the movement for mental state inference

(see below). Although MSI does not specify the region within

parietal cortex that performs control variable computation,

recent findings suggest that a more precise delineation is

possible. Experiments with macaque monkeys indicate that

parietal area PF (area 7b) may be involved in monitoring the

relation of the hand with respect to an object during grasping.

Some of the PF neurons that do not respond to vision of objects

become active when the monkey (without any arm movement)

watches movies of moving hands (of the experimenter or the

monkey) for manipulation, suggesting that the neural responses

may reflect the visual feedback during observed hand move-

ments (Murata, 2005). It is also possible that a part of AIP may

be involved in monitoring grasping as shown by transcranial

magnetic stimulation (TMS) with humans (Tunik, Frey, &

Grafton, 2005). As in the MNS model, area F5 (canonical) is

involved in converting the parietal output (PF/AIP) into motor

signals, which are used by primary motor cortex and spinal

cord for actual muscle activation. In other words, area F5 non-

mirror neurons implement a control policy (assumed to be

learned earlier) to reduce the error represented by area PF/AIP

output.

11.2. Mental state inference

The ability to predict enables the feedback circuit of Fig. 8

(upper panel) to be extended into a system for inferring the

intentions of others based on the kinematics of goal directed

actions (see Fig. 8 lower panel). In fact, the full MSI model

involves a ‘mental simulation loop’ that is built around a

forward model (Blakemore & Decety, 2001; Wolpert &

Kawato, 1998), which in turn is used by a ‘mental state

inference loop’ to estimate the intentions of others. The MSI

model is described for generic goal-directed actions, however

here we look at the model in relation to a tool grasping

framework where two agents can each grasp a virtual hammer

with different intentions (holding, nailing or prying a nail).

Depending on the planned subsequent use of a hammer,

grasping requires differential alignment of the hand and the

thumb. Thus, the kinematics of the action provides information

about the intention of the actor. For this task, the mental state

was modeled as the intention in grasping the hammer. Within

this framework an observer ‘guesses’ the target object (one of

various objects in the demonstrator’s workspace) and the type

of grasp and produce an appropriate F5 motor signal that is

inhibited for actual muscle activation but used by the forward

model (MNs) (see Fig. 8 lower panel). With the sensory

outcome predicted by the MNs, the movement can be

simulated as if it were executed in an online feedback mode.

The match of the simulated sensations of a simulated

movement with the sensation of observed movement will

then signal the correctness of the guess. The simulated mental

sensations and actual perception of movement is compared in a



Fig. 8. Upper panel: the MSI model is based on the illustrated visual feedback control organization. Lower panel: observer’s mental state inference mechanism.

Mental simulation of movement is mediated by utilizing the sensory prediction from the forward model and by inhibiting motor output. The difference module

computes the difference between the visual control parameters of the simulated movement and the observed movement. The mental state estimate indicates the

current guess of the observer about the mental state of the actor. The difference output is used to update the estimate or to select the best mental state. (Adapted from

Oztop et al., 2005).
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mental state search mechanism. If the observer model ‘knows’

the possible mental states in terms of discrete items an

exhaustive search in the mental state space can be performed.

However, if the mental state space is not discrete then a

gradient based search strategy must be applied. The mental

state correction (i.e. the gradient) requires the parietal output

(PF) based errors (the Difference box in Fig. 8) to be converted

into ‘mental state’ space adjustments, for which a stochastic

gradient search can be applied (see Oztop et al. (2005) for the

details).
Fig. 9. (A) The features used for nailing task (orientation and normalized distance)

are depicted in the right two arm drawings. The path of the hand is constrained with

appropriate via-points avoiding collision. The arm drawing on the left shows an

example of a handle grasping for driving a nail. The prying task is same as A except

7 that the Handle vector points towards the opposite direction (not shown). (B) The

features extracted for metal-head grasping is depicted (conventions are the same as

the upper panel). (Adapted from Oztop et al., 2005).
11.3. Relation to MNs and Imitation

A tool-use experiment was set-up in a kinematics simulation

where two agents could grasp a virtual hammer. The visual

parameters used to implement the feedback servo for grasping

(i.e. normalized distance and the orientation difference—see

Fig. 9) were object centered and provided generalization

regardless of the owner of the action (self vs. other). The time

varying (mental simulation)!(observation) matrix shown in

Fig. 10 represents the dynamics of an agent observing an actor
performing tasks of holding, nailing and prying (rows of the

matrix). Each column of the matrix represents the belief of the

observer as to whether the other is holding, nailing or prying.

Each cell shows the degree of similarity between mentally



Fig. 10. The degree of similarity between visually extracted control variables and control variables obtained by mental simulation can be used to infer the intention of

an actor. Each subplot shows the probability that the observed movement (rows) is the same as the mentally simulated one (columns). The horizontal axis represents

the simulation time from movement start to end. The control variables extracted for the comparison are based on the mentally simulated movement. Thus, for

example, the first column inferences require the control parameters for holding (normalized distance to metal head and the angle between the palm normal and

hammer plane). The convergence to unity of the belief curves on the main diagonal indicates correct mental state inference. (Adapted from Oztop et al., 2005).
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simulated movement and the observed movement from move-

ment onset to movement end (as a belief or probability). The

observer can infer the mental state of the actor before the midpoint

of the observed movements as evidenced by the convergence of

belief curves to unity along the diagonal plots. Thus, although not

the focus of the study, the MSI model offers a basic imitation

ability that is based on reproducing the inferred intention (mental

state) of an observer. However, the actions that can be imitated are

thus limited to the ones in the existing repertoire and may not

respect the full details of the observed act. With MSI the dual

activation of MNs (forward model) is explained by the automatic

engagement of mental state inference during an action

observation, and by the forward prediction task undertaken by

the MNs for motor control during action execution.
12. Modular selection and identification for control

(MOSAIC) model

The MOSAIC model (Haruno et al., 2001; Wolpert &

Kawato, 1998) was introduced initially for motor control,
providing mechanisms for decentralized automatic module

selection so as to achieve best control for the current task. In

this sense, compared to the earlier models surveyed, MOSAIC

is a sophisticated motor control architecture. The key

ingredients of MOSAIC are modularity and the distributed

cooperation and competition of the internal models. The basic

functional units of the model are multiple predictor–controller

(forward–inverse model) pairs where each pair competes to

contribute to the overall control (cf. Jacobs, Jordan, Nowlan,

and Hinton (1991), where the emphasis is on selection of a

single processor). The controllers with better predicting

forward models (i.e. with higher responsibility signals) become

more influential in the overall control (Fig. 11). The

responsibility signals are computed with the normalization

step shown in Fig. 11 based on the prediction errors of the

forward models via the softmax function (see Table 1, last

row). The responsibility signals are constrained to be between

0 and 1, and add up to 1, so that that they can be considered as

probabilities indicating the likelihood of the controllers being

effective for the current task.



Fig. 11. The functioning of the MOSAIC model in the control mode. The responsibility signals indicate how well the control modules are suited for the control task at

hand. The overall control output is the sum of the output of controller modules as weighted by the responsibility signals.
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The aim of motor control is to produce motor commands

G(t) at time t such that a desired state9 xdes(t) is attained by the

controlled system dynamics j. The net motor output G of the

MOSAIC model is determined by a set of adaptive controller–

predictor pairs (ji,fi) via the responsibility signals li which are

computed using the predictor outputs and the current state of

the system. The equations given in Table 1 describe the control

mechanism more rigorously (for simplicity, we use a discrete

time representation). The adaptive nature of the controller–

predictor pairs is shown with semicolons as ji($;wi) fi($;yi)
meaning that ji and fi are functions determined by the

parameters wi and yi, which are typically the weights of a

function approximator or a neural network.

Rather than presenting the details of how the controller–

predictor pairs can be adapted (trained) for a variety of the

tasks we note that MOSAIC is described without strict

attachment to a particular learning method, so it is possible

to derive various learning algorithms for adapting controller–

predictor pairs. In particular, gradient descent (Wolpert &

Kawato, 1998) and expectation maximization (Haruno et al.,

2001) learning algorithms have been derived and applied for

motor control learning.
Table 1

The equations describing the control function of the MOSAIC model

Dynamics of the controlled system xðtC1ÞZJðxðtÞ;GðtÞÞ

The MOSAIC (net) control output GðtC1ÞZ
P

i lijiðxdðtC1Þ;xðtÞ;wiÞ
12.1. Imitation and action recognition with MOSAIC

Although MOSAIC was initially proposed for motor

control, it is possible to utilize it for imitation and action

recognition. This dual use of the model establishes some

parallels between the model and the mirror neuron system. The

realization of imitation (and action recognition) with MOSAIC

requires three stages: first, the visual information of the actor’s

movement must be converted into a format that can be used as

inputs to the motor system of the imitator (Wolpert et al.,

2003). This requires that the visual processing system extracts

variables akin to state (e.g. joint angles) which can be fed to the

imitator’s MOSAIC as the ‘desired state’ of the demonstrator

(Wolpert et al., 2003). The second stage is that each controller
9 The term ‘state’ generally represents the vector of variables that are

necessary to encapsulate the history of the system as a basis for describing the

system’s response to the external inputs, which then involves specification of

current output and of the updating of the state. For a point mass physical system

the state combines the position and velocity of the mass.
generates the motor command required to achieve the observed

trajectory (i.e. the desired trajectory obtained from the

observation). In this ‘observation mode’, the outputs of the

controllers are not used for actual movement generation, but

serve as input to the predictors paired with the controllers (see

Fig. 12). Thus, the next likely states (of the observer) become

available as the output of the forward predictions. These

predictions then can be compared with the demonstrator’s

actual next state to provide prediction errors that indicate, via

responsibility signals, which of the controller modules of the

imitator must be active to generate the movement observed

(Wolpert et al., 2003).
12.2. Relation to MNs and imitation

The responsibility signals are computed by (softmax)

normalizing the prediction errors as shown in Fig. 12. Notice

that the responsibility signals can be treated as symbolic

representation describing the observed (continuous) action.

The temporal stream of responsibility signals representing the

observed action then can be used immediately or stored for

later reproduction of the observed action. Simulations with the

MOSAIC model indicate that the aforementioned imitation

mechanism can be used to imitate the task of swinging up a one

degree of freedom jointed stick against gravity through

observation of successful swing ups (Doya et al., 2000).

Within the MOSAIC framework the output of predictors

might be considered analogous to mirror neuron activity. This

would be compatible with the view of the MSI model, where it

is suggested that the mirror neurons may implement a motor-

to-sensory forward model. It is however necessary to point out

one difference. The MSI model deals with motor control

relying only on visual input and kinematics (leaving the
Individual controller (inverse model)

outputs

uiðtÞZjiðxdðtC1Þ;xðtÞ;wiÞ

Individual predictions (forward

model)

x̂iðtC1ÞZfiðxðtÞ;uðtÞ;yiÞ

The responsibility signals liðtÞZ
eðxðtÞKx̂i ðtÞÞ

2 =d2

P
k

eðxðtÞKx̂k ðtÞÞ
2 =d2



Fig. 12. The functioning of the MOSAIC model in the observation mode is illustrated. For imitation, the responsibility signals indicate which of the controller

modules must be active to generate the movement observed.
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dynamics to the lower motor areas). In contrast, MOSAIC is a

true control system that deals with dynamics. Thus, the nature

of forward models in the two architectures is slightly different.

The output of the forward model required by MSI is in visual-

like coordinates (e.g. the orientation difference of the hand axis

and the target object), whereas for MOSAIC the output of the

forward models are more closely related to the intrinsic

variables of the controlled limb (e.g. joint position and

velocities). However, it is possible to envision an additional

dynamics-to-visual forward model that can take MOSAIC

forward model output and convert it to some extrinsic

coordinates (e.g. distance to the goal). In a way, the MSI’s

forward model can be such an integrated prediction circuit

implemented by several brain areas.

A final note here is that the internal models envisioned in the

neuroscience literature (e.g. Carr et al., 2003; Iacoboni et al.,

1999; Miall, 2003) are usually at a much higher level than the

internal models of the MOSAIC or the MSI model introduced

here, which are much harder to learn from a computational

point of view.
13. A Taxonomy of models based on modeling methodology

When the system to be modeled is complex it is often

necessary to focus on one or two features of the system in any

one model. The focus of course is partly determined by the

modeling methodology followed by the modeler. Here, we

present a taxonomy of modeling methodologies one can

follow, and compare the models we have presented

accordingly.

The utility of a model increases with its generality and

ability to explain and predict observed and unobserved

behavior of the system modeled. The validity and utility of a

model is leveraged when all the known facts are incorporated

into the model. This is called data driven modeling where the

modeler’s task is to develop a computational mechanism

(equations and computer simulations) that replicates the

observed data with the hope that some interesting, non-trivial

predictions can be made. This is the main modeling approach

for cellular level neuron modeling. Although one would expect
that the neurophysiological data collected so far is to be widely

used as the basis for computational modeling, we unfortunately

lack sufficient quantitative data on the neurophysiology of the

mirror system. Most mirror system (related) modeling assumes

the generic properties of mirror neurons to build imitation

systems rather than addressing hard data. We have included

this type of model in the taxonomy because there is certain

utility of those models as they lead to questions about the

relation between mirror neurons and imitation.

Models based on evolutionary algorithms have been used in

modeling the behaviors of organisms, and developing neural

circuits to achieve a prespecified goal (e.g. central pattern

generators) in a simplified simulated environment. Although

this type of modeling, in general, does not make use of the

available data, the model of Borenstein and Ruppin (2005)

suggests how mirror neurons might have come to be involved

in imitation or other cognitive tasks. However, as we have

already noted, ‘real’ evolution may have exapted the mirror

system to support imitation, rather than starting from the need

to imitate and ‘discovering’ mirror neurons as a necessary tool.

An evolutionary point of view can also be adopted to build

models that do not employ evolutionary algorithms, which start

off by postulating a logical reason for the existence of the

mirror neurons. The logic can be based on the location of the

mirror neurons, or on the known general properties of neural

function. The former logic dictates that mirror neurons must be

involved in motor control. The latter logic (phenomenal) draws

on Hebbian plasticity mechanisms and dictates that represen-

tations of contingent events are associated in the cerebral

cortex. Fig. 13 illustrates how the models we have presented

fall into our taxonomy. However, note that this taxonomy

should not be taken as defining sharp borders between models.

Models focusing on imitation can be cast as being developed

following a ‘reason of existence’. For example DRAMA

architecture (Billard & Hayes, 1999) employs a Hebbian like

learning mechanism and thus can be considered in the ASSOC

category in Fig. 13. Similarly, although no motor control role

was emphasized for mirror neurons in Demiris’s imitation

system (Demiris & Johnson, 2003), it employs mechanisms

similar to those of the MOSAIC model.



Fig. 13. A taxonomy of modeling methodologies and the relation of the models presented. Dashed arrows indicate that the linked models are similar or can be cast to

be similar (see text).

Table 2

A very brief summary of models presented in terms of biological relevance, architecture and the relevant results and predictions

Biological relevance Architecture Results/predictions

RNNBP N/A (general) Distributed representation Imitation, action recognition

Recurrent network with a

complex generative model

There should be MN inhibition for undesired

action imitation

MOSAIC and

Demiris

N/A (general) Modular, localist

Demiris: no module learning

Modular control allows imitation and action

recognition

MOSAIC: Modules learn with

EM or gradient based learning

MN response limited to certain speed range

Existence of subaction encoding units

Borenstein and

Ruppin

N/A (evolutionary model) Virtual world, agent system Imitation and MN formation is favored by natural

selection

MSI Based on general organization of system level

anatomy (premotor and parietal)

Connectionist schemas Mental state Inference

Kinematics of observed action should correlate

with mirror activity

ASSOC and

DRAMA

N/A (general. However, Billard & Mataric, 2003

embedded DRAMA in a biologically inspired

imitation architecture)

Recurrent, Hopfield like Imitation and MN formation

Self-observation may be involved in formation of

MNs and development of imitation

MNS Uses system level anatomy (premotor and parietal)

and addresses mirror neuron firing

Hidden layer back-propagation

network with supporting schemas

Prediction on neural firing patterns of MNs for:

Altered kinematics

Spatial mismatch

Novel object grasping

MNS2 Uses system level anatomy (premotor and parietal)

and addresses mirror neuron firing

Recurrent back-propagation

network for visual input; Hebbian

synapses for auditory input;

working memory and dynamic

remapping

Addresses data on mirror neurons for grasping

including audio–visual mirror neurons and

response to grasps with hidden end-state
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We now contrast and define common characteristic of some

of the models presented in this article with the hope that future

(especially data driven) modeling can embrace a larger set of

mirror neuron functions. Note that the taxonomy we present is

orthogonal to the granularity of the modeling (i.e. cell, cell

population, brain region or functional/abstract). The MOSAIC

model in its original form does not advocate any brain structure

for its functional components. Similarly the associative

memory models of the mirror system (ASSOC in Fig. 13) in

general do not strongly adhere to any brain area. Therefore, we

can consider them as ‘general models’. On the other hand, MSI

and—to a larger extent—MNS associate (macaque) brain

regions with the functional components. The two models are

compatible in terms of brain areas supporting the mirror

system. MNS conceptually accepts that mirror neurons must

have a role in motor control. However, it does not provide

mechanisms to simulate this because the focus of the modeling

in MNS is the development of mirror neurons. (MNS 2 extends

MNS by addressing data on audiovisual mirror neurons and on

grasps with hidden end-state). The key to both MNS and MSI is

the object-centered representation of the actions and the self-

observation principle, which together allow actions to be

recognized irrespective of the agent performing it. However,

there is one difference: in MSI, self-observation is purposeful;

it is used to implement a visual feedback control loop for action

execution. On the other hand, the MNS model, despite the

differences in the adaptation mechanisms, resembles the

associative memory models that operate on the principle of

association of stimuli produced as the result of movement

execution. The purposeful self-observation (visual feedback)

principle of the MSI model establishes the logical link between

the MSI and the MOSAIC model in spite the differences of two

models in terms of motor control ability. The MOSAIC model

is crafted for true motor control (i.e. it considers dynamics)

whereas MSI deals only with kinematics. Table 2 provides a

succinct account of the presented models by enlisting the key

properties and results relevant for this article.

14. Conclusion

In spite the accumulating evidence that humans are

endowed with a mirror system (Buccino et al., 2001; Hari

et al., 1998; Iacoboni et al., 1999), it is still an open question

how our brains make use of this system. Is it really used for

imitation or mental state estimation? Or is it simply an action

recognition system? A predominant assumption among

computational modelers is that human mirror neurons subserve

imitation. Although there are many imitation models based on

this view, there are virtually no studies addressing the

assumption itself. We need biologically grounded compu-

tational models to justify this view; the models of this sort

should address the computational requirements and the

possible evolutionary changes in neural circuitry necessary to

allow mirror neurons to undertake an important role for

imitation.

Our view is that, the location of mirror neurons (MNs)

indicates that the function of mirror neurons must be rooted in
motor control. We emphasize that future computational models

of MNs that share the same view, regardless of whether they

address imitation or not, must explain the dual role of the

mirror system by showing computationally that MNs perform a

useful function for motor control. Note that this need not mean

that all mirror neurons in the human brain that are

‘evolutionary cousins’ of macaque mirror neurons for grasping

need themselves be involved in manual control—one can

accept that mirror neurons for language have this cousinage

without denying that lesions can differentially yield aphasia

and apraxia (see Barrett, Foundas, & Heilman, 2005, and also

the Response in Arbib, 2005).

Imitation is just one way to look at the problem; the mirror

neurons must also be analyzed and modeled in an imitation-

decoupled way. For example, is it possible that MNs are simply

the consequence of Hebbian learning, i.e. an automatic

association of the corollary discharge and the subsequent

sensory stimuli generated as the associative memory hypoth-

esis claims? The MNS (Oztop & Arbib, 2002) and MNS2

(Bonaiuto et al., 2005) models postulate that some extra

structure is required, both to constrain the variables relevant for

the system, and to track trajectories of these relevant variables.

Most models assume that the relevant variables are indeed

supplied as input. The work of Kumashiro et al. (2003) reminds

us that in fact the mirror system must be augmented by an

attentional system that can ensure that the appropriate variables

concerning agent and object are made available.

The MNS model shows how mirror neurons may learn to

recognize the hand-state trajectories (hand-object relation-

ships) for an action already within the repertoire. We have

made clear that extra machinery is required to go from a novel

observed action to a motor control regime which will satisfy it.

MOSAIC approaches this by generating a sequence of

responsibility signals representing the observed action as a

string of segments of known actions whose visual appearance

will match the observed behavior. Arbib and Rizzolatti (1997)

set forth the equation ActionZMovementCGoal to stress the

importance of seeing movements in relation to goals, rather

than treating them in isolation. Arbib (2002) then argued that

humans master complex imitation by approximating novel

actions by a combination (sequential as well as co-temporal) of

known actions, and then making improvements both by

attending to missing subactions, and by tuning and coordinat-

ing the resulting substructures. This is much the same as what

Wohlschlager, Gattis, and Bekkering (2003) call goal-directed

imitation. On their view, the imitator does not imitate the

observed movement as a whole, but rather decomposes it into

hierarchically ordered aspects (Byrne & Russon, 1998), with

the highest aspect becoming the imitator’s main goal while

others become subgoals. The main goal activates the motor

schema that is most strongly associated with the achievement

of that goal. Of course, there is no ‘magic’ in complex imitation

which automatically yields the right hierarchical decompo-

sition of a movement. Rather, it may be the success or failure of

a ‘high-level approximation’ of the observed action that leads

to attention to crucial subgoals which were not observed at first,

and thus leads, perhaps somewhat circuitously, to successful
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imitation. But the point remains that this process is in general

much faster than the time-consuming extraction of statistical

regularities in Byrne’s (2003) ‘imitation by (implicit) behavior

parsing’—we might refer to complex (goal-directed) imitation

as imitation by explicit behavior parsing. Finally, we note that

this process is postulated to result in a new motor schema

(forwardCinverse model) which may be linked to those

previously available, but which now constitutes a new action

which is henceforth available to further refinement of inverse

and forward models separate from those which have been

acquired before.

Although a decade has passed since the first reports of

mirror neurons came out, the reciprocal lack of full knowledge

(or interest) between the sides of conceptual and computational

modeling is evident. To close this gap experimentalists should

conduct experiments that involve quantitative measurement,

e.g. relating neuronal activity to synchronized kinematics

recordings of the experimenter and monkey during action

demonstration and execution. This could shed light on the

debate between those who believe a mirror neuron encodes a

specific action, and those who seek to understand how mirror

neurons may provide population codes for action-related

variables. The correlation between the discharge profiles of

mirror neurons with various visual feedback parameters will

provide modelers invaluable information to construct models

that capture neurophysiological facts. Likewise, we do not

know anything about the developmental stages of mirror

neurons. Are they innate? Probably not, so what circuitry and

adaptation mechanisms are involved? To get answers for these

questions, computational modeling that can provide a causally

complete account of mirror neurons and the larger system of

which they are part is crucial. Only then would it be possible to

develop models of motor control, imitation, mental state

inference, etc. that assign various roles to mirror neurons and

their interactions with diverse brain regions in an empirically

justified way.
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