A constraint programming implementation for
A logical approach to context-specific independence

Jukka Corander®®, Antti Hyttinen®, Juha Kontinen?®, Johan Pensar?, Jouko
Vaananen™*®

@ Department of Mathematics and Statistics, University of Helsinki
YHIIT, Department of Computer Science, University of Helsinki
¢ Department of Biostatistics, University of Oslo
4 Department of Mathematics and Statistics, Abo Akademi University
€ Institute for Logic, Language and Computation, University of Amsterdam

1. Introduction

We present here the implementation using answer set programming (ASP)
as the constraint satisfaction formalism|1, 2, 3|. It offers an expressive declar-
ative modeling language, in terms of first-order logical rules, for various
types of NP-hard search and optimization problems. To solve a problem
via ASP, one first needs to develop an ASP program (in terms of ASP
rules/constraints) that models the problem at hand; that is, the declara-
tive rules implicitly represent the solution. Then a solution can be obtained
by invoking an off-the-shelf ASP solver, such as the state-of-the-art Clingo
system [3]. The search algorithms implemented in the Clingo system are ex-
tensions of state-of-the-art Boolean satisfiability techniques which can today
outperform even specialized domain-specific algorithms.

We present here a code that takes an LDAG as input and outputs all
independence relations that the axiomatization is able to derive. The aim is
not to provide the most efficient solution but to give concrete implementation
which can be used for various purposes, such as examining the conjectured

Email addresses: jukka.corander@helsinki.fi (Jukka Corander),
antti.hyttinen@helsinki.fi (Antti Hyttinen), juha.kontinen@helsinki.fi (Juha
Kontinen), jopensar@abo.fi (Johan Pensar), jouko.vaananen@helsinki.fi (Jouko
Véadninen)

Preprint submitted to Elsevier January 27, 2017

completeness of the system. Due to representations of contexts the code
assumes binary variables, but generalization should be straightforward.
2. Input

The input consists of local Markov conditions for the LDAG. The input
is reprensented using Figure 5 as an example.

nodes (4) .

inputind (2*%*(1-1),0,2%*(2-1) 7 2xx(3-1)). % 1 _||l_ 0 2,3
inputind (2#*(2-1) ,2%*(3-1),0). % 2_11_3

inputind (2#*(3-1),2%*(2-1),0). % 3_1]_2

inputind (2%* (4-1) ,2%*(2-1) ,2%x(1-1) 7 2%x(3-1)). % 4 _|I_ 2 | 1,3

Here the predicate inputind(X,Y,Z) marks the fact that set X is inde-
pendent from set Y when conditioning on S. The notation ** stands for
exponentiation. The sets are defined as the integers where bits are on if the
element is in the set. In the notation 7 stands for bitwise OR operation. The
predicate here must be different from the ind (output), otherwise the proof
of Theorem 27 would need modifications. Predicate nodes defines the num-
ber of nodes. Predicate positive should be defined if positivity is assumed,
this turns on the intersection axiom.

In addition we need to define the labels. We directly define the set A(e..).

% Graph under context 3=0 arises by removing 2->1
contextind (2#*(1-1) ,2%%(2-1) ,2%*(3-1) ,2%*(3-1),0) .

% Graph under context 3=1 arises by removing 1->4
contextind (2%*(4-1) ,2%xx(1-1) ,2%%(3-1) ,2%*(3-1) ,2%*(3-1)) .

3. Encoding

The following encoding can be found in 1dag_csi_paper.pl.

3.1. Preliminary definitions
First, some preliminary definitions are needed.

% Definition of a set as all subsets of 1..N.
set(0..((2*xxN)-1)) :-nodes(N).

% This predicate says that context SE is valid for S.

% context Se is defined as bit SE[i] being O or 1.

% SE[i] is assumed O if i does not appear in context S.
context(C,EC) :- set(C), set(EC), C ? EC == C.

disjoint(A,B) :- set(A),set(B),A & B = 0.

In the notation 7 stands for bitwise OR operation, & stands for bitwise

AND operation.

3.2. Taking Input Independencies to the Contexts

The input independencies are directly taken to the context specific deriva-

tions.

contextind(X,Y,Z,C,EC) :- inputind(X,Y,Z),context(C,EC).

3.3. Semigraphoid Axioms in the Contexts

These rules implement the semigraphoid axioms in the context specific
derivations, following Definition 22. The preconditions are used to force sets

disjoint.

% triviality
contextind(X,0,Z,C,EC) :- disjoint(X,Z), context(C,EC).

% symmetry
contextind(Y,X,Z,C,EC) :- contextind(X,Y,Z,C,EC).

% decomposition
contextind(X,Y,Z,C,EC) :- contextind(X,Y ? U,Z,C,EC),
disjoint(Y,U).

% weak union
contextind(X,Y,Z ? U,C,EC) :- contextind(X,Y ? U,Z,C,EC),
disjoint(Y,U).

% contraction
contextind(X,Y ? U,Z,C,EC) :- contextind(X,Y,Z ? U,C,EC),
contextind(X,U,Z,C,EC).

% intersection (only if positivity is assumed)

contextind(X,Y ? Z,U,C,EC) :- contextind(X,Y,Z 7 U,C,EC),
contextind(X,Z,Y ? U,C,EC),
disjoint(Z,U) ,disjoint(Y,U),
positive.

Note that these independences could be deduced using d-separation in-
stead, see 4] for an example encoding. Note the difference of the predicates:
ind denotes a valid CSI, while contextind denotes d-separation relation in
the context specific DAG.

3.4. The CSI-rule

The CSI-rule takes independencies from the context specific derivations
to the global level.

ind(A,B,S,C,CE) :- contextind(A,B,C ? S,C,CE), disjoint(C,S).

3.5. The RC-rule

The RC-rules generalize and specialize contexts.

ind(A,B,C2 ? S,C1,EC1) :- ind(A,B,S,C,EC), JYthe first fixes A,B etc.
set(C2), C2 7 C=¢C, C2 !=0,
%C2 is a nonempty subset of C (eq. allowed)
Cl = C-C2, EC1 = EC & C1,
%Cl is the remaining, fixing also EC1
ind(A,B,S,C,ECC): context(C2,EC2), ECC=EC1 ? EC2.
%we have to have ind for all these

ind(A,B,S,C ? W,EC 7 EW) :- disjoint(C,S), context(C,EC), C != 0,
ind(A,B,C ? S,W,EW).

3.6. Semi-graphoid Axioms on the Global Level

Semi-graphoid axioms can also be used at the global level, following p.
17.

% triviality
ind(A,0,S,C,EC) :- disjoint(A,S),disjoint(A,C),
disjoint(S,C),context (C,EC).

% symmetry
ind(B,A,S,C,EC) :- ind(A,B,S,C,EC).

% decomposition
ind(A,B,S,C,EC) :- ind(A,B 7 BB,S,C,EC), disjoint(B,BB).

% weak union
ind(A,B,S ? BB,C,EC) :- ind(A,B ? BB,S,C,EC), disjoint(B,BB).

% contraction
ind(A,B ? W,S,C,EC) :- ind(A,B,S ? W,C,EC), ind(A,W,S,C,EC).

% intersection (only if positivity is defined)

ind(A,B ? W,S,C,EC) :- ind(A,B,S ? W,C,EC),
ind(A,W,S ? B,C,EC),
disjoint(S,W),disjoint(S,B),
positive.

3.7. Output Format

The following shows the global independencies that were derived.

#show.
#show ind/5.

In addition the perl script output.pl takes the output of Clingo and
takes out the trivial independencies and switches to more readable set format.

4. Example in Figure 5

When the input in Section 2 is stored in fig5.pl, the command:

./clingo ldag_csi_paper.pl figh.pl | ./output.pl

gives output:

1 _|l_2 1] 3=0

2 _|I1_3

1 _|1_4 1 3=1

2 _Il_41 1,3

2 _|l_41 3, 1=0
2 _|l_4 11, 3=0
2 _|I_ 4| 1=0,3=0
2 _1l_41 3, 1=1
2 _|I_ 4| 1=1,3=0
2 _|l_41 1, 3=1
2 _1l_ 4| 1=0,3=1
2 _|I_ 4| 1=1,3=1
2 _|1l_1,4 1 3=0
1,2 _|I_ 4] 3=1

2 _|l_4 | 3=0

1 _|I_41 2, 3=1
2 _|l_4 | 3=1

./output.pl

= A ANANANNANAN e A A A A A A A A A A H

Thus, the important independence 2 _||_ 4 is derived.

—
[N
©
&0
-~
H
—
© B
o
Q o o o — -
= o, oo M — 0 ~ I I
= o O = I 1 W Il Wl LW
) Q. Tl W0 <t~ ~ -
oo - & I O d < ~» ~0O ad ~O - O
oo omon = . o Tl ~ ~0oO0ll oIl ©n I 1
oo < = [ool < I < 1 < < <
o L N Y (8] L || n onom o~ M ~ M ~ & =~
o - oo o — - = I oo mm o o o oo
AT T N= < a0 TR o a Tl ~ T o~ W T
NN < < < O = 8 NOH——WOFOOLNFOOM
|||||| < — _— 1mr m — Mm —— N —— — — — — — — —
N FNNLFOM OO m S g o, NN NNNNNNNNNN W
+—

T T T T N T SO T B < o <] =S [T T T T T T T T R B R B
_—e e — — —————— o _— e e — — — —_— — ——_—— —
—_—— e — — — — — — —] = — o —_—— e — — — — —
I H o 5 I
. : 2

o
0 =0}

-

DNV DN NDNDNNDN DD
W Wb Wwwd SN O
DD O — W W W W W — W

Thus, the important independence 2 _||_ 4 | 5=1 is derived.

References

[1] I. Niemel4, Logic programs with stable model semantics as a constraint
programming paradigm, Annals of Mathematics and Artificial Intelli-
gence 25 (3-4) (1999) 241-273.

[2] P. Simons, I. Niemeld, T. Soininen, Extending and implementing the
stable model semantics, Artificial Intelligence 138 (1-2) (2002) 181-234.

[3] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub,
M. Schneider, Potassco: The Potsdam answer set solving collection, Al
Communications 24 (2) (2011) 107-124.

[4] A. Hyttinen, F. Eberhardt, M. Jarvisalo, Constraint-based causal discov-
ery: Conflict resolution with answer set programming, in: Proc. UAI,
AUAI Press, 2014, pp. 340-349.

