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Problem Statement

How to discover the causal structure at the system timescale
from time series data obtained at a coarser measurement
timescale?
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Problem Statement

How to discover the causal structure at the system timescale
from time series data obtained at a coarser measurement
timescale?

Xt—4 Xt—2 Xt

Yt—4 Yt—2 yt ... H

zt—4 Zt—2 7t

e Only every u:th vector of values is observed (subsampling rate u)
e Subsamping induces confounding, and unidentifiability

o Applications: e.g. fMRI.
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Subsampling needs to be taken into account!

True structure at the system timescale measurement time scale structure
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Subsampling needs to be taken into account!

True structure at the system timescale measurement time scale structure

When ignoring subsampling:
o All direct causal relationships misspecified.
e Wrong result for interventions.

e Wrong interventions suggested.
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Previous Literature 1

e Adding instantaneous effects in a linear model
(see for example Liitkepohl 2005 or Hyvarinen et al 2010).
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Previous Literature 1

e Adding instantaneous effects in a linear model
(see for example Liitkepohl 2005 or Hyvarinen et al 2010).

e Continuous time approaches, but some processes are
inherently discrete time (e.g. salary payment).
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Previous Literature 2

Recently Plis et al. (UAI2015,NIPS2015) considered modeling
subsampling directly, assuming on the system timescale level:

e discrete time
o first order Markov: V! 1L Vi=k|vi—1
* no instantaneous effects, or unobserved common causes

e nonparametric (continuous or discrete values, SVAR
processes, or dynamic BNs)

e Measurements from this at integer intervals (e.g. every
second).



Previous Literature 2

Recently Plis et al. (UAI2015,NIPS2015) considered modeling
subsampling directly, assuming on the system timescale level:

e discrete time
o first order Markov: V! 1L Vi=k|vi—1
* no instantaneous effects, or unobserved common causes

e nonparametric (continuous or discrete values, SVAR
processes, or dynamic BNs)

e Measurements from this at integer intervals (e.g. every
second).

Corresponding parametric method: Gong et al. (ICML2015)
discovered linear models using non-Gaussianity.



Graphical Representation
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Rolled Representation
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Rolled Representation
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Induced confounding
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Induced confounding

system t.s

marginalization | 17 (Task 1)

measurement t.s.
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Correspondence between System and Measurement T.S.

system timescale measurement timescale
When subsampling by u:

e Measurement time scale edge Y — X corresponds to path of
length u: ¥ — -+ = X

e Measurement time scale edge X < Y corresponds to paths of
length k<u: W —..-=>Xand W — ... = Y.



A Constraint Satisfaction Solution




Partial Complexity Result

Result: Deciding whether there is a system t.s. structure
compatible with the directed edges of a measurement t.s. structure
is NP-complete for any fixed u > 2.

Proof: Binary matrix root.



A Constraint Satisfaction Solution

e You write a symbolic encoding.
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A Constraint Satisfaction Solution

e You write a symbolic encoding.

e The symbolic encoding gets grounded.

e The encoding gets turned into conjunctive normal form.
o Backtracking DFS by Clingo (Gebser et al. 2011).
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A Constraint Satisfaction Solution

You write a symbolic encoding.

The symbolic encoding gets grounded.

The encoding gets turned into conjunctive normal form.
Backtracking DFS by Clingo (Gebser et al. 2011).
Exact and complete solution.

Subsampling rate u: fixed or free.

Start

Backtrack

Solution Found
KFirst conflict N

https://srlabs.de/bites/minisat-intro/
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node(1..3). ) Measurement timescale structure
edgeh(1,2) .no_edgeh(1,3) .confh(2,3) .no_confh(1,2). %and so on

urange(1..5). Y Define a range of u:s
1 { u(U): urange(U) } 1. % u(U) is true for only one U

{ edgel(X,Y) } :- node(X), node(Y). %draw G1

% Derive all directed paths up to length U
path(X,Y,1) :- edgel(X,Y).
path(X,Y,L) :- path(X,Z,L-1), edgel(Z,Y), L <= U, u(U).

% Determine measurement t.s. for Gi
edgeu(X,Y) :- path(X,Y,L), u(L).
confu(X,Y) :- path(Z,X,L), path(Z,Y,L), node(X;Y;Z),
X<Y, L<U, u().
% Check consistency
:— edgeh(X,Y), not edgeu(X,Y). :- no_edgeh(X,Y), edgeu(X,Y).
:— confh(X,Y), not confu(X,Y). :- no_confh(X,Y), confu(X,Y).
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Scalability of Enumerating 1000 Solutions
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( fixed subsampling rate 2, SAT is our approach,
MSL is the previous state of art by Plis et al. (2015) )



Identifiability: Underdetermination

Measurement timescale structure:
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or a four cycle in either direction and symmetrically!
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Identifiability: An ldentified Case

But measurement timescale structure:

~

uniquely identifies system timescale structure

9

and the subsampling rate u = 2.
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A Constraint Optimization Solution




Task 2: Finding Structures Compatible with Data
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Task 2: Finding Structures Compatible with Data

Xt—4 Xt—2 Xt ... @ @
yt—4 yt—2 Yyt ... N / \ N / \
Zt74 Zt72 7t ...

data measurement t.s. system t.s.

e Measurement t.s. structure can be consistently estimated
from data under faithfulness: e.g.
X =27 & Xtupztpvitu Xt
X+ Z & Xtpyt|vte

e Due to finite samplesize, the constraint satisfaction approach
will often return UNSATISFIABLE.

e Find the system t.s. structure such that its measurement t.s.
structure is optimally close to the estimated (Task 2).



A Constraint Optimization Solution

Specifics:
e Penalize inconsistencies between absences and precences of
edges in the measurement t.s.:

e Either uniform weights, or

e log Bayesian probabilities of the corresponding (in)dependence,
obtained through Bayesian model selection (see Hyttinen et al.
2014)

e Objective function is the sum of the penalities
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A Constraint Optimization Solution

Specifics:
e Penalize inconsistencies between absences and precences of
edges in the measurement t.s.:
e Either uniform weights, or
e log Bayesian probabilities of the corresponding (in)dependence,
obtained through Bayesian model selection (see Hyttinen et al.
2014)
e Objective function is the sum of the penalities
e Clingo uses Branch-and-Bound search to find the exact
weighted Maximum Satisfiability solution.

e We scale to 11-12 within 10 minutes, depending on the
sample size and other specifics

e Previous work by Plis et al. 2015.



Accuracy for fixed u = 2
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( fixed subsampling rate 2, average result of the eq. class,
6 nodes, av. degree 3, 200 samples, 100 data sets, linear models )



Accuracy for u = 3
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Analysis of Temperature/Humidity data 1

Hourly measurements of six sensors placed in a house.

Temperature and humidity recorded.

Removed trends.

Handle undetermination: for each edge [Magliacane et al.]

e run the inference procedure enforcing presence
e and then enforcing absence
o difference in objectives gives the support for the edge.



Analysis of Temperature/Humidity data 2

d) Humidity at u =2 e) Humidity at u =3 f) Humidity at u = 10..12

Edges with full lines are found to be present, absent edges are
found to be absent, edges with dotted lines are present or absent.
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Conclusion

Causal discovery from subsampled time series data:

e A non-parametric constraint satisfaction approach:
Much better scalability than previous state-of-the-art.

o A (first) constraint optimization approach:
More accurate than unweighted or unoptimal solutions.

e Future work: generalizing the model space, e.g. allowing for
unobserved confounding time series.

Thanks!



	Previous Literature
	Graphical Representation
	A Constraint Satisfaction Solution
	A Constraint Optimization Solution
	Conclusion

