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many organisms, function in chromatin silenc-
ing (2, 25, 26) and RNA 3′-processing compo-
nents mediate gene silencing in Caenorhabditis
elegans (27). Therefore, the 3′ processing of anti-
sense transcripts may be a general mechanism
triggering chromatin silencing in eukaryotes.
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Reproducibility Distinguishes
Conscious from Nonconscious
Neural Representations
Aaron Schurger,1,2* Francisco Pereira,1,2 Anne Treisman,1 Jonathan D. Cohen1,2

What qualifies a neural representation for a role in subjective experience? Previous evidence
suggests that the duration and intensity of the neural response to a sensory stimulus are factors.
We introduce another attribute—the reproducibility of a pattern of neural activity across different
episodes—that predicts specific and measurable differences between conscious and nonconscious
neural representations indepedently of duration and intensity. We found that conscious neural
activation patterns are relatively reproducible when compared with nonconscious neural activation
patterns corresponding to the same perceptual content. This is not adequately explained by a
difference in signal-to-noise ratio.

Though once controversial, it is now widely
accepted that sensory-perceptual information
can be processed by the brain, even at the

semantic level, without that information “reaching”
or “entering” awareness (1–3). But what does it
mean for neural information to reach awareness?
Once the information has been encoded in neural
activity, what else has to happen for it to become
part of one’s subjective reality? A growing body of
evidence suggests that the intensity of activation in
areas that encode the contents of perception (such as
the ventral-temporal cortex) is one determinant of
whether or not that information contributes directly
to subjective experience (4–7). However, local
enhancement of a cortical sensory signal is also
associated with attention (8), which can be
independent of awareness (9–11). Therefore, there
may be additional features other than the intensity of
neural activity that distinguish conscious from
nonconscious neural information.

Kinsbourne (12) proposes three interacting
properties that collectively determine whether or
not a neural representation will contribute directly
to subjective experience: (i) the duration and (ii)
the intensity of a pattern of activity and (iii) the
coherence of that pattern of activity with the dom-
inant “configuration” of neural activity at the glob-
al level. Here, we propose that another attribute
of neural activity patterns, reproducibility, character-
izes conscious representations.We define reproduc-
ibility as the similarity of patterns of neural activity
across different instances of the same percept. We
focused specifically on reproducibility because it is
measurable and therefore empirically testable. A
corollary of our proposal that conscious represen-
tations are more reproducible is that unconscious
representations are more variable, even as they
may carry information within a given episode.

We used functional magnetic resonance im-
aging (fMRI) to measure brain activity while
subjects performed a simple visual category-
discrimination task (n = 12 subjects) (13).
Stimuli were simple line drawings of faces and
houses (12 of each), rendered in two opposing
but isoluminant colors (Fig. 1) (13). Visibility of

the stimuli was manipulated by using dichoptic
color masking (DCM) (Fig. 1) (7). Subjects were
asked to identify the category of the stimulus (face
or house) on each trial, guessing if necessary, and
to wager (“high” or “low” for monetary rewards)
on the accuracy of each of their perceptual deci-
sions (14–16). Wagering was used as a collateral
index of subjects’ awareness of the object.

For visible stimuli, performance was at or near
100% correct for all 12 subjects, and all wagers
were high. For invisible stimuli, task performance
was only marginally different from chance (54 T
2.5[SEM]% correct; P < 0.06, one-tailed t test), and
sensitivity of high wagers to correct responses
[wagering d-prime, or d′ (13)] was not different
from zero (mean d′ = 0.015 T 0.11[SEM]; P = 0.45,
one-tailed t test). For invisible stimuli, wagering d′
and overall willingness to place high wagers were
not significantly correlated across subjects [correla-
tion coefficient (r) = 0.33, P > 0.30, n = 12 sub-
jects]. This reassures against the possibility that
wagering d′ was artificially low because of an in-
teraction with a wagering bias (16). The proportion
of highwagers (for invisible stimuli) was similar for
faces and houses (0.20 and 0.19, respectively).

Subjects were always aware of a visual event—
a yellowish flickering square—and this provoked
substantial activation in and of itself. What varied
was subjects’ awareness of an object embedded in
the square. We used multivariate pattern analysis to
ascertain how the encoding of perceptual infor-
mation differs depending on whether or not that
information is present in subjective experience (17).
Thus, in our analyseswe focused specifically on the
patterns of activation corresponding to the percep-
tual information of which the subject was or was
not aware: the category of the object.

To verify the neural representation of category-
specific information for both visible and invisible
stimuli, we attempted to discriminate the category
of the stimulus (faces versus houses) on the basis of
the spatial pattern of neural activity in the temporal
lobes [derived statistically from each run of
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functional data (13)]. We did this independently for
the visible and invisible stimuli using a Gaussian
naïve Bayes (GNB) classifier (18). We focused our
analyses on the temporal lobes because these are
widely viewed as being critical for high-level
perceptual representation of visual information
(19). Mean accuracy of the classifier (percent
correct averaged across 12 subjects) was signifi-
cantly different from chance (50%) for both visible
[63% correct; Student’s t test, t = 3.82, P < 0.002]
and invisible (58% correct; t = 2.53, P < 0.02)
stimuli (Table 1). The difference in accuracy for
visible versus invisible stimuli was not significant
(P < 0.2, one-tailed paired-samples t test). It
might be expected that as long as the classifier
performed above chance on both types of stimuli,
then it would also perform well when trained on
one type and tested on the other (20). However,
this was not the case for these stimuli (Table 1).

Each round of training and testing of the clas-
sifier involved a dimensionality-reduction step,
in which we determined which voxels (features)
varied most consistently as a function of stim-
ulus category (feature selection) separately for
visible and invisible stimuli (13). Training and
testing of the classifier was then performed on
these smaller feature spaces (“selections”). Our
approach involved the examination of the pat-
terns of activity within these selections of voxels
on the assumption that these would reveal prop-
erties of information encoding under conditions
of conscious and nonconscious perception.

Treating patterns of activation as vectors allows
us to test hypotheses about the properties of neural
information independently of specific loci and their
level of activity. The angle between two activation
vectors reflects differences in the contents of
perception, whereas the norm of each vector
corresponds to the intensity of the information
being encoded. We can then define reproducibility
as the similarity in the pattern of activity across
different instances of the same stimulus category
among voxels that carry relevant information. This
can be measured by computing the trial-to-trial
variability of the vector angle in the space of the
voxels selected as informative for classification.

We predicted that activation vectors associated
with conscious perception (visible stimuli) would
exhibit less trial-to-trial variability in their angle than
those associated with nonconscious perception
(reflecting greater reproducibility) without necessar-
ily any difference in the norm (that is, in intensity).
To assess the reproducibility of representations, we
measured the variability in the angle between pairs
of vectors (both from the same run and same
stimulus category), as well as the norm of each
vector, separately for visible and invisible stimuli
(13, 21).We repeated this in both the visible and the
invisible selections (22). This resulted in four sets of
data: responses to visible and invisible stimuli in the
visible selection and responses to visible and in-
visible stimuli in the invisible selection. To avoid
confounds that were likely to arise from comparing
properties of vectors in different subsets of voxels
(and hence different regions of cortex), we restricted

our comparisons to vectors within the same
selection (23). We used the mean within-category
within-run angular deviation as an index of
reproducibility.

Within the invisible selection, the variability of
the vector angle (dVA) is significantly less for
visible than for invisible stimuli (P < 0.01, paired-
samples two-sided signed rank test) (Fig. 2B). There
was no difference in dVA between visible and
invisible stimuli in the visible selection (Fig. 2A),
suggesting that the variability is found primarily in
the subset of voxels that carry nonconscious
information and that this subset is distinct from that
within which conscious information is found (for
this particular combination of stimuli and task). This
is consistent with the failure of the classifier to
generalize across the two levels of visibility. When
dVA for the invisible selection was compared with
the baseline level 4 s earlier (at the time of stimulus
onset), therewas a significant interaction (P=0.021,
two-sided signed rank test on the deviation from
baseline): dVA was below baseline in response to
visible stimuli and higher than baseline in response
to invisible stimuli (Fig. 2B). There was no
difference in the mean or variance of the vector
norm for visible versus invisible stimuli, either in
the visible or invisible selection (means, P > 0.35,
paired-samples two-sided signed rank test; var-
iances, P > 0.7, Levene’s test) (Fig. 2, C and D).
Thus, a difference in signal-to-noise ratio is not
sufficient to explain the effect.

Because measurable category-specific informa-
tion had been identified separately for both visible
and invisible stimuli, we examined where in the

brain the information tended to coalesce in each case
(Fig. 3). For any given subject, reliably informative
voxels could be found throughout the temporal
lobes (Fig. 3A). Averaging across subjects (24) re-
vealed two clusters in the right ventral temporal cor-
tex, one for visible and the other for invisible stimuli,
with minimal spatial overlap, which is consistent
with the failure of the classifier trained on one type
of stimulus to generalize to the other (Fig. 3, B and
C). The anterior-posterior relationship of the two
clusters (visible and invisible selections, respective-
ly) coincides with previous observations (25).

Conscious and nonconscious neural activation
patterns coexist within the cerebral cortex, side by
side at the same time, but presumably they differ in
several ways. Proposed differences include dura-
tion, intensity, and coherence. Here, we show that
they also differ in their relative reproducibility
across presentations of similar stimuli. Why might
reproducibility distinguish conscious from non-
conscious representations? One possibility is that
conscious information is represented in a more
discrete form (26), making it more durable and
robust, but also more stereotypical (and therefore
more reproducible). Another possibility is that
conscious information manifests itself in relatively
stable neural firing patterns, corresponding to the
“settled” states of recurrent network interactions
(27). There are a number of plausible theories
regarding the neural correlates of consciousness
but relatively little data concerning the nature of
conscious versus nonconscious encoding. Further
work is required to understand the difference (or
differences) in the way perceptual information is
encoded in the brain depending on whether or not
that information is present in subjective experi-
ence. Such work is likely to have profound im-
portance in a variety of arenas, including the
assessment of consciousness under presumed

Fig. 1. Dichoptic-color masking. This method of
manipulating awareness, originally devised by (7),
relies on the phenomenon of dichoptic color fusion.
The “same color” mode corresponds to the visible
condition, and the “opposite color” mode
corresponds to the invisible condition. In order to
achieve disappearance of the image in the opposite
color mode, the two colors must be approximately
isoluminant and the object boundaries slightly
blurred. Before the experiment, subjects were trained
to maintain steady fixation and were cued to do so
during each trial with the appearance of the fixation
point (500 ms before stimulus onset). Stimuli were
presented stereoscopically in the fMRI scanner by
using a cardboard divider and prism lenses (28).

Table 1. Performance of a GNB classifier. The
objective of the classifier was to discriminate the
category of the stimulus based on the pattern of
beta weights [a general linear model (GLM) was
applied separately to each run of functional data
(13)]. A voxel-wise analysis of variance and nested
cross-validation (18) were used for dimensionality
reduction on each round of training and testing.
For within-condition classification (visible-visible
and invisible-invisible) a leave-one-run-out cross-
validation was performed. For between-condition
classification, we trained on all the data from one
condition and tested on the other and vice-versa.
All t tests are one-tailed with df = 11.

Train Test

Visible Invisible

Visible 63 T 3.5
t = 3.8,
P < 0.002*

48 T 2.3
t = –0.78,
P = 0.77

Invisible 52 T 3.0
t = 0.69,
P = 0.25

58 T 3.1
t = 2.5,
P < 0.02*

*Statistically significant; P < 0.05.
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anesthesia or coma and the investigation of brain
function in conditions such as schizophrenia,
autism, and dissociation disorders.
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Fig. 2. Variability in the
angle of activation vec-
tors in the visible and
invisible selections (A
and B) and mean vector
norm (C and D). In both
(A) and (B), t0 corresponds
to the TR (2 s) on which
the stimulus was presented
before the hemodynamic
response had begun to
rise. t2 corresponds to 2
TRs (4 s) after the stimu-
lus was presented at the
(approximate) peak of the
hemodynamic response
(n = 12 subjects). This
analysis was performed
by using a leave-one-
run-out procedure: Voxel
selection was performed
on data from n – 1 runs,
and the norm and angu-
lar deviation were com-
puted on data from the
run that had been left
out (13). Comparisons be-
tween the two selections
[(A) versus (B) or (C) ver-
sus (D)] are not valid (23).

Fig. 3. Spatial distribu-
tion of informative vox-
els. (A and B) Voxels that
were selected as inform-
ative for classification
(face versus house) on 6
or more (out of 12) runs
for a subject with com-
parable classification ac-
curacy (72% correct) for
visible and invisible stimuli.
(C andD) Themean across
subjects (24) projected
onto the AFNI TT_N27
template brain (right hem-
isphere) at a statistical
threshold of P< 0.05 (cor-
rected). The oblique white
line serves as a visual land-
mark. The cluster in (C)
encompasses a portion
of the fusiform and para-
hippocampal gyri in the
area of the fusiform face
area (FFA) and parahip-
pocampal place area (PPA). The cluster in (D) lies along the posterior fusiform gyrus.
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