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Fairness Versus Reason in the
Ultimatum Game

Martin A. Nowak,1* Karen M. Page,1 Karl Sigmund2,3

In the Ultimatum Game, two players are offered a chance to win a certain sum
of money. All they must do is divide it. The proposer suggests how to split the
sum. The responder can accept or reject the deal. If the deal is rejected, neither
player gets anything. The rational solution, suggested by game theory, is for the
proposer to offer the smallest possible share and for the responder to accept
it. If humans play the game, however, the most frequent outcome is a fair share.
In this paper, we develop an evolutionary approach to the Ultimatum Game.
We show that fairness will evolve if the proposer can obtain some information
on what deals the responder has accepted in the past. Hence, the evolution of
fairness, similarly to the evolution of cooperation, is linked to reputation.

The Ultimatum Game is quickly catching up
with the Prisoner’s Dilemma as a prime show-
piece of apparently irrational behavior. In the
past two decades, it has inspired dozens of
theoretical and experimental investigations.
The rules of the game are surprisingly simple.
Two players have to agree on how to split a
sum of money. The proposer makes an offer.
If the responder accepts, the deal goes ahead.
If the responder rejects, neither player gets
anything. In both cases, the game is over.
Obviously, rational responders should accept
even the smallest positive offer, since the
alternative is getting nothing. Proposers, there-
fore, should be able to claim almost the entire
sum. In a large number of human studies,
however, conducted with different incentives
in different countries, the majority of propos-
ers offer 40 to 50% of the total sum, and
about half of all responders reject offers be-
low 30% (1–6).

The irrational human emphasis on a fair
division suggests that players have preferenc-
es which do not depend solely on their own
payoff, and that responders are ready to pun-
ish proposers offering only a small share by
rejecting the deal (which costs less to them-
selves than to the proposers). But how do
these preferences come about? One possible
explanation is that the players do not grasp
that they interact only once. Humans are ac-
customed to repeated interactions. Repeating
the Ultimatum Game is like haggling over a
price, and fair splits are more likely (6–8).
Another argument is based on the view that
allowing a co-player to get a large share is
conceding a relative advantage to a direct
rival. This argument holds only for very

small groups, however: a simple calculation
shows that responders should only reject of-
fers that are less than 1/nth of the total sum,
where n is the number of individuals in the
group (9). A third explanation is based on the
idea that a substantial proportion of humans
maximize a subjective utility function differ-
ent from the payoff (10–12).

Here, we studied the Ultimatum Game
from the perspective of evolutionary game
theory (13). To discuss this model, both an-
alytically and by means of computer simula-
tions, we set the sum which is to be divided
equal to 1 and assumed that players are equal-
ly likely to be in either of the two roles. Their
strategies are given by two parameters p and
q [ [0,1]. When acting as proposer, the
player offers the amount p. When acting as
responder, the player rejects any offer smaller
than q. The parameter q can be seen as an
aspiration level. It is reasonable to assume
that the share kept by the player acting as
proposer, 1 2 p, should not be smaller than
the aspiration level, q. Therefore, only strat-
egies with p 1 q # 1 were considered (14).

The expected payoff for a player using
strategy S1 5 ( p1,q1) against a player using
S2 5 ( p2,q2) is given (up to the factor 1/2,
which we henceforth omit) by (i) 1 2 p1 1
p2, if p1 $ q2 and p2 $ q1; (ii) 1 2 p1, if p1 $
q2 and p2 , q1; (iii) p2, if p1 , q2 and p2 $
q1; and (iv) 0, if p1 , q2 and p2 , q1.

Before studying the full game, with its
continuum of strategies, let us first consider a
so-called minigame with only two possible
offers h and l (high and low), with 0 , l ,
h , 1/2 (9, 15). There are four different
strategies (l,l), (h,l), (h,h), and (l,h), which
we enumerate, in this order, by G1 to G4. G1

is the “reasonable” strategy of offering little
and rejecting nothing [for the cognoscenti: it
is the only subgame perfect Nash equilibrium
of the minigame (16)]. G2 makes a high offer
but is willing to accept a low offer. G3 is the
“fair” strategy, offering and demanding a
high share. For the sake of exposition, we

omit G4, which gets eliminated anyway. To
describe the change in the frequencies x1, x2,
and x3 of the strategies G1, G2, and G3,
respectively, we use the replicator equation.
It describes a population dynamics where
successful strategies spread, either by cultural
imitation or biological reproduction (17). Un-
der these dynamics, the reasonable strategy
G1 will eventually reach fixation. Populations
that consist only of G1 and G3 players will
converge to pure G1 or G3 populations de-
pending on the initial frequencies of the two
strategies. Mixtures of G1 and G2 players will
always tend to G1, but mixtures of G2 and G3

players are neutrally stable and subject to
random drift. Hence, starting with any mix-
ture of G1, G2, and G3 players, evolution will
always lead to a population that consists en-
tirely of G1 players (18). Reason dominates
fairness.

Let us now introduce the possibility that
players can obtain information about previ-
ous encounters. In this case, individuals
have to be careful about their reputation: if
they accept low offers, this may become
known, and the next proposer may think
twice about making a high offer. Assume,
therefore, that the average offer of an h-
proposer to an l-responder is lowered by an
amount a. Even if this amount is very
small—possibly because obtaining infor-
mation on the co-player is difficult or be-
cause the information may be considered
unreliable by h-proposers—the effect is
drastic (19). In a mixture of h-proposers
only, the fair strategy, G3 dominates. The
whole system is now bistable: depending
on the initial condition, either the reason-
able strategy G1 or the fair strategy G3

reaches fixation (Fig. 1). In the extreme
case, where h-proposers have full informa-
tion on the responder’s type and offer only
l when they can get away with it, we ob-
serve a reversal of the game: G3 reaches
fixation whereas mixtures between G1 and
G2 are neutrally stable. Intuitively, this re-
versal occurs because it is now the respond-
er who has the initiative: it is up to the
proposer to react.

For 0 , a , h 2 l, G3 risk-dominates
(20): this implies that whenever stochastic
fluctuations are added to the population (by
allowing mutation, for instance, or spatial
diffusion), the fair strategy will supersede the
reasonable one in the long run (Fig. 1).

Let us now study the evolutionary dy-
namics on the continuum of all strategies,
S( p,q). Consider a population of n players.
In every generation, several random pairs
are formed. Suppose each player will be
proposer on average r times and be re-
sponder the same number of times. The
payoffs of all individuals are then summed
up. For the next generation, individuals
leave a number of offspring proportional to
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their total payoff. Offspring adopt the strat-
egy of their parents, plus or minus some
small random value. Thus, this system in-
cludes selection and mutation. As before,
we can interpret these dynamics as denot-
ing biological or cultural reproduction. We
observe that the evolutionary dynamics
lead to a state where all players adopt
strategies that are close to the rational strat-
egy, S(0,0).

Let us now add the possibility that a
proposer can sometimes obtain information
on what offers have been accepted by the
responder in the past. We stress that the
same players need not meet twice. We as-
sume that a proposer will offer, whatever is
smaller, his own p-value or the minimum
offer that he knows has been accepted by
the responder during previous encounters.
In addition, we include a small probability
that proposers will make offers that are
reduced by a small, randomly chosen
amount. This effect allows a proposer to
test for responders who are willing to ac-
cept low offers. Hence, p can be seen as a
proposer’s maximum offer, whereas q rep-
resents a responder’s minimum acceptance

level. Each accepted deal is made known to
a fraction w of all players. Thus, individu-
als who accept low offers run the risk of
receiving reduced offers in the future. In
contrast, the costly act of rejecting a low
offer buys the reputation that one accepts
only fair offers. Figure 2 shows that this
process can readily lead to the evolution of
fairness. The average p and q values de-
pend on the number of games per individ-
ual, r, and the fraction w of individuals who
find out about any given interaction. Larger
r and w values lead to fairer solutions.

Hence, evolutionary dynamics, in accor-
dance with the predictions of economic game
theory, lead to rational solutions in the basic
Ultimatum Game. Thus, one need not assume
that the players are rational utility-maximiz-
ers to predict the prevalence of low offers and
low aspiration levels. Whatever the evolu-
tionary mechanism—learning by trial and er-
ror, imitation, inheritance—it always pro-
motes the same reasonable outcome: low of-
fers and low demands.

If, however, we include the possibility
that individuals can obtain some informa-
tion on which offers have been accepted by

others in previous encounters, the outcome
is dramatically different. Under these cir-
cumstances, evolutionary dynamics tend to
favor strategies that demand and offer a fair
share of the prize. This effect, which does
not require the same players to interact
twice, suffices to keep the aspiration levels
high. Accepting low offers damages the
individual’s reputation within the group
and increases the chance of receiving re-
duced offers in subsequent encounters. Re-
jecting low offers is costly, but the cost is
offset by gaining the reputation of some-
body who insists on a fair offer. When
reputation is included in the Ultimatum
Game, adaptation favors fairness over rea-
son. In this most elementary game, infor-
mation on the co-player fosters the emer-
gence of strategies that are nonrational, but
promote economic exchange. This agrees
well with findings on the emergence of
cooperation (21) or of bargaining behavior
(22). Reputation based on commitment and
communication plays an essential role in
the natural history of economic life (23).

Fig. 1. Fairness dominates in the
mini-ultimatum game if propos-
ers have some chance of finding
out whether responders might
accept a low offer. There are
three strategies: the reasonable
strategy G1(l,l ) offers and ac-
cepts low shares; the fair strate-
gy G3(h,h) offers and accepts
high shares; the strategy G2(h,l )
offers high shares but is willing
to accept low shares. If there is
no information on the respond-
er’s type, a 5 0, then the reasonable strategy G1 dominates the overall dynamics: G1 and G3 are
bistable, G2 and G3 are neutral, but G1 dominates G2. If there is some possibility of obtaining
information on the responder’s type, then we assume that h-proposers will reduce their average
offers to l -responders by an amount a. For 0 , a , h 2 l , both G1 and G3 dominate G2. G1 and
G3 are still bistable, but the fair strategy has the larger basin of attraction; adding noise or spatial
effects will favor fairness. In the special limit, a 5 h 2 l, which can be interpreted as having full
information on the responders type, the game is reversed: G1 and G2 are neutral, whereas G3
dominates G2; G3 is the only strict Nash solution. The figure shows the flow of evolutionary game
dynamics (17) on the edge of the simplex S3 (18, 19).

Fig. 2. Fairness evolves in computer simula-
tions of the Ultimatum Game, if a sufficiently
large fraction w of players is informed about
any one accepted offer. Each player is defined
by an S( p,q) strategy with p 1 q # 1 (14). In
any one interaction, a random pair of players
is chosen. The proposer will offer—whatever
is smaller— either his own p value or the
lowest amount that he knows was accepted
by the responder during previous interac-
tions. In addition, there is a small (0.1) prob-
ability that the responder will offer his p
value minus some random number between 0
and 0.1; this is to test for players who are
willing to accept reduced offers. The total
population size is n 5 100. Individuals repro-
duce proportional to their payoff. Offspring
adopt their parent’s p and q values plus a
random number from the interval (20.005,
10.005). There are on average r 5 50 rounds
per player per generation in both roles. Equi-
librium p and q values are shown averaged
over 105 generations. For w 5 0 (no infor-
mation about previous interactions), the p
and q values converge close to the rational
solution S(0,0); they are not exactly zero
because mutation introduces heterogeneity,
and the best response to a heterogeneous
population is not S(0,0). For increasing values
of w, there is convergence close to the fair
solution, S(1/2,1/2), with q being slightly
smaller than p.

Table 1. Payoff matrix for the mini-ultimatum game.

G1 G2 G3 G4

G1 1 1 2 l 1 h h l
G2 1 2 h 1 l 1 1 1 2 h 1 l
G3 1 2 h 1 1 1 2 h
G4 1 2 l 1 2 l 1 h h 0

Table 2. Payoff matrix for the mini-ultimatum game with information.

G1 G2 G3 G4

G1 1 1 2 l 1 h 2 a h 2 a l
G2 1 2 h 1 l 1 a 1 1 2 a 1 2 h 1 l
G3 1 2 h 1 a 1 1 a 1 1 2 h
G4 1 2 l 1 2 l 1 h h 0
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