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A Proof of Theorem 1

First we restate Assumption 1 here for convenience:

Assumption 1 (No unit cycles) The sum-product
of edge-coefficients on any subset of paths from a vari-
able back to itself cannot sum up to exactly 1.

Note that when we are considering sum-products in
cyclic graphs, whenever needed, we may sum a diver-
gent geometric series.1

We will use the following Lemma to prove the Theo-
rem:

Lemma 1 Given a model B satisfying Assumption 1,
the matrix (I−B) is invertible.

Proof of Lemma 1: Assume that (I − B) is not
invertible. Thus, there exists a v 6= 0 such that (I −
B)v = 0, which can be rewritten as Bv = v. Without
loss of generality assume that v1 = 1.

Let us denote byM := V \{x1} the set of all variables
except x1. We can then write Bv in the following
block form[

0 B1,M
BM,1 BM,M

] [
1

vM

]
,

where the top-left element is 0 because diagonal ele-
ments of B can be assumed to be zero, and thus from
Bv = v we obtain[

B1,MvM
BM,1 + BM,MvM

]
=

[
1

vM

]
Hence B1,MvM = 1 and BM,1 = (I−BM,M)vM.

Consider two possible cases. First, if (I − BM,M) is
invertible we can ‘marginalize’ the variables in M, as

1The sum
∑∞

k=0(t(xi xj ||Jj)t(xj xi||Ji))
k is eval-

uated to 1/(1 − t(xi xj ||Jj)t(xj xi||Ji)) also when
|t(xi xj ||Jj)t(xj xi||Ji)| > 1 (Hardy, 1949).

discussed in (Hyttinen et al., 2012), to arrive at a linear
cyclic model with a 1× 1 direct effects matrix B̃. The
formula for marginalizing is

B̃ = B1,1 + B1,M(I−BM,M)−1BM,1

and using the previous identities we obtain

B̃ = B1,M(I−BM,M)−1(I−BM,M)vM

= B1,MvM = [1]

Thus, the sum-product of all paths from x1 back to
itself is equal to one, violating Assumption 1.

On the other hand, consider the case (I−BM,M) not
invertible. In this case, we remove all edges entering or
leaving x1 from the original model, and thus consider
only the submodel BM,M. Given that (I − BM,M)
is not invertible, we can use the same argument as
above. If at any point in the recursion we encounter
an invertible submatrix over which we can marginal-
ize, by the above procedure we have shown that there
is a subset of paths (removing all edges from variables
considered earlier in the recursion, and considering all
paths through the remaining set of edges) summing to
exactly 1. If, on the other hand, we do not encounter
an invertible (I−BM,M) at any point of the recursion,
we will, at the latest, encounter one at the point where
M is just a singleton, because in that case BM,M con-
tains just the scalar 0 (remember that we are restrict-
ing to a zero diagonal), so (I − BM,M) = [1] which
is trivially invertible. Hence, at the latest, the 2 × 2
matrix of direct effects among the two ‘last’ variables
considered will contain a cycle equal to 1.

Corollary 1 A model which satisfies Assumption 1 is
weakly stable under any manipulations.

Proof of Corollary 1: Any given manipulation of
the model direct effects matrix B simply amounts to
removing (setting to zero) edges into those variables



that are intervened. Consider the submatrix of con-
nections among the variables not intervened on, call it
Bm, and note that the remaining edges form a subset
of the original set of edges. Assume for the moment
that this submodel is not weakly stable, i.e. (I−Bm)
is not invertible. Thus, by Lemma 1, Bm does not
satisfy Assumption 1. But given that the edges in Bm

are a subset of those in the original B, it follows that
B also does not satisfy Assumption 1.

We are now ready to prove Theorem 1:

Theorem 1 (Sufficiency) Given some set of exper-
iments, a linear cyclic model with latent variables sat-
isfying Assumption 1 is fully identified if the pair
condition is satisfied for all ordered pairs (xi, xj) ∈
V × V, xi 6= xj.

Proof of Theorem 1:

As noted by Eberhardt et al. (2010) the system of lin-
ear equations on the total effects can be divided into
n subsystems, each constraining the total effects from
one variable to all the others. Consider the subsystem
Atn = a constraining the total effects t(xn • ). Se-
lect n− 1 equations such that the i:th equation of the
system comes from an experiment with intervention
set Ji satisfying the pair condition for the pair (n, i)
and is of the form

t(xn xi) =
∑

xj∈Ji

t(xn xj)t(xj xu||Ji) (1)

with t(xn xn) := 1. For example, for n = 4 the
system Atn = a would be the following:

A =

 1 −t(x2 x1||J1) −t(x3 x1||J1)
−t(x1 x2||J2) 1 −t(x3 x2||J2)
−t(x1 x3||J3) −t(x2 x3||J3) 1


tn =

 t(x4 x1)
t(x4 x2)
t(x4 x3)


a =

 t(x4 x1||J1)
t(x4 x2||J2)
t(x4 x3||J3)


where we will denote t(xi xj ||Jj) = 0 if xi /∈ Jj .

Now note that the matrix A resembles the I−B ma-
trix of a linear cyclic model Bp with n − 1 variables,
where the direct effects have been replaced by certain
experimental effects measured in the experiments. We
call matrix Bp = I−A the path model corresponding
to the set of experiments constraining the total effects
t(xn • ). This path model is illustrated in Figure 1.

To prove the theorem, we need to show that A = I−Bp

is always invertible, under Assumption 1 on B. We will
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Figure 1: Path model. See text for details.

do this by showing that, if A is not invertible, there
exists a subset of paths in the original model, from one
variable back to itself, that sum to one.

Hence, assume that I−Bp is not invertible. This im-
plies, by Lemma 1, that there exists a subset of paths
in the path model Bp, from some variable back to it-
self, which sum to one. Without loss of generality,
assume this variable is x1. We need to show that the
sum-product of any subset of paths, from x1 back to
itself, in Bp is equal to the sum-product of some subset
of paths, from x1 back to itself, in B. This we do by
creating a correspondence between paths in Bp and
paths in B; specifically, any path in Bp is the sum-
product of a set of paths in B, and two distinct paths
q1 and q2 in Bp do not share any corresponding paths
in B, so there is no risk of counting any given path in
B twice.

Definition: A path p in B, from xs to xt, is said to
correspond to a path q, from xs to xt, in Bp if

(a) each node in q can be mapped to an equivalently
labeled node in p, without changing their relative
ordering, and

(b) any nodes in p located between a mapped node
xa and a mapped node xb (with xa → xb in q)
belong to the set V \ Jb, i.e. to the set of nodes
that do not point into xb in Bp

First, note that the strength of each edge in the path
model Bp is the sum-product of its corresponding
paths in the original model B, as each entry is the
corresponding experimental effect t(xi xj ||Jj), and
the definition of this experimental effect is the sum-
product of paths leaving xi and ending in xj without
going through any nodes in Jj .

Second, and finally, we prove that any path p in B
can correspond to at most one path q in Bp. To see
this, we explicitly construct q in a deterministic way
such that any deviation from the construction would
result in a violation of the correspondence. Start at



the last (target) node of p, call this node q0. Mark
this as the last (target) node of q. Next, consider the
previous node in p. If this node points to q0 in Bp,
then for correspondence this node has to be mapped
to q, call it q1. If, on the other hand, the node does
not point to q0, then this node cannot be mapped to
q. Moving to the previous element in p, always check
if it points to the latest mapped node in q, and map it
to q if and only if it does. If, when finally arriving at
the first element of p, it can be mapped to q, a valid
corresponding path is found. If it cannot, no valid
corresponding path exists. Because all decisions are
‘forced’, no other paths except that constructed can
correspond to p.

Now, under the assumption that A = (I −Bp) is not
invertible, Bp has at least one node xi such that there
exists a subset of paths in Bp, from xi back to itself,
that sums to 1. Given that each path in Bp corre-
sponds to the sum-product of a distinct set of paths
in B, this implies that there exists a subset of paths
in B from xi back to itself, which sum to one. This
contradicts Assumption 1.

B Proof of Theorem 2

For convenience we restate the theorem here:

Theorem 2 (Worst Case Necessity) Given any
set of experiments that does not satisfy the pair con-
dition for all ordered pairs of variables (xi, xj) ∈ V ×
V, xi 6= xj, there exist two distinct linear cyclic mod-
els with latent variables satisfying Assumption 1 that
are indistinguishable from those experiments.

Proof:

Given that the set of experiments does not satisfy the
pair condition for all pairs, there exists an ordered pair
(xi, xj) that is not satisfied. The theorem is proven by

constructing two distinct models (B,Σe) and (B̃, Σ̃e)
that nevertheless yield the same data covariance ma-
trices in all experiments not satisfying the pair (xi, xj).

Specifically, consider an n variable model (B,Σe) such
that all elements of B are 0 except for element B[j, i] =
1. Let Σe = I, the n × n identity matrix. On the
other hand, consider a similar model (B̃, Σ̃e), with all
elements of B̃ equal to 0, and a disturbance covariance
matrix Σ̃e given by

Σ̃e[r, c] =


2, if r = c = j
1, if r = c 6= j
1, if r = i and c = j
1, if r = j and c = i
0, otherwise

In essence, the above construction creates a completely
empty pair of models, except that in one there is a
direct effect from xi to xj , and in the other there is a
confounder between xi and xj .

For both models, in any experiment intervening on nei-
ther xi nor xj (i.e. both are passively observed), the
variance of xi is 1, the variance of xj is 2, and the
covariance between the two variables is 1. For both
models, in any experiment intervening on xj but not
xi, the two variables are uncorrelated with unit vari-
ances. The same applies to any experiment interven-
ing on both xi and xj . Together, these handle all the
cases, except those experiments intervening on xi and
observing xj , which are not allowed because that pair
is not satisfied. If either variable is latent in the exper-
iment, no information concerning their relationship is
learned. Hence, both models produce the same data
covariance matrices in all experiments not satisfying
the given pair condition, and the theorem is proven.

Note that the fact that we chose a model such that
the variables xi and xj are unconnected to the other
variables is not purely out of convenience; when there
are more connections in the graph it opens up the
possibility that variables which are latent in a given
experiment can affect the covariances of the observed
variables. In some cases, this allows for identifying the
full model even when the pair condition is not satis-
fied for all pairs. For this reason, our theorem only
discusses worst case necessity.

C Proof of Completeness

The proof of completeness given by Hyttinen et al.
(2012) considering only fully observed experiments can
be adapted to the scenario with overlapping exper-
iments. The linear equations constraining the un-
known total effects T obtained in experiment Ek =
(Jk,Uk,Lk) (see Equation 1) can be written in matrix
form

Ek
UkJk

TJkJk
= TUkJk

where

Ek
UkJk

=

 t(xj1 xu1 ||Jk) t(xj2 xu1 ||Jk) · · ·
t(xj1 xu2 ||Jk) t(xj2 xu2 ||Jk) · · ·

...
...


TJkJk

=

 t(xj1 xj1) t(xj2 xj1) · · ·
t(xj1 xj2) t(xj2 xj2) · · ·

...
...

. . .


TUkJk

=

 t(xj1 xu1
) t(xj2 xu1

) · · ·
t(xj1 xu2) t(xj2 xu2) · · ·

...
...





Here matrix TJkJk
is invertible (assuming weak sta-

bility of the model) as the total effects matrix of the
model where variables Uk∪Lk are marginalized. Thus,
the experimental effects produced by a model with to-
tal effects matrix T are simply:

Ek
UkJk

= TUkJk
T−1JkJk

Now, assume the true data generating model (B,Σe)
with total effects matrix T = (I −B)−1 has been ob-
served in K overlapping experiments {Ek}Kk=1, produc-
ing experimental effects {Ek

UkJk
}Kk=1. If the method

of Eberhardt et al. (2010) has not identified the true
causal structure, there is a direct effects matrix B̃, dis-
tinct from B, with total effects matrix T̃ = (I− B̃)−1

satisfying the linear equations on the total effects used
by Eberhardt et al. (2010)

Ek
UkJk

T̃JkJk
= T̃UkJk

for all k = 1 . . .K. Then the direct effects matrix B̃
produces the same experimental effects in all experi-
ments {Ek}Kk=1:

Ẽk
UkJk

= T̃UkJk
T̃−1JkJk

= Ek
UkJk

T̃JkJk
T̃−1JkJk

= Ek
UkJk

Lemma 14 of Hyttinen et al. (2012) shows that if a
direct effects matrix B̃ produces the same experimen-
tal effects in experiments {Ek}Kk=1 as the true model

(B,Σe), then the model (B̃, Σ̃e) where

Σ̃e := (I− B̃)(I−B)−1Σe(I−B)−T (I− B̃)T

produces also the same covariance matrices as the true
model (B,Σe) in experiments {Ek}Kk=1. Thus the two
models cannot be distinguished based on 2nd order
statistics. A model not identified by Eberhardt et al.
(2010) is inherently underdetermined by the experi-
ments at hand.

D Inference Rules for Faithfulness

We repeat the definition of a minimal conditioning set
from the main text. It is adapted from the definitions
in Claassen and Heskes (2011).

For variables x and y and disjoint sets of variables C
and D not containing x and y, we denote a minimal
independence by

x ⊥⊥ y |D ∪ [C] whenever we have

x ⊥⊥ y |D ∪ C and ∀C ′ ( C, x \⊥⊥y |D ∪ C ′,

and a minimal dependence by

x \⊥⊥y |D ∪ [C] whenever we have

x \⊥⊥y |D ∪ C and ∀C ′ ( C, x ⊥⊥ y |D ∪ C ′.

In both cases D and C can be empty, although when
C is empty, the statements become trivial.

For notational simplicity, we assume for any variable x
and any set of variables W , t(• x ||W ∪{x}) = 0. We
also extend the notation of minimal conditioning sets
to x ⊥⊥ y | [C] || J to mean that x ⊥⊥ y| [C] holds in the
manipulated distribution of an experiment that has J
as its intervention set. We then have the following
rules:

1: If x ⊥⊥ y | [C] || J , then
(zero constraints)

• if y /∈ J , then t(x y || J ∪ C ∪ x) = 0

• if x /∈ J , then t(y x || J ∪ C ∪ y) = 0

• if C = {c} and x ∈ J and y, c ∈ U , then
t(y c || J ∪ y) = 0

• if C = {c} and y ∈ J and x, c ∈ U , then
t(x c || J ∪ x) = 0

(bilinear zero constraints)
for any u ∈ L ∪ U \ {C, x, y}

• if y /∈ J , then
t(x u || J ∪ C ∪ x)× t(u y || J ∪ C ∪ u) = 0

• if x /∈ J , then
t(y u || J ∪ C ∪ y)× t(u x || J ∪ C ∪ u) = 0

• if C = {c} and x ∈ J and y, c ∈ U , then
t(y u || J ∪ y)× t(u c || J ∪ u) = 0

• if C = {c} and y ∈ J and x, c ∈ U , then
t(x u || J ∪ x)× t(u c || J ∪ u) = 0

for any u ∈ V \ {C, x, y}

• if x, y /∈ J , then
t(u y || J ∪ C ∪ u)× t(u x || J ∪ C ∪ u) = 0

2: If x ⊥⊥ y | [C] || J and x \⊥⊥y |C ∪ [w] || J for some
w ∈ U \ {C, x, y}, then
(zero constraints)

• if y /∈ J , then t(w y || J ∪ w) = 0

• if x /∈ J , then t(w x || J ∪ w) = 0

• ∀c ∈ C ∩ U , then t(w c || J ∪ w) = 0



(bilinear zero constraints)
for any u ∈ L ∪ U \ {C, x, y, w}

• if y /∈ J , then
t(w u || J ∪ w)× t(u y || J ∪ u) = 0

• if x /∈ J , then
t(w u || J ∪ w)× t(u x || J ∪ u) = 0

• ∀c ∈ C ∩ U , then
t(w u || J ∪ w)× t(u c || J ∪ u) = 0

3: If x ⊥⊥ y | [C] || J and x ⊥⊥ y |C ∪ w || J for some
w ∈ U \ {C, x, y}, then
(bilinear constraint)

• t(x w || J ∪ C ∪ x) × t(y w || J ∪ C ∪ y) = 0
(note that x and y can be both in J )

4: Expand these constraints to all supersets of the
intervention sets.

t(x y||J ) = 0 ⇒ t(x y||J ∪ C) = 0

for all C ⊆ V \ {y}.

We have omitted consequences of faithfulness
that cannot be represented as a product of two exper-
imental effects. In particular this includes equations
that are polynomial in the experimental effects or
that include terms that involve the correlation due to
latent confounding. For example, if x ⊥⊥ y in a passive
observational data set, then, among other things, we
could also conclude that there is no latent confounder
of x and y that is not a variable in V.
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