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The most important function of selective visual atten-
tion is to direct our gaze rapidly towards objects of
interest in our visual environment1–9. This ability to
orientate rapidly towards salient objects in a cluttered
visual scene has evolutionary significance because it
allows the organism to detect quickly possible prey,
mates or predators in the visual world. A two-compo-
nent framework for attentional deployment has
recently emerged, although the idea dates back to
William James1, the father of American psychology.
This framework suggests that subjects selectively
direct attention to objects in a scene using both bot-
tom-up, image-based saliency cues and top-down,
task-dependent cues.

Some stimuli are intrinsically conspicuous or
salient in a given context. For example, a red dinner
jacket among black tuxedos at a sombre state affair, or a
flickering light in an otherwise static scene, automati-
cally and involuntarily attracts attention. Saliency is
independent of the nature of the particular task, oper-
ates very rapidly and is primarily driven in a bottom-
up manner, although it can be influenced by contextu-
al, figure-ground effects. If a stimulus is sufficiently

salient, it will pop out of a visual scene. This suggests
that saliency is computed in a pre-attentive manner
across the entire visual field, most probably in terms of
hierarchical CENTRE-SURROUND MECHANISMS. The speed of
this saliency-based form of attention is on the order of
25 to 50 ms per item.

The second form of attention is a more deliberate
and powerful one that has variable selection criteria,
depending on the task at hand (for example, ‘look for
the red, horizontal target’). The expression of this top-
down attention is most probably controlled from high-
er areas, including the frontal lobes, which connect back
into visual cortex and early visual areas. Such volitional
deployment of attention has a price, because it takes
time — 200 ms or more, which rivals the time needed
to move the eyes. So, whereas certain features in the
visual world automatically attract attention and are
experienced as ‘visually salient’, directing attention to
other locations or objects requires voluntary ‘effort’.
Both mechanisms can operate in parallel.

Attention implements an information-processing
bottleneck that allows only a small part of the incoming
sensory information to reach short-term memory and
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focus on biologically plausible computational modelling
of a saliency-based form of focal bottom-up attention.
Much less is known about the neural instantiation of the
top-down, volitional component of attention16,17. As this
aspect of attention has not been modelled in such detail,
it is not our primary focus here.

The control of focal visual attention involves an intri-
cate network of brain areas (BOX 1). In a first approxima-
tion, selecting where to attend next is primarily con-
trolled by the DORSAL STREAM of visual processing18,
although object recognition in the VENTRAL STREAM can
bias the next attentional shift through top-down control
(see below). The basis of most computational models
are the experimental results obtained using the visual
search paradigm of Treisman and colleagues, in particu-
lar the distinction between pop-out and conjunctive
searches developed in the early 1980s2.

The first explicit, neurally plausible computational
architecture for controlling visual attention was pro-
posed by Koch and Ullman19 in 1985 (FIG. 1) (for an ear-
lier related model of vision and eye movements, see
Didday and Arbib20). Koch and Ullman’s model was
centred around a ‘saliency map’, that is, an explicit two-
dimensional topographical map that encodes stimulus
conspicuity, or saliency, at every location in the visual
scene. The saliency map receives inputs from early visual
processing, and provides an efficient control strategy by
which the focus of attention simply scans the saliency
map in order of decreasing saliency. Following this basic
architecture, we concentrate on five essential compo-

visual awareness10,11. So, instead of attempting to fully
process the massive sensory input (estimated to be on
the order of 107–108 bits per second at the optic nerve)
in parallel, a serial strategy has evolved that achieves
near real-time performance despite limited computa-
tional capacity. Attention allows us to break down the
problem of understanding a visual scene into rapid
series of computationally less demanding, localized
visual analysis problems. In addition to these orientating
and scene analysis functions, attention is also character-
ized by a feedback modulation of neural activity for the
visual attributes and at the location of desired or select-
ed targets. This feedback is believed to be essential for
binding the different visual attributes of an object, such
as colour and form, into a unitary percept2,12,13. By this
account, attention not only serves to select a location of
interest but also enhances the cortical representation of
objects at that location. As such, focal visual attention
has been compared to a ‘stagelight’, successively illumi-
nating different players as they take centre stage14.
Finally, attention is involved in triggering behaviour,
and is consequently intimately related to recognition,
planning and motor control15.

Developing computational models that describe
how attention is deployed within a given visual scene
has been an important challenge for computational
neuroscience. The potential application of these archi-
tectures in artificial vision for tasks such as surveillance,
automatic target detection, navigational aids and robot-
ics control provides additional motivation. Here, we

Box 1 | Neuronal mechanisms for the control of attention

The brain regions that participate in the deployment of visual
attention include most of the early visual processing area. A
simplified overview of the main brain areas involved is shown
in the figure.Visual information enters the primary visual
cortex via the lateral geniculate nucleus (not shown), although
weaker pathways, for example, to the superior colliculus (SC),
also exist. From there, visual information progresses along
two parallel hierarchical streams. Cortical areas along the
‘dorsal stream’ (including the posterior parietal cortex; PPC)
are primarily concerned with spatial localization and
directing attention and gaze towards objects of interest in the
scene. The control of attentional deployment is consequently
believed to mostly take place in the dorsal stream. Cortical
areas along the ‘ventral stream’ (including the inferotemporal
cortex; IT) are mainly concerned with the recognition and
identification of visual stimuli. Although probably not
directly concerned with the control of attention, these ventral-
stream areas have indeed been shown to receive attentional
feedback modulation, and are involved in the representation
of attended locations and objects (that is, in what passes
through the attentional bottleneck). In addition, several
higher-function areas are thought to contribute to attentional
guidance, in that lesions in those areas causes a condition of ‘neglect’ in which patients seem unaware of parts of their
visual environment (see REF. 111 for an overview of the regions involved).

From a computational viewpoint, the dorsal and ventral streams must interact, as scene understanding involves both
recognition and spatial deployment of attention. One region where such interaction has been extensively studied is the
prefrontal cortex (PFC), which is bidirectionally connected to both the PPC and the IT (see REF. 15). So, in addition to
being responsible for planning of action (such as the execution of eye movements through the SC), the PFC has an
important role in modulating, in a feedback manner, the dorsal and ventral processing streams.
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are tuned to simple visual attributes such as INTENSITY

CONTRAST, COLOUR OPPONENCY, orientation, direction and
velocity of motion, or stereo disparity at several spatial
scales. NEURONAL TUNING becomes increasingly more spe-
cialized with the progression from low-level to high-
level visual areas, such that higher-level visual areas
include neurons that respond only to corners or junc-
tions22, shape-from-shading cues23,24 or views of specific
real-world objects25–28.

Early visual features are computed pre-attentively in
a massively parallel manner across the entire visual
field (note, however, that we do not imply here that
such computation is purely feedforward, as object
recognition and attention can influence it29). Indeed,
neurons fire vigorously in these early areas even if the

nents of any model of bottom-up attention. These are
the pre-attentive computation of early visual features
across the entire visual scene, their integration to yield a
single attentional control command, the generation of
attentional scanpaths, the interaction between covert
and overt attentional deployment (that is, eye move-
ments) and the interplay between attention and scene
understanding.

Pre-attentive computation of visual features
The first processing stage in any model of bottom-up
attention is the computation of early visual features. In
biological vision, visual features are computed in the
retina, superior colliculus, lateral geniculate nucleus and
early visual cortical areas21. Neurons at the earliest stages
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Figure 1 | Flow diagram of a typical model of the control of bottom-up attention. This diagram is based on Koch and Ullman’s19 hypothesis that a centralized
two-dimensional saliency map can provide an efficient control strategy for the deployment of attention on the basis of bottom-up cues. The input image is
decomposed through several pre-attentive feature detection mechanisms (sensitive to colour, intensity and so on), which operate in parallel over the entire visual
scene. Neurons in the feature maps then encode for spatial contrast in each of those feature channels. In addition, neurons in each feature map spatially compete for
salience, through long-range connections that extend far beyond the spatial range of the classical receptive field of each neuron. After competition, the feature maps
are combined into a unique saliency map, which topographically encodes for saliency irrespective of the feature channel in which stimuli appeared salient. The saliency
map is sequentially scanned by attention through the interplay between a winner-take-all network (which detects the point of highest saliency at any given time) and
inhibition-of-return (which suppresses the last attended location from the saliency map, so that attention can focus onto the next most salient location). Top-down
attentional bias and training can modulate, top-down, most stages of this bottom-up model.

INTENSITY CONTRAST

Spatial difference (for example,
detected by centre-surround
mechanisms) in light intensity
(luminance) in a visual scene.
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Spatial difference in colours,
computed in the brain using
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Property of visual neurons to
only respond to certain classes of
stimuli (for example, vertically
orientated bars).
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Another interesting approach consists of implementing
detectors that respond best to those features that are
present at the locations visited by observers while free-
viewing images50,51. For instance, Zetzsche et al.50,52

showed using an eye-tracking device how the eyes pref-
erentially fixate regions with multiple superimposed
orientations such as corners, and derived nonlinear
operators that specifically detect those regions.

Irrespective of the method used for early feature
detection, several fundamental computational princi-
ples have emerged from both experimental and model-
ling studies. First, different features contribute with
different strengths to perceptual saliency53, and this rel-
ative feature weighting can be influenced depending
on the demands of the task through top-down modu-
lation38,54 and through training55–58. Second, at a given
visual location, there is little evidence for strong inter-
actions across different visual modalities, such as
colour and orientation53. This is not too surprising
from a computational viewpoint, as one would other-
wise expect these interactions to also be subject to
training and top-down modulation, and this would
result in the ability to learn to detect conjunctive tar-
gets efficiently, which we lack2,59. Within a given broad
feature dimension, however, strong local interactions
between filters sensitive to different properties of that
feature (for example, between different orientations
within the broad orientation feature) have been pre-
cisely characterized, both in physiology60 and psy-
chophysics45. Less evidence exists for within-feature
competition across different spatial scales45.

Last and most importantly, what seems to matter in
guiding bottom-up attention is feature contrast rather
than local absolute feature strength61. Indeed, not only
are most early visual neurons tuned to some type of
local spatial contrast (such as centre-surround or orien-
tated edges), but neuronal responses are also strongly
modulated by context, in a manner that extends far
beyond the range of the classical receptive field (cRF)62.
In a first approximation, the computational conse-
quences of non-classical surround modulation are
twofold. First, a broad inhibitory effect is observed
when a neuron is excited with its preferred stimulus but
that stimulus extends beyond the neuron’s cRF, com-
pared with when the stimulus is restricted to the cRF
and the surrounding visual space is either empty or
contains non-preferred stimuli63–65. Second, long-range
excitatory connections in V1 seem to enhance respons-
es of orientation-selective neurons when stimuli extend
to form a contour66,67. These interactions are thought to
be crucial in perceptual grouping68,69. The net result is
that activity in early cortical areas is surprisingly sparse
when monkeys are free-viewing natural scenes70, com-
pared with the vigorous responses that can be elicited
by small laboratory stimuli presented in isolation.

So, the computation of early visual features entails
more than localized operations limited to the cRF of
visual neurons, as local responses crucially depend on
longer-range contextual influences. To explicitly
demonstrate this idea with a computer model, Itti et
al.71 compared purely local spatial frequency ‘richness’

animal is attending away from the receptive field at the
site of recording30, or is anaesthetized31. In addition,
several psychophysical studies, as well as introspection,
indicate that we are not blind to the world outside the
focus of attention. Thus we can make simple judgments
on objects to which we are not attending32, although
those judgments are limited and less accurate than
those made in the presence of attention2,12,13,33–36. So
although attention does not seem to be mandatory for
early vision, it has recently become clear that attention
can vigorously modulate, in a top-down manner, early
visual processing, both in a spatially-defined and in a
non-spatial but feature-specific manner37–39. This mod-
ulatory effect of attention has been described as
enhanced gain30, biased40,41 or intensified33 competition,
or enhanced spatial resolution34, or as modulated back-
ground activity42, effective stimulus strength43 or
noise44. That attention can modulate early visual pro-
cessing in a manner equivalent to an increase of stimu-
lus strength43 is computationally an important finding,
which directly supports the metaphor of attention as a
stagelight. Of particular interest from a computational
perspective is a recent study by Lee et al.33 that mea-
sured PSYCHOPHYSICAL THRESHOLDS for three simple pat-
tern-discrimination tasks (contrast, orientation and
spatial-frequency discriminations) and two spatial-
masking tasks (32 thresholds in total). A dual-task para-
digm was used to measure thresholds either when
attention was fully available to the task of interest, or
when it was less available because it was engaged else-
where by a concurrent attention-demanding task. The
mixed pattern of attentional modulation observed in
the thresholds (up to threefold improvement in orien-
tation discrimination with attention, but only 20%
improvement in contrast discrimination) can be quan-
titatively accounted for by a computational model. This
model predicts that attention activates a winner-take-
all competition among neurons tuned to different ori-
entations and spatial frequencies within one cortical
HYPERCOLUMN33,45, a proposition that has recently received
further experimental support46. Because feedback mod-
ulation influences the computation of bottom-up fea-
tures, models of bottom-up attention need to take this
into account. An example of a mixed bottom-up and
top-down model in which attention enhances spatial
resolution47 is discussed later.

Computational models may or may not include
explicit details about early visual feature extraction.
Models that do not are restricted to images for which
the responses of feature detectors can reasonably be
guessed. Models that do have the widest applicability to
any visual stimulus, including natural scenes. Computer
implementations of early visual processes are often
motivated by an imitation of biological properties. For
example, the response of a neuron tuned to INTENSITY CEN-

TRE-SURROUND CONTRAST can be computed by convolving
the luminance channel of the input image by a DIFFER-

ENCE-OF-GAUSSIANS (Mexican Hat) filter. Similarly, the
responses of orientation-selective neurons are usually
obtained through convolution by GABOUR WAVELETS, which
resemble biological IMPULSE RESPONSE FUNCTIONS48,49.

PSYCHOPHYSICAL THRESHOLDS

Smallest difference between two
visual stimuli (for example,
vertical versus tilted bar) than
can reliably (that is, with a given
probability of error) be reported
by an observer.

HYPERCOLUMN

A patch of cortex including
neurons responding to all
orientations and many spatial
scales, all for a single location in
the visual field.

INTENSITY CENTRE-SURROUND

CONTRAST

Author: please define

DIFFERENCE-OF-GAUSSIAN

A filter obtained by taking the
difference between a narrow
Gaussian distribution (the
excitatory centre) and a broader
Gaussian distribution with same
mean (the inhibitory surround).

GABOUR WAVELET

Product of a sinusoidal grating
and a two-dimensional Gaussian
function.

IMPULSE RESPONSE FUNCTION

The response of a filter to a
single point (Dirac) stimulus.
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gy for focusing attention to salient locations without
consideration of the detailed feature responses that
made those locations salient.

Not surprisingly, many successful models for the
bottom-up control of attention are built around a
saliency map. What differentiates the models, then, is
the strategy used to prune the incoming sensory input
and extract saliency. In an influential model mostly
aimed at explaining visual search experiments, Wolfe54

hypothesized that the selection of relevant features for a
given search task could be performed top-down,
through spatially-defined and feature-dependent
weighting of the various feature maps. Saliency is then
computed in this model as the likelihood that a target
will be present at a given location, based both on bot-
tom-up feature contrast and top-down feature weight.
This view has recently received experimental support
from the many studies of top-down attentional modu-
lation mentioned earlier.

Tsotsos and colleagues72 implemented attentional
selection using a combination of a feedforward bottom-
up feature extraction hierarchy and a feedback selective
tuning of these feature extraction mechanisms. In this
model, the target for attention focusing is selected at
the top level of the processing hierarchy (the equiva-
lent of a saliency map), on the basis of feedforward
activation and possible additional top-down biasing
for certain locations or features. That location is then
propagated back through the feature extraction hierar-
chy, through the activation of a cascade of winner-
take-all networks embedded within the bottom-up
processing pyramid. Spatial competition for saliency is
thus refined at each level of processing, as the feedfor-
ward paths not contributing to the winning location
are pruned (resulting in the feedback propagation of
an ‘inhibitory beam’ around the selected target).

Milanese and colleagues73 used a relaxation process
to minimize an energy measure consisting of four
terms: first, minimizing inter-feature incoherence
favours those regions that excite several feature maps;
second, minimizing intra-feature incoherence favours
grouping of initially spread activity into small num-
bers of clusters; third, minimizing total activity in each
map enforces intra-map spatial competition for salien-
cy; and last, maximizing the dynamic range of each
map ensures that the process does not converge
towards uniform maps at some average value.
Although the biological plausibility of this process
remains to be tested, it has yielded a rare example of a
model that can be applied to natural colour images.

Itti et al.71,74 consider a purely bottom-up model, in
which spatial competition for saliency is directly mod-
elled after non-classical surround modulation effects.
The model uses an iterative spatial competition scheme
with early termination. At each iteration, a feature map
receives additional inputs from the convolution of itself
by a large difference-of-Gaussians filter. The result is
half-wave rectified, a nonlinear process that ensures that
the locations losing the competition are entirely elimi-
nated. The net effect of this competitive process is similar
to a winner-take-all process with limited inhibitory

(as measured by computing local Fourier components
with a magnitude above a certain threshold) with a
saliency measure that included broad non-classical sur-
round inhibition. They designed images with uniform-
ly rich spatial frequency content (using colour speckle
noise), but containing a perceptually salient target.
Although the target was undifferentiated from its sur-
round in terms of spatial frequency content, it was cor-
rectly detected by the mechanism including contextual
competition.

Pre-attentive mechanisms that extract early visual
features across the entire visual scene should not be
overlooked in future modelling efforts. Indeed, it has
recently become clear that early vision is far from being
a passive and highly prototyped image-processing front-
end that can be accurately modelled by linear filtering
operations. Perceptually, whether a given stimulus is
salient or not cannot be decided without knowledge of
the context in which the stimulus is presented. So com-
putationally, one must also account for nonlinear inter-
actions across distant spatial locations, which mediate
contextual modulation of neuronal responses.

Saliency
We have seen how the early stages of visual processing
decompose the incoming visual input through an
ensemble of feature-selective filtering processes
endowed with contextual modulatory effects. The ques-
tion that arises next is how to control a single attentional
focus based on multiple neuronal networks that encode
the incoming sensory signals using multiple representa-
tions. To solve this problem, most models of bottom-up
attention follow that of Koch and Ullman19 and hypoth-
esize that the various feature maps feed into a unique
‘saliency’ or ‘master’ map2,19. The saliency map is a scalar,
two-dimensional map whose activity topographically
represents visual saliency, irrespective of the feature
dimension that makes the location salient. That is, an
active location in the saliency map encodes the fact that
this location is salient, no matter whether it corresponds
to a red object in a field of green objects, or to a stimulus
moving towards the right while others move towards
the left. On the basis of this scalar topographical repre-
sentation, biasing attention to focus onto the most
salient location is reduced to drawing attention towards
the locus of highest activity in the saliency map.

Computationally, an explicit representation of
saliency in a dedicated map reinforces the idea that
some amount of spatial selection should be performed
during pre-attentive feature detection. Otherwise, the
divergence from retinal input to many feature maps
could not be followed by a convergence into a saliency
map without ending up with a representation in the
saliency map that is as complex, cluttered and difficult
to interpret as the original image. On the basis of this
divergence, selection and convergence process, a loca-
tion is defined as salient if it wins the spatial competi-
tion in one or more feature dimensions at one or more
spatial scales. The saliency map then encodes for an
aggregate measure of saliency not tied to any particular
feature dimension, providing an efficient control strate-
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and by a saliency map, but instead is implicitly coded in
a distributed modulatory manner across the various
feature maps. Attentional selection is then performed
on the basis of top-down enhancement of the feature
maps relevant to a target of interest and extinction of
those that are distracting, but without an explicit com-
putation of salience. At least one model successfully
applied this strategy to synthetic stimuli76; note, howev-
er, that such top-down biasing (also used in Wolfe’s
Guided Search model to select the weights of various
feature contributions to the saliency map) requires that
a specific search task be performed for the model to
yield useful predictions.

Although originally a theoretical construct support-
ed by sparse experimental evidence, the idea of a
unique, centralized saliency map seems today to be chal-
lenged by the apparent existence of multiple areas that
encode stimulus saliency in the visual system of the
monkey. These regions include areas in the lateral intra-
parietal sulcus of the posterior parietal cortex (FIG. 2), the
frontal eye fields, the inferior and lateral subdivisions of
the pulvinar and the superior colliculus77–82.

One possible explanation for this multiplicity could
be that some of the neurons in these areas are indeed
concerned with the explicit computation of saliency, but
are located at different stages along the sensorimotor
processing stream. For example, other functions have
also been assigned to the posterior parietal cortex, such
as that of mapping retinotopic to head-centred coordi-
nate systems and of memorizing targets for eye or arm
movements83,84. So more detailed experimental studies
are needed to reveal subtle differences in the functions
and representations found in these brain areas. Most
probably, the main difference between these brain
regions is the balance between their role in perception
and action15,82. Meanwhile, it is worth noting that, in
addition to the physiological findings just mentioned,
recent psychophysical results also support the idea of an
explicit encoding of saliency in the brain85.

Attentional selection and inhibition-of-return
The saliency map guides where the attentional stagelight
or spotlight86 is to be deployed, that is, to the most salient
location in the scene. One plausible neural architecture
to detect the most salient location is that of a winner-
take-all network, which implements a neurally distrib-
uted maximum detector19,87. Using this mechanism,
however, raises another computational problem: how
can we prevent attention from permanently focusing
onto the most active (winner) location in the saliency
map? One efficient computational strategy, which has
received experimental support, consists of transiently
inhibiting neurons in the saliency map at the currently
attended location.After the currently attended location is
thus suppressed, the winner-take-all network naturally
converges towards the next most salient location, and
repeating this process generates attentional scanpaths19,71.

Such inhibitory tagging of recently attended loca-
tions has been widely observed in human psy-
chophysics as a phenomenon called ‘inhibition-of-
return’ (IOR)88,89. A typical psychophysical experiment

spread, and allows only a sparse population of locations
to remain active. After competition, all feature maps are
simply summed to yield the scalar saliency map at the
core of the model. Because it includes a complete front-
end, this model has been widely applied to the analysis of
natural colour scenes. Experimental results include the
reproduction by the model of human behaviour in clas-
sical visual search tasks (popout versus conjunctive
search, and search asymmetries2,74), a demonstration of
very robust saliency computation with respect to image
noise71, the automatic detection of traffic signs and other
salient objects in natural environments58 and the detec-
tion of pedestrians in natural scenes (see below for pre-
liminary results). Finally, the performance of the model
at detecting military vehicles in the high-resolution
Search2 NATO database of colour rural scenes75 exceed-
ed human performance in terms of the estimated num-
ber of locations that need to be visited by the attentional
searchlight before the target is located74.

In view of the numerous models based on a saliency
map, it is important to note that postulating centralized
control based on such a map is not the only computa-
tional alternative for the bottom-up guidance of atten-
tion. In particular, Desimone and Duncan10 argued that
saliency is not explicitly represented by specific neurons

a  Stimulus appears in RF b  Stimulus brought into RF by saccade

RF2

20° 

Recent onset stimulusStable stimulus

50 Hz

V
H

FP2

RF1
FP1

200 ms

RF
FP

Figure 2 | Recording saliency. [Author: OK?] Once a purely computational hypothesis, the
idea that saliency might be explicitly encoded by specific neurons in the cortex has recently
received experimental support from many electrohpysiological studies77–82. How can one design
an experiment that specifically tests whether a neuron responds to the saliency of a stimulus,
rather than to the mere presence of that stimulus in the visual environment? In a particularly
interesting experiment, Gottlieb and colleagues80, recording from the lateral intraparietal sulcus
of the awake monkey, found neurons that responded to visual stimuli only when those stimuli
were made salient (by rapidly flashing them on a computer screen), but not otherwise. Their
experiment cleverly used the retinotopic nature of the receptive fields of these neurons to bring a
stimulus into their receptive field (RF) through a saccadic eye movement. a | In the control
condition, a stimulus is presented in the RF of the neuron being recorded from, and elicits a
response. That response could be simply visual, or indicating the saliency of this stimulus
suddenly appearing in the visual field. b | To differentiate between these possibilities, two
additional experiments were designed to be identical for the neuron of interest: a stimulus
entered the RF through a saccade. However, a vigorous response was observed only when the
stimulus had been made salient shortly before the beginning of the trial (by flashing it on and off
while it still was outside the RF of the neuron; ‘recent onset’ condition). [Author: please define
FP] (Adapted with permission from REF. 80 © (1998) Macmillan Magazines Ltd.)



NATURE REVIEWS | NEUROSCIENCE VOLUME 2 | FEBRUARY 2001 | 7

R E V I E W S

body can move (BOX 2). This frame-of-reference prob-
lem should be accounted for in computational models.
Note that the idea of IOR is not necessarily contradicted
by the recent findings of Horowitz and Wolfe98 that
visual search does not seem to involve memory: when
elements of a search array were randomly reorganized
at short time intervals while subjects were searching for
a specific target, search efficiency was not degraded
compared with when the search array remained station-
ary. Although these results preclude perfect memoriza-
tion of all previously attended locations (otherwise,
search on a stable array should be more efficient than
on a constantly changing array), they do not preclude
that the positions of the last few visited items were
remembered, in accordance with the limited lifespan
reported for IOR90.

Although simple in principle, IOR is computational-
ly a very important component of attention, in that it
allows us — or a model — to rapidly shift the attention-
al focus over different locations with decreasing saliency,
rather than being bound to attend only to the location
of maximal saliency at any given time. The role of IOR
in active vision and overt attention also poses challenges
that will need to be addressed in more detail by future
models (BOX 2).

Attention and recognition
So far, we have reviewed computational modelling and
supporting experimental evidence for a basic architec-
ture concerned with the bottom-up control of atten-
tion: early visual features are computed in a set of topo-
graphical feature maps; spatial competition for saliency
prunes the feature responses to only preserve a handful
of active locations; all feature maps are then combined
into a unique scalar saliency map; and, finally, the
saliency map is scanned by the focus of attention
through the interplay between winner-take-all and IOR.
Although such a simple computational architecture
might accurately describe how attention is deployed
within the first few hundreds of milliseconds after the
presentation of a new scene, it is obvious that a more
complete model of attentional control must include
top-down, volitional biasing influences as well. The
computational challenge, then, lies in the integration of
bottom-up and top-down cues, such as to provide
coherent control signals for the focus of attention, and
in the interplay between attentional orientating and
scene or object recognition.

One of the earliest models that combines object
recognition and attention is MORSEL99, in which atten-
tional selection was shown to be necessary for object
recognition. This model is applied to the recognition of
words processed through a recognition hierarchy.
Without attentional selection, the representations of
several words in a scene would conflict and confuse that
recognition hierarchy, yielding multiple superimposed
representations at the top level. The addition of a top-
down attentional selection process allowed the model to
disambiguate recognition by focusing on one word at a
time. Another early model that is worth mentioning
here is described in REF. 100.

to evaluate IOR consists of performing speeded local
pattern discriminations at various locations in the
visual field; when a discrimination is performed at a
location to which the observer has been previously
cued, reaction times are slightly, but significantly, high-
er than at locations not previously visited90. These
results indicate that visual processing at recently
attended locations might be slower, possibly owing to
some inhibitory tagging at attended locations. Several
authors have specifically isolated an attentional com-
ponent of IOR in addition to a motor (response delay)
component91–93.

Computationally, IOR implements a short-term
memory of the previously visited locations and allows
the attentional selection mechanism to focus instead on
new locations. The simplest implementation of IOR
consists of triggering transient inhibitory conductances
in the saliency map at the currently attended location74.
However, this only represents a coarse approximation of
biological IOR, which has been shown to be object-
bound, so that it should track and follow moving
objects, and compensate for a moving observer as
well94–97. The frame of reference in which IOR is
expressed is an important issue because the eyes and the

Box 2 | Attention and eye movements

Most of the models and experiments reviewed here are concerned with covert attention,
that is, shifts of the focus of attention in the absence of eye movements. In normal
situations, however, we move our eyes 3–5 times per second (that is, 150,000 to 250,000
times every day), to align locations of interest with our foveas. Overt and covert attention,
however, are closely related, as revealed by psychophysical112–115 physiological79,81,83,116

and imaging112,117 studies. The neuronal structures involved include the deeper parts of
the superior colliculus; parts of the pulvinar; the frontal eye fields in the macaque and its
homologue in humans, the precentral gyrus; and areas in the intraparietal sulcus in the
macaque and around the intraparietal and postcentral sulci and adjacent gyri in humans.
An example of overlapping functionality in humans is the study by Hoffman and
Subramaniam114. They designed an experiment in which subjects performed a saccade
just preceded by a target detection task; the greater accuracy found when the target to be
detected appeared at the endpoint location of the saccade suggests that covert attention
had been deployed to that endpoint in preparation to the saccade [Author: please clarify
this sentence] .

For models, the addition of eye movements poses several additional computational
challenges. Of particular interest is the need for compensatory mechanisms to shift the
saliency map (typically in retinotopic coordinates) as eye movements occur. Dominey
and Arbib118 proposed a biologically plausible computational architecture that could
perform such dynamic remapping in posterior parietal cortex (PPC). They noted that
eye velocity signals have not been found in PPC; however, cells modulated by eye
position have been reported83. They thus devised an iterative scheme to shift the
contents of the saliency map according to the difference between current eye position
and a temporally damped eye position signal. Their algorithm builds a convolution
kernel from the difference between current and damped eye positions, which, when
applied to the saliency map, translates it in the direction opposite to that difference. A
related approach was proposed by Pouget and Sejnowski84, in which the observed
modulation of neuronal responses in PPC by retinal location and eye position (‘gain
field’80) is modelled by a set of basis functions, then used to transform from retinotopic
to head-centred coordinates.

The interaction between overt and covert attention is particularly important for models
concerned with visual search119–121. Further modelling of such interactions promises a
better understanding of many mechanisms, including saccadic suppression, dynamic
remapping of the saliency map and inhibition of return, covert pre-selection of targets
for overt saccades, and the online understanding of complex visual scenes.
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scene or object to be recognized. When presented with a
new image, the model starts by selecting candidate scan-
paths by [Author: OK?] matching bottom-up features in
the image to those stored in the ‘what’ memory. For each
candidate scanpath, the model deploys attention accord-
ing to the directives in the ‘where’ memory and com-
pares the local contents of the ‘what’ memory at each
fixation with the local image features. This model can
recognize complex greyscale scenes and faces in a trans-
lation-, rotation- and scale-independent manner.

Deco and Zihl have recently proposed another
model that combines attentional selection and object
recognition47. Their model starts by selecting candidate
object locations bottom-up through a coarse-scale
analysis of the image. An attentional mechanism scans
the candidate locations in a serial fashion and performs
object recognition at progressively finer scales until a
sufficient recognition score is obtained for an object
stored in memory. This model has been sucessfully
applied to psychophysical experiments that show atten-
tional enhancement of spatial resolution (see also REFS

34,103 for related experiments and modelling).
A more extreme view is expressed by the ‘scanpath

theory’ of Stark104, in which the control of eye move-
ments is almost exclusively under top-down control.
The theory proposes that what we see is only remotely
related to the patterns of activation in our retinas. This is
suggested by our permanent illusion of vivid perception
over the entire field of view, although only the central
two degrees of our foveal vision provide crisp sampling
of the visual world. Rather, the scanpath theory argues
that a cognitive model of what we expect to see is the
basis for our percept; the sequence of eye movements
that we make to analyse a scene, then, is mostly con-
trolled by our cognitive model of that scene. This theory
has had several successful applications to robotics con-
trol, in which an internal model of a robot’s working
environment was used to restrict the analysis of incom-
ing video sequences to a small number of circumscribed
regions important for a given task105.

One important challenge for combined models of
attention and recognition is finding suitable neuronal
correlates for the various components. Despite the bio-
logical inspiration in these architectures, the models
reviewed here do not relate in much detail to biological
correlates of object recognition. Although several bio-
logically plausible models have been proposed for object
recognition in the ventral ‘what’ stream (in particular,
REFS 106,107), their integration with neurobiological mod-
els concerned with attentional control in the dorsal
‘where’ stream remains an open issue. This integration
will, in particular, have to account for the increasing
experimental support for an object-based spatial focus
of attention108–110.

Summary
Here, we have discussed recent advances in the study of
biologically plausible computational models of atten-
tion, with a particular emphasis on bottom-up control
of attentional deployment. Throughout this review, we
have stressed five important computational trends that

A very interesting model that uses spatial shifts of
attention during recognition was recently provided by
Schill et al.101. Their model performs scene (or object)
recognition, using attention (or eye movements) to
focus on those parts of the scene that are most informa-
tive when disambiguating identity. To this end, a hierar-
chical knowledge tree is built through training. Here,
leaves represent identified objects, intermediary nodes
represent more general object classes and links between
nodes contain sensorimotor information used for dis-
crimination between possible objects (that is, bottom-
up feature response to be expected for particular points
in the object and eye movements targeted at those
points). During the iterative recognition of an object,
the system programs its next fixation towards the loca-
tion that will maximize the gain of information about
the object. This permits the model to discriminate
between the current candidate object classes (FIG. 3).

Rybak et al.102 proposed a related model, in which
scanpaths (containing motor control directives stored in
a ‘where’ memory and locally expected bottom-up fea-
tures stored in a ‘what’ memory) are learned for each

All scene and object classes

Incoming visual scene Top-down processing

Bottom-up feature 
extraction

Salient locations

Sensory input
at current eye position

Eye movement with
maximum information gain

DiamondSquare

Polygons

Rectangles

Acquired knowledge

Figure 3 | Combined model of attentional selection and object recognition. Attention
scans the scene such as to gather as much information as possible that can help discriminate
between several recognition hypotheses. The model has two main components. First, a bottom-
up feature extraction pathway extracts informative image regions from an incoming visual scene
(for example, the corners of the diamond in the present illustration). Second, a trained knowledge
base hierarchically represents object classes and encodes for both expected visual features at a
set of critical points on these objects, and motor commands to move the eyes from one critical
point to another. Recognition is then achieved by choosing for the next eye movement the one
that maximizes information gain, that is, that best prunes the tree of known objects. In the
hypothetical example shown to illustrate this idea, the first eye movement might thus go to the top
corner of the object; finding sharp edges there would then suggest that this is a polygonal
drawing. The knowledge base would then direct gaze to the most salient point directly below the
currently fixated one, as that eye movement would best discriminate between the several known
polygonal shapes; looking at the orientations of the features there, it becomes clear that the
object is a diamond rather than a square or one of several possible rectangles. (Adapted with
permission from REF. 101 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.)



NATURE REVIEWS | NEUROSCIENCE VOLUME 2 | FEBRUARY 2001 | 9

R E V I E W S

substrate. This poses serious computational problems
with respect to the frame of reference in which saliency
and IOR are computed. Recent evidence for world-cen-
tred and object-centred frames of reference need to be
integrated into models. Last, the control of attentional
deployment is intimately related to scene understanding
and object recognition. Although several computer
vision models with restricted biological plausibility have
been proposed that integrate both attentional orientat-
ing and object identification, many exciting research
challenges still lie in attempting to provide a more com-
plete account of the dorsal and ventral processing
streams in primate brains.

Controlling where attention should be deployed is
not an autonomous feedforward process. Possible
future directions for modelling work include modelling
of interactions between task demands and top-down
cues, bottom-up cues, mechanistic constraints (for
example, when eye and body movements are executed)
and neuroanatomical constraints such as feedback
modulation.

have emerged from this literature. First, saliency is
derived from low-level visual features but, more than
absolute feature strength or other detailed characteris-
tics of the features, what seems to be important for the
computation of saliency is feature contrast with respect
to the contextual surround. Second, saliency increasing-
ly seems to be a quantity that is coded explicitly in cor-
tex separate from the visual features. This reinforces the
once hypothetical concept of an explicit saliency map.
Furthermore, several models have demonstrated the
computational usefulness and plausibility of such an
explicit map by successfully reproducing the behaviour
of humans and monkeys in search tasks. Meanwhile,
neural analogues of the saliency map are being found at
multiple locations in the visual system of the macaque,
hence posing a new challenge of integration of these
many maps to yield unitary behaviour. Third, attention
will not shift unless the currently attended (most
salient) location is somehow disabled (otherwise, any
model looking for saliency will keep coming back to the
most salient location). IOR is consequently an essential
computational component of attention and, indeed, it
has been recently described as a complex, object-based
and dynamically adaptive process that needs to be better
modelled. Fourth, covert attention and eye movements
are increasingly believed to share a common neuronal
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Summary
• We review recent work on computational models of focal visual attention, with emphasis on the bottom-up, saliency- or image-based control of

attentional deployment. We highlight five important trends that have emerged from the computational literature:
• First, the perceptual saliency of stimuli critically depends on surrounding context; that is, a same object may or may not appear salient depending

on the nature and arrangement of other objects in the scene. Computationally, this means that contextual influences, such as non-classical sur-
round interactions, must be included in models.

• Second, a unique ‘saliency map’ topographically encoding for stimulus conspicuity over the visual scene has proved to be an efficient and plausible
bottom-up control strategy. Many successful models are based on such architecture, and electrophysiological as well as psychophysical studies have
recently supported the idea that saliency is explicitly encoded in the brain.

• Third, inhibition-of-return (IOR), the process by which the currently attended location is prevented from being attended again, is a critical ele-
ment of attentional deployment. Without IOR, indeed, attention would endlessly be attracted towards the most salient stimulus. IOR thus imple-
ments a memory of recently visited locations, and allows attention to thoroughly scan our visual environment.

• Fourth, attention and eye movements tightly interplay, posing computational challenges with respect to the coordinate system used to control
attention. Understanding the interaction between overt and covert attention is particularly important for models concerned with visual search.

• Last, scene understanding and object recognition strongly constrain the selection of attended locations. Although several models have approached,
in an information-theoretical sense, the problem of optimally deploying attention to analyse a scene, biologically plausible implementations of
such a computational strategy remain to be developed.

Links
Supplementary information for Figure 2
http://ilab.usc.edu/itti/nrn/


