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Background: Causal Effects and Non-parametric
Identifiability
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The Need for Quantifying Causal Effects

Correlation does not imply causation.
How large is the causal effect?
Lack of evidence vs. evidence for an insignificant effect.
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Causal Effects

Causal effects are probability distributions e.g:

P(Y |do(X )),

where do(X ) intervenes at X and sets it to e.g. x .
E.g. P(cancer|do(smoke)), P(Infection|do(wear a mask)).
Randomized controlled trials (RCTs) are a direct way to obtain
P(Y |do(X )).

Infeasible? Unethical? Expensive? Sample size? Population?
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Causal Bayesian Networks
Passive observation do(X)

Z

{{ ##
X // Y

Z

##
X // Y

P(X ,Y ,Z ) = P(Z )P(X |Z )P(Y |Z ,X ) P(Y ,Z |do(X )) = P(Z )P(Y |Z ,X )

Edges in the DAG denote direct causal relationship.
CPDs define stochastically how each variable gets its value
based on its direct causes.
Dependence corresponds to reachability in the graph.
Intervention corresponds to edge breaking, or dropping from
the factorization.
Generally P(Y |do(X )) 6= P(Y |X ) (doing vs. seeing).
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Determining Causal Effects?

1 What data do you have?
interventions (RCTs)?
missing data?

2 What background knowledge do you have?
causal graph?

3 Which assumptions you are willing to make?
acyclicity?
Causally sufficient or latent confounders?
parametric restrictions, e.g., linearity?
selection bias?

4 Which output do you want?
Identifiability?
estimation?
bounds?
Average causal effect?
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Causal Effect Identifiability [Pearl, 2000]

Z

{{ ##

Unobserved!oo

X // Y

Problem (Causal Effect Identifiability)
Input: A DAG over V ,

passively observed P(W ) for W ⊆ V ,
a query P(Y |do(X )).

Task: Output a formula for P(Y |do(X )) over P(W ),
or decide that it is non-identifiable.

Can the effect P(Y |do(X )) be uniquely computed from P(·)?
Or, are there two different parameterizations that yield same
P(·) but different P(Y |do(X ))?
Aim for a general and complete theory!
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Do-Calculus [Pearl, 1995]

Rule 1 (Insertion/deletion of observations):

P(Y |do(X ),Z ,W ) = P(Y |do(X ),W ) if Y ⊥⊥ Z |X ,W in GX
(edges into X removed)

Rule 2 (Action/observation exchange):

P(Y |do(X ), do(Z ),W ) = P(Y |do(X ),Z ,W ) if Y ⊥⊥ Z |X ,W in GX ,Z

(edges into X removed,
edges out of Z removed)

Rule 3 (Insertion/deletion of actions):

P(Y |do(X ), do(Z ),W ) = P(Y |do(X ),W ) if Y ⊥⊥ Z |Z ,W in GX ,Z(W )

(edges into X removed,
and in it edges into Z s that
are not ancestors of W removed)

Together with probability calculus!
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Identifiability and the ID-algorithm [Tian and Pearl,
2002, Shpitser and Pearl, 2006a]

Backdoor Front door

Z

{{ ##
X // Y

Z

{{ ##
X // T // Y

P(Y |do(X )) = P(Y |do(X )) =

=
∑

Z P(Y |Z ,X )P(Z )
∑

T P(T |X )
∑

X ′ P(C |T ,X ′)P(X ′)

The ID-algorithm can find the expressions in polynomial time.
Use probabilistic modelling (e.g. BN) to calculate the terms.
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Non-identifiability and Completeness

Z

{{ ##
X // Y

Impossible to untangle the dependence through X → Y from
the dependence through X ← Z → Y .
A graphical object called hedge witnesses non-identifiability.
#1 #2
P(Z = 1) = 0.5 P(Z = 1) = 0.5
P(X = 1|Z ) = 0.5 X |Z = Z
Y |X ,Z = X Y |X ,Z = Z
P(X ,Y = X ) = 0.5 P(X ,Y = X ) = 0.5
P(Y = 1|do(X = 1)) = 1 P(Y = 1|do(X = 1)) = 0.5

ID and do-calculus are complete. [Shpitser and Pearl, 2006a,
Huang and Valtorta, 2006]
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State of the Art in Non-parametric Identifiability
Missing

Problem Input data Method
(Reference) Target (assumptions) pattern (complete)

1 CE identifiability P(Y |do(X )) P(W ) None ID
[Shpitser and Pearl, 2006a] (Yes)

2 CE identifiability P(Y |do(X ), Z) P(W ) None IDC
[Shpitser and Pearl, 2006b] (Yes)

3 z-identifiability P(Y |do(X ), Z) P(W ), P(W \ B|do(B)) None zID
[Bareinboim and Pearl, 2012] (NE, ED) (Yes)

4 g-identifiability P(Y |do(X )) {P(W \ Bi |do(Bi )} None gID
[Lee et al., 2019] (ED) (Yes)

5 Surrogate outcome P(Y |do(X ), Z) {P(Ai |do(Bi ), Ci )} None TRSO
[Tikka and Karvanen, 2019] (NE, SO) (No)

6 mz-transportability P(Y |do(X ), Z) {P(W \ (Bi ∪ Ti )|do(Bi ),Ti )} None TRmz

[Bareinboim and Pearl, 2014] (NEDD, ED) (Yes)
7 Selection bias P(Y |do(X ), Z) P(W \ S|S) Selection RC

[Bareinboim and Tian, 2015] (Unknown)
8 Gen. identifiability P(Y |do(X ), Z) {P(Ai |do(Bi ), Ci )} None do-search

[Tikka et al., 2020] (Unknown)
9 Missing data P(W ) P(W∗) Restricted –

[Mohan et al., 2013] (Yes)
10 Missing data P(W ) P(W∗) Arbitrary –

[Bhattacharya et al., 2019] (Unknown)
11 Gen. identifiability P(Y |do(X ), Z) {P(A∗i |do(Bi ), C

∗
i )} Arbitrary do-search

[Tikka et al., 2020] (No)
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Identifying causal effects via CSI relations
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Context-specific Independence [Boutilier et al., 1996]

X ⊥⊥ Y |Z = 0

i.e. P(X |Y ,Z = 0) = P(X |Z = 0)

but X 6⊥⊥ Y |Z = 1 (possibly)

A very natural independence restriction, for example:

INCOME ⊥⊥WEATHER|JOB = clerk

INCOME 6⊥⊥WEATHER|JOB = farmer

CSIs have been extensively exploited in BN inference, but only
recently been used to make novel causal inferences. [Hyttinen
et al., 2018, Mooij et al., 2020]
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Labeled DAGs [Pensar, Nyman, Koski, and Corander,
2015]

A

��

��
X

A=0
��

Y

Z

A=1

BB

P(Z |A,X ) Z = 0 Z = 1
AX = 00 0.1 0.9
AX = 01 0.1 0.9
AX = 10 0.5 0.5
AX = 11 0.6 0.4

A label on an edge encodes contexts where the edge is absent.
Any assignment in a label denotes a local CSI:
e.g. X ⊥⊥ Z |A = 0.
Labels allow for representation, theory on equivalence classes,
and separation criteria.
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Causal Effect Identifiability via CSIs [Tikka,
Hyttinen, and Karvanen, 2019]

L
A=0
{{ ##

X AL=1∗ // Y

A

cc ;;

Problem (Causal Effect Identifiability via CSIs)
Input: An LDAG over V ,

passively observed P(W ) for W ⊆ V ,
a query P(Y |do(X )).

Task: Output a formula for P(Y |do(X )) over P(W ),
or decide that it is non-identifiable.
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CSI-do-calculus [Tikka, Hyttinen, and Karvanen, 2019]

Rule 1 (Insertion/Deletion of observations):

P(Y1, y2|Z1, z2,X1, x2) = P(Y1, y2|X1, x2) if Y1,Y2 ⊥⊥ Z1,Z2|X1, x2

Rule 2 (Marginalization/Sum-rule): P(Y1, y2|X1, x2) =
∑

ZP(Y1, y2,Z |X1, x2)

Rule 3 (Conditioning): P(Y1|Z1, z2,X1, x2) =
P(Y1,Z1, z2|X1, x2)∑
Y1

P(Y1,Z1, z2|X1, x2)

Rule 4 (Product-rule): P(Y1, y2,Z1, z2|X1, x2) = P(Y1, y2|Z1, z2,X1, x2)P(Z1, z2|X1, x2)

Rule 5 (General-by-case): P(Y1, y2, 1− z|X1, x2) = P(Y1, y2|X1, x2)− P(Y1, y2, z|X1, x2)

Rule 6 (Case-by-case): P(Y1, y2,Z |X1, x2) =

{
P(Y1, y2,Z = 0|X1, x2)
P(Y1, y2,Z = 1|X1, x2)

Rule 7 (Case-by-general (a)): P(Y1, y2, z|X1, x2) = P(Y1, y2,Z |X1, x2)
∣∣
Z=z

Rule 8 (Case-by-general (b)): P(Y1, y2|X1, x2, z) = P(Y1, y2|X1, x2,Z)
∣∣
Z=z

These rules subsume do-calculus, do-operator not needed.
Deciding non-identifiability is NP-hard: we need case by case
reasoning.
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Extended Identifiability for P(Y |do(X )) via CSIs
L

A=0
{{ ##

X AL=1∗ // Y

A

cc ;;

P(Y |A = 0,X )P(A = 0)

+P(Y |A = 1)P(A = 1)

X YW

Z
W = 1

X YZ

A

H

A = 0 AH = 1∗

X Y

Z

QH

XZ = ∗0

ZQ = 1∗

W Z X Y

A

L M

N

AM = 0∗

→ Few CSIs may be sufficient to turn a previously
non-identifiable instance into identifiable.
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Background: Linear Causal Effect Estimation from
Data
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Linear Causal Effect Estimation from Data

Problem (Linear Causal Effect Estimation from Data)
Input: Passively observed causally sufficient data D.
Task: Estimate the linear causal effect

πji =
∂

∂xi
E
(
Xj | do(Xi = xi )

)
.

Sum-product of edge coefficients on directed paths.

X1b21
}}

b31
!!

X2

b42
!!

X3

b43
}}

X4

π41 = b42 · b21 + b43 · b31

= −1.03 · .78+ .74 · .60 = −.36
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IDA [Maathuis, Kalisch, and Bühlmann, 2009]

Gaussian DAGs only identifiable up to the Markov eq. class.

X1
}}

aa

X2
!!

X3
}}

X4

X1
}} !!

X2
!!

X3
}}

X4

X1==
!!

X2
!!

X3
}}

X4

For a fixed DAG, the causal effect is identifiable via linear
regression over the cause X1 and its parents (backdoor adj.):

X4 ∼ X1 + X3, X4 ∼ X1, X4 ∼ X1 + X2

Output is a set of possible causal effects:

π41 ∈ {−.74, .− .29, .49}

Need only the possible parent sets of the cause X1 via e.g. PC.
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Bayesian Posteriors for Linear Causal Effects
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BIDA [Pensar, Talvitie, Hyttinen, and Koivisto, 2020,
AAAI]

f (πji |D) =
∑

pa(Xi )
f (πji |D, pa(Xi))P(pa(Xi)|D)

Posterior of πji

Bayesian model averaging over DAGs

computed exactly via dynamic prog.

Bayesian lin. regression of Xj over Xi ,pa(Xi ).
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Beeps: Bayesian Effect Estimation by Posterior
Sampling [Viinikka, Hyttinen, Pensar, and Koivisto, 2020,
NeurIPS]

f (πji |D) =
∑

G ,B f (πji |B)f (B|D,G )P(G |D)

Posterior of πji

Bayesian model averaging over DAGs

Sample G using MCMC

Sample coefficients B (BGe prior)

πji = ((I− B)−1)[j , i ]
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IDA example continued...

IDA Beeps

π41 ∈ {−.74, −.29, .49}
0

2

4

−1.0 −0.5 0.0 0.5 1.0
b)

de
ns

ity

π41

Uncertainty in the estimates due to low sample size.
Uncertainty over the causal structure.

→ Beeps catches both.
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Simulation Results

Causal effects 107-node ARTH150
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Better accuracy than IDA-based methods.
We can scale up to over 100 nodes and our MCMC
outperforms BiDAG.
Concurrent similar suggestions by Kuipers et al. [2019] and
Castelletti and Consonni [2020].
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Gadget: Scalable MCMC Sampling of DAGs
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1

● Root-partition    : ordered set partition of DAG nodes

● Iterate: root-nodes to the next part, remove them from the DAG    

● For              parents valid if 

●                                                  , with

Background – Root-partitions (Kuipers & Moffa, 2017)



2

Background – K candidate parents (Kuipers et al., 2020)

● For each node           select      candidate parents 

● Now                                               ,              space per node



3

Preprocessing – Scoring nodes by subtraction

● For each node           select      candidate parents 

● Now                                               ,              space per node

● For any            and                   , let      

● Now                                               ,              space per node



4

Preprocessing – Parents outside of the candidates

● Need to allow small number of parents outside of candidates too

i.      may not be optimal or large enough for all

ii. Posterior landscape may contain large zero-probability regions 
making transition between root-partitions inefficient for the MCMC

• We allow parent sets of maximum indegree     not contained in 

• Scores sorted, only need to accumulate certain amount to reach 
acceptable error



5

Markov chain – Metropolis Coupled Markov Chain Monte Carlo

● Moves in root-partition space: 

– split
– merge       and
– swap nodes between       and

● M parallel “heated” chains with the stationary distribution of kth 
chain proportional to         , i.e. Metropolis coupling

● On every other step a randomly chosen chain and neighbour 
swap states with certain probability  



6

Post processing – Sampling DAGs

● DAG is sampled for each root-partition stored during Markov 
chain simulation

● Datastructure allowing fast parent set sampling after time and 
space invested in precomputing

● Sampling proceeds one node at a time for all DAGs generated



7

Gadget – Summary

1. Preprocessing

● Candidate parent selection

● Precomputing data structures for scoring root-partitions

2. Markov chain simulation

3. Postprocessing

● Generating DAGs from root-partitions



Conclusion
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Research directions

Unknown graph and latent variables. [Hyttinen et al., 2015,
Malinsky and Spirtes, 2017, Jaber et al., 2019]
Soft interventions. [Correa and Bareinboim, 2020]
Cyclic causal graphs. [Forré and Mooij, 2019]
Intervals and bounds. [Malinsky and Spirtes, 2017, Peters
et al., 2016]
Path specific effects. [Malinsky et al., 2019]
Linear identifiability. [Kumor et al., 2020]
Counterfactuals. [Kusner et al., 2017, Shpitser and Pearl,
2008]
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Conclusion

Need causal effects from the data and knowledge we have.
CSIs allow for identifiability beyond do-calculus.
Bayesian posteriors for linear causal effects are more accurate
and characterize the remaining uncertainty.
State of the art MCMC posterior sampling for DAGs.
Future work:

Completeness of CE identification via CSIs?
Relax the assumptions for Bayesian posteriors?
How to select candidate parents? How to scale up further?

Collaborators: Mikko Koivisto (UH), Johan Pensar (University of
Oslo), Santtu Tikka (University of Jyväskylä), Juha Karvanen
(University of Jyväskylä), Topi Talvitie (UH)
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