
Constraint-based Causal Discovery:
Conflict Resolution with Answer Set Programming

Paper Supplement

Antti Hyttinen and Frederick Eberhardt
California Institute of Technology

Pasadena, CA, USA

Matti Järvisalo
HIIT & Department of Computer Science

University of Helsinki, Finland

A EXTENSION TO MULTIPLE
OVERLAPPING DATA SETS

A set of data sets is said to be overlapping if the sets of mea-
sured variables share some, but not all the same variables.
Tillman et al. (2009), Tillman and Spirtes (2011) and Tri-
antafillou et al. (2010) have explored causal discovery al-
gorithms in this setting under the assumption that the data
is passive observational in each data set and that the under-
lying causal model is acyclic. In particular, the approach in
Tillman and Spirtes (2011) uses R.A. Fisher’s technique of
pooling p-values to integrate test results from multiple tests
on the same set of variables. Hyttinen et al. (2013) extend
these approaches to include experimental data sets where a
subset of the variables has been subject to an intervention.
They also allow for feedback cycles in the generating mod-
els. However, their algorithm could not handle conflicting
constraints that arise from statistical data.

Our present procedure extends naturally to the completely
general setting of multiple overlapping experimental or ob-
servational data sets, and handles conflicted constraints. In
this setting the set of constraints K that enters into the con-
straint optimization is expanded to (in the general case)
include all possible constraints that can be obtained from
each of the individual data sets. Consider a constraint
k ∈ K obtained from an (experimental) data set D where
the (possibly empty) set of variables J ⊂ V was subject
to an intervention. The weight w(k) now enters into the
sum of weights for a graph G if the graph GJ 6|= k, where
GJ is the same as G except that all edges incident on any
variable in J are removed, i.e. GJ is the manipulated ver-
sion of G. The basic idea is that one simply has to keep
track of the experimental setting that the constraint was ob-
tained from, and use that as the basis for the minimization.
Consequently, the graph that our method returns is optimal
(in the sense of the problem statement) across the available
data sets.

Variables that are measured in one of the overlapping data
sets, but not in another, are treated as marginalized vari-
ables in the d-connection graphs for the latter data set. Be-

low, in Appendices C and F, we specify how to add an inter-
vention operation to the ASP-encoding while ensuring that
the d-connection properties are appropriately preserved for
the d-connection graphs that specify the test results for ex-
perimental data sets.

B PROBABILISTIC INTERPRETATION
OF THE LOG-WEIGHTS

Often the log-score can be interpreted in a probabilistic
way. Here we investigate the log-scores and their relation to
the problem formulation in Section 2 with this aim. Given
a set of constraints K, we set out to find G∗ such that

G∗ ∈ argmin
G∈G

∑
k∈K : G 6|=k

w(k)

w(k) = logP (k | D)− log[1− P (k | D)]

Now, let vector q be a binary vector indicating whether a
constraint is satisfied by a graph G with qi = 1 if the i:th
constraint is satisfied and qi = 0 if it is not, i.e. vector q
describes the equivalence class of graphs with respect to the
constraints K. Let vector p be the probability estimates of
constraints calculated from the data, i.e. pi = P (ki | D).
The optimization problem can now be re-described as

argmin
q

∑
i : qi=0

log pi − log(1− pi),

where we still (implicitly) require that vector q has to corre-
spond to some graph in the considered model space that sat-
isfies causal Markov and faithfulness. This formulation can
now be converted into an equivalent maximization problem

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

predicted probability of ind. (binned)

pr
op

or
tio

n
of

 tr
ue

 in
d.

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

300 samples
500 samples
700 samples
900 samples
theoretical optimum

Figure 1: Calibration of probabilities. See text for details.

(adding constants does not change the optimal answer):

argmin
q

∑
i : qi=0

log pi − log(1− pi)

⇔ argmax
q

∑
i : qi=0

− log pi + log(1− pi)

⇔ argmax
q

∑
i : qi=0

[− log pi + log(1− pi)] +
∑
i

log pi

⇔ argmax
q

∑
i : qi=1

log pi +
∑

i : qi=0

log(1− pi)

⇔ argmax
q

∏
i

pqii (1− pi)1−qi

Thus, we are finding the vector q (representing an equiva-
lence class of graphs) that maximizes the probability dis-
tribution P (q | p), with the approximation that the ele-
ments qi are distributed mutually independently, with the
corresponding probabilities in the vector p. In fact, some
(in)dependence relations imply others, especially under the
assumption of Markov and faithfulness. But independently
run independence tests are not able to share this informa-
tion with each other. Instead, this is exactly the task of
conflict resolution: One has to find a q that corresponds to
at least on graph in the model space (and respects all the
implications between (in)dependences).

Suppose we further assume that the vector p exhausts all
information on q available in D, so that it forms a ‘suffi-
cient statistic’, that is (i) D ⊥⊥ q | p and (ii) p is a deter-
ministic function of D. In that case we have

P (q|D) = P (q | p).

So in our minimization we are essentially – modulo the as-
sumptions and approximations just specified – finding the
equivalence class of graphs that maximizes the posterior
probability.

instances (sorted for each line)

so
lv

in
g

tim
e

pe
r

in
st

an
ce

 (
s)

●
●

●●●

●●
●●●

●●●
●

●●
●●●●●●●●

●●●
●●

●●
●

●●●
●

●●●●
●

●●●●●●
●

●
●●

●●
●

●●●
●●

●●
●

●●
●●

●

●
●●

●
●●

●●
●

●
●●●●●●●

●●
●●

●

●
●

●

●●●●
●●●

●
●

●●●●
●●

●●
●

●●●●
●

●●●
●●

●●

●●
●●

●
●●

●●●●
●●●●●●

●

●●

●
●

●●●●●●●

●●
●●●●

●●
●

●
●●●

●●
●●●●●

●●●

●

●

log−weights (new enc.) max cset = 3
log−weights (new enc.) max cset = 5

0 20 40 60 80 100

1
10

10
0

10
00

Figure 2: Solving times for the log-weighting scheme.

C INTERVENTION

Given a d-connection graph H = (V,E)C, the interven-
tion operation i(H, t) for variable t ∈ V results in d-
connection graph H ′ = (V,E′)C, where E′ is related to
E by (i) including in E′ any edges in E not involving t;
(ii) including in E′ any edge xa−t if there is an edge xa−t
in E; and (iii) not permitting any other edges in E′. Thus,
as is standard in the representation of interventions, edges
incident on the intervened variable are omitted (they are
not copied to E′). Note that the intervention operation can-
not be applied to a variable previously conditioned on or
marginalized, however these operation can still be applied
to a variable after intervention. In the case of conditioning,
the purpose of allowing an intervention before conditioning
is obvious: One wants to be able to express (in)dependence
constraints that condition on an intervened variable. In
the case of marginalization the possibility of intervening
is necessary in this representation of d-connection graphs
in order to reach (in)dependence constraints between non-
intervened variables in a data set where some variables
have been subject to intervention. Thus, with regard to
the “encoding DAG” in Figure 3, there are still multiple
options of where the intervention operations could be in-
cluded, since the order of intervention before marginaliza-
tion and conditioning only applies to each variable indi-
vidually. A variety of considerations may make one ar-
rangement of operations in the encoding DAG more use-
ful than another: One may prefer to integrate constraints
within one data set first, or one may want to integrate simi-
lar constraints across data sets first.

D PROOF OF THEOREM 1

Proof: Assume there is a path p of type xa · · · by that is d-
connecting given C′′ ⊇ C′ in H . Since p is d-connecting,
every collider on p is in C′′ and every non-collider is not
in C′′. In the conditioning operation all edges not adja-
cent to w are preserved. So the only parts of p that may
be broken in H ′ are due to edges connected to the newly
conditioned variable w. Since w ∈ C′′ and the path p is

d-connecting given C′′, it follows that w must be a collider
on p, which means it can only appear in components of the
type sa→w[↔w]∗← bt on the path p, where s 6= w, t 6= w and
the part in the brackets may appear zero or more times. Let
p′ be the path between x and y where all such components
are replaced by sa− bt. This replacement edge is in H ′ due
to rule (ii) in the definition of the conditioning operation.
Furthermore, since there is no other way to break a path,
p′ as a whole is present in H ′, and p′ is still d-connecting
given C′′. The path p′ will have the same end points as
path p, and thus a path of type xa · · · by is present in H ′ that
is d-connecting given C′′.

Assume there is a path p′ of type xa · · · by that is d-connecting
given C′′ ⊇ C′ in H ′. As all other edges in H ′ are just
copies of edges in H , for the path p′ not to exist in H there
must be edges sa− bt on the path p′ that are added by rule
(ii) in the definition of the conditioning operation. But then
for each such edge there has to be a triple sa→w← bt in H ,
as otherwise rule (ii) would not have added sa− bt to H ′.
Such a triple cannot be blocked since w ∈ C′′. Replacing
all edges not present in H by such triples similarly results
in a path p in H that is d-connecting given C′′ and still of
the type xa · · · by. �

The proof for the marginalization and intervention opera-
tions follow the exact same idea.

E FURTHER SIMULATIONS

Figure 1 shows the probability calibration plot for the esti-
mates of the probability of independence determined by the
model comparison described in Section 4.3. The estimates
are based on 300 causally insufficient and possibly cyclic
models under passive observation. The predictions were
divided into 10 bins with equal width, denoted by the black
lines in the plot. We then calculated how many times the
true result was in fact an independence. The filled circles
mark these true proportions against the predicted probabil-
ity for different sample sizes. The probabilities seem to
be roughly calibrated for the different sample sizes when
the prior is set to α = 0.5 (and the equivalent sample size
prior for the local-score is set to 20). The unfilled circles
show the proportions of predictions in each bin. Note that
for these sample sizes, the test does not yet predict a prob-
ability over 0.9 for an independence. This seems natural
since it is very hard to be sure of an independence, it might
just be a very weak dependence. Otherwise the high and
low probabilities are predicted more often when the sam-
ple size grows, while the probabilities in the middle bins
are predicted somewhat more often for lower sample sizes.

Figure 2 further explores the scalability of the method using
log-weights for 7-variable graphs. The running times are in
log-scale, and again the instances are sorted according to
their solving times. Limiting the maximimum conditioning
set size to 3, which already allows most inferences to be

made, cuts down the number of constraints and allows for
faster solving.

F FULL ASP ENCODING

Finally, we give the full ASP-encoding with the inter-
vention, conditioning and marginalization operations, pre-
sented in Figure 3. In the full encoding, an additional
set J is introduced that represents the intervention set. In
analogy with cond(V,C,J, z) and marg(V,C,J, z), the
input predicate intervene(V,C,J, z) enables intervening
on a variable z in a d-connection graph that has exactly the
variables V and conditioning set C.

References

Hyttinen, A., Hoyer, P. O., Eberhardt, F., and Järvisalo,
M. (2013). Discovering cyclic causal models with latent
variables: A general SAT-based procedure. In Proceed-
ings of UAI, pages 301–310. AUAI Press.

Tillman, R. E., Danks, D., and Glymour, C. (2009). In-
tegrating locally learned causal structures with overlap-
ping variables. In Proceedings of NIPS 2008, pages
1665–1672.

Tillman, R. E. and Spirtes, P. (2011). Learning equivalence
classes of acyclic models with latent and selection vari-
ables from multiple datasets with overlapping variables.
In Proceedings of AISTATS. JMLR.

Triantafillou, S., Tsamardinos, I., and Tollis, I. G. (2010).
Learning causal structure from overlapping variable sets.
In Proceedings of AISTATS, pages 860–867. JMLR.

Conditioning on variable z ∈ V, ∀x, y ∈ V \ z:
th(x, y,V \ z,C ∪ z,J) :- th(x, y,V,C,J), cond(V,C,J, z).
th(x, y,V \ z,C ∪ z,J) :- th(x, z,V,C,J), hh(z, y,V,C,J),

cond(V,C,J, z).

hh(x, y,V \ z,C ∪ z,J) :- hh(x, y,V,C,J), cond(V,C,J, z).
hh(x, y,V \ z,C ∪ z,J) :- hh(x, z,V,C,J), hh(z, y,V,C,J),

cond(V,C,J, z).

tt(x, y,V \ z,C ∪ z,J) :- tt(x, y,V,C,J), cond(V,C,J, z).
tt(x, y,V \ z,C ∪ z,J) :- th(x, z,V,C,J), th(y, z,V,C,J),

cond(V,C,J, z).

Marginalizing a variable z ∈ V, ∀x, y ∈ V \ z:
th(x, y,V \ z,C,J) :- th(x, y,V,C,J),marg(V,C,J, z).
th(x, y,V \ z,C,J) :- tt(x, z,V,C,J), th(z, y,V,C,J),

marg(V,C,J, z).
th(x, y,V \ z,C,J) :- th(x, z,V,C,J), th(z, y,V,C,J),

marg(V,C,J, z).
th(x, y,V \ z,C,J) :- tt(x, z,V,C,J), hh(z, y,V,C,J),

marg(V,C,J, z).
th(x, y,V \ z,C,J) :- th(x, z,V,C,J), tt(z, z,V,C,J),

hh(z, y,V,C,J),marg(V,C,J, z).

hh(x, y,V \ z,C,J) :- hh(x, y,V,C,J),marg(V,C,J, z).
hh(x, y,V \ z,C,J) :- th(z, x,V,C,J), th(z, y,V,C,J),

marg(V,C,J, z).
hh(x, y,V \ z,C,J) :- hh(x, z,V,C,J), th(z, y,V,C,J),

marg(V,C,J, z).
hh(x, y,V \ z,C,J) :- th(z, x,V,C,J), hh(z, y,V,C,J),

marg(V,C,J, z).
hh(x, y,V \ z,C,J) :- hh(x, z,V,C,J), tt(z, z,V,C,J),

hh(z, y,V,C,J),marg(V,C,J, z).

tt(x, y,V \ z,C,J) :- tt(x, y,V,C,J),marg(V,C,J, z).
tt(x, y,V \ z,C,J) :- tt(x, z,V,C,J), tt(z, y,V,C,J),

marg(V,C,J, z).
tt(x, y,V \ z,C,J) :- th(x, z,V,C,J), tt(z, y,V,C,J),

marg(V,C,J, z).
tt(x, y,V \ z,C,J) :- tt(x, z,V,C,J), th(y, z,V,C,J),

marg(V,C,J, z).
tt(x, y,V \ z,C,J) :- th(x, z,V,C,J), tt(z, z,V,C,J),

th(y, z,V,C,J),marg(V,C,J, z).

Intervening on a variable z ∈ V, ∀x, y ∈ V:
th(x, y,V,C,J ∪ z) :- th(x, y,V,C,J), z 6= y,

intervene(V,C,J, z).
hh(x, y,V,C,J ∪ z) :- hh(x, y,V,C,J), x 6= z, y 6= z,

intervene(V,C,J, z).
tt(x, y,V,C,J ∪ z) :- tt(x, y,V,C,J), intervene(V,C,J, z).

Inferring failures to satisfy (in)dependencies ∀x∀y > x,∀C,V = {x, y}:
fail(x, y,V,C,J,W) :- tt(x, y,V,C,J), indep(x, y,V,C,J,W).
fail(x, y,V,C,J,W) :- th(x, y,V,C,J), indep(x, y,V,C,J,W).
fail(x, y,V,C,J,W) :- th(y, x,V,C,J), indep(x, y,V,C,J,W).
fail(x, y,V,C,J,W) :- hh(x, y,V,C,J), indep(x, y,V,C,J,W).
fail(x, y,V,C,J,W) :- not th(x, y,V,C,J), not th(y, x,V,C,J),

not hh(x, y,V,C,J), not tt(x, y,V,C,J),
dep(x, y,V,C,J,W).

Weak constraints ∀x∀y > x,∀C,J,V = {x, y}:
:∼fail(x, y,V,C,J,W). [W]

Figure 3: The ASP encoding, including the encoding of the
intervention operation.

