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InpUT: Data.
Task: Find an equivalence class of causal graph structures
that may have generated the data.
Score-based Methods: [Cooper, Heckerman,.. ]
e Maximize Bayesian marginal likelihood or BIC.
e Good Accuracy, limited model space.
e Exact: Find the globally optimal graph(s).
Constraint-based Methods: [Pearl, Spirtes,...]
e Deduce the graph structure from independence test results.
e General of the model space: Latent confounders, Cycles.

e Scale up by making greedy decision = poor accuracy.
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INpUT: All weighted cond. (in)dependencies K among vars.
Task: Find G that minimizes 3,y . gpep w(k).

e Through assuming Causal Markov and Faithfulness:
X LY|C < Xisd-separated from Y given C

e A very hard optimization problem, but can be solved exactly
using off-the-shelf Boolean opt. solvers (e.g. wMaxSAT).

e Often accurate. [Hyttinen et al. '14, Magliacane et al. '16,
Borboudakis et al. '16]

e Several options for getting weighted independence constraints.
[Margaritis et al. '09, Claassen et al. '12, Triantafillou et al. '15,
Magliacane et al. '16]

e Related Work: [Magliacane et al. '16, Claassen et al. '12,
Triantafillou et al. '15]
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SAT-solver:
e |s there a graph that satisfies constraints K?

e CNF-encoding of d-separation/connection: [Hyttinen et al. '14]
XLYC & X=Y V Y=XV XYV

e Returns SAT and a solution, or UNSAT and a core.
e Core is a subset of constraints not simultaneously satisfiable.
Integer Programming -solver:
e Finds a hitting set H that minimizes ), ., w(k),
s.t. HNc # 0 for all cores c.
Implementation:

e LMHS by [Saikko et al. '16] uses MiniSAT (backtracking depth
first search) and CPLEX (simplex-based branch-and-cut).
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Technique 1: Domain Specific Cores (1)

Each extracted core call requires potentially many (NP-)SAT-solver
calls. How to avoid some of these?

e Instead, we can find general patterns of cores:
e Observe which cores the solver uses, e.g.

XLz, XLz|y; XLY}
e Generalize a core to a pattern, e.g.
{XLZC XALz|v,C, XLY|C} VvX,Y,ZC

e Prove that the pattern generally gives a (minimal) core.

e We identified 7 cores patterns among 3-4 nodes and 3-5
constraints, each including independencies and dependencies.

Benefit: Thousands of small cores can be found in a fraction of
the total solving time.
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Technique 1: Domain Specific Cores (2)

For all instantiations of nodes X, Y, Z, W and set C:

() {XLzC XLY|C XLZ|IY,C}

(i) {XLZIC Y Lz|IC; XLY|C, XLY|ZC}

(i) {AX LZ|Y,C, Y LZIX,C, XLY|C, XLY|ZC}

(iv) {Y L Z|C; X L Z|IC, Z1LW|X,Y,C;
XLY|Zz,C XLY|W,C}

(v) {Y L ZIC, X LZIC, Z L W|Y,C,
XLly|lZz,C X LYW, C}

(vi)y {X LY|Z,C; Y LZIX,W,C; WLYI|ZC,
Wil X|Y,Zz,C;, XLZIW,C}

(vi) {IX L Y|Z,C;, Y LZIX,W,C, W LY|C;
WL X|Y,Cc X1zZIW,C}

are minimal cores.
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Technique 2: Incremental Core Extraction

Plain IHS-approach tends to produce large cores. How find diverse
and disjoint cores for exact causal discovery?
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Plain IHS-approach tends to produce large cores. How find diverse
and disjoint cores for exact causal discovery?

QiXmQLZ
L zZwh X vizw X1 viw X LW
XL w XLW|Z XELYW,Q QLYIX
4 QLW YLQW  QLZW

e Plain IHS-approach enforces all constraints, except H.

e Instead, we can input constraints one by one, and check
satisfiability. [See Triantafillou et al. '15]

e Which order? — random order (currently).

Benefits: Smaller diverse cores, good upper bounds.
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Technique 3: Bounds-based Constraint Harden

How can we exploit sparseness without losing exactness?

QLX Y LZIX,W X LZIY W
Y LZWSXLYIZW X LYW X LW

X LW XLWZ XLYW,Q QLYIX
WLz QLW Y L QW

e A graph with Q — Z violates VC : Q L Z|C & hits the cores.

e Thus, L' =3 is a lower bound for all such graphs. If U < L,
the absence can be hardened. LP-bound is enough!

e In contrast: PC makes the hard decision of non-adjacency of
Q, Z from a single independence Q L Z|S.

Benefits: Less soft constraints, SAT-instances are tighter.
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Example Run of Dseptor

Real data set #22 (7 vars of StatLog)
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Running Time Performance (1)

Synthetic data, 100 instances, 7 nodes, 672 soft constraints
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Synthetic data, 100 instances, 7 nodes, 672 soft constraints
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Running Time Performance (2)

Real-world data, 6—10 nodes, 240-11520 soft constraints
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The presentation included:
e Exact Constraint-based Causal Discovery
e A new approach for solving the optimization problem

e Exploiting a general MaxSAT solver and

@ Domain specific cores
® Incremental core extraction
© Bounds-based constraint hardening

e Faster running time performance

Open Questions:
e Are further running time improvements possible?
e Building in more general constraints?

e What to compromise without losing power & accuracy?

Thanks!
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