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Introduction to Subsampling

We consider the discovery of the time series causal structure
from data obtained at a coarser measurement timescale:
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• Only every u:th vector of values is observed (subsampling rate u)

• Subsamping induces confounding, and unidentifiability

• Ignoring subsampling can lead to significant errors!

• Applications: e.g. fMRI.
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Previous Literature

• Adding instantaneous effects in a linear model
(see for example Hyvärinen et al 2010).

• Continuous time approaches, but some processes are
inherently discrete time (e.g. salary payment).

• Recently Plis et al. (UAI2015,NIPS2015) considered modeling
subsampling directly, assuming on the system timescale level:

• discrete time
• first order Markov: Vt ⊥⊥ Vt−k |Vt−1

• no instantaneous effects, or unobserved common causes
• nonparametric (continuous or discrete values, SVAR processes,

or dynamic BNs)

• Corresponding parametric method: Gong et al. (ICML2015)
discovered linear models using non-Gaussianity.
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Induced confounding
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Task 1: Finding System Timescale Structures

Result 1: Deciding whether there is a system t.s. structure
compatible with the directed edges of a measurement t.s. structure
is NP-complete for any fixed u ≥ 2.

Result 2: A constraint satisfaction solution by ASP:

• We encoded the problem (the marginalization operation)
using the expressive declarative modeling language

• Solver Clingo (Gebser et al. 2011) uses state-of-the-art
SAT-solving techniques to give an exact and complete solution

• ASP is relatively easy and quick to use, the encoding is easily
extendable

• Subsampling rate u: fixed or free.
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Scalability of Enumerating 1000 Solutions

( fixed subsampling rate 2, SAT is our approach,
MSL is the previous state of art by Plis et al. (2015) )
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Task 2: Finding Structures Compatible with Data
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from data: e.g. V1 → V3 ⇔ V t−2
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• Due to finite samplesize, the constraint satisfaction approach
will often return UNSATISFIABLE

• Find the system t.s. structure such that the corresponding
measurement t.s. structure is optimally close to the estimated
(Task 2).
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Result 3: A Constraint Optimization Solution

Specifics:

• Penalize inconsistencies between absences and precences of
edges in the measurement t.s.:

• Either uniform weights, or
• log Bayesian probabilities of the corresponding (in)dependence,

obtained through Bayesian model selection (see Hyttinen et al.
2014)

• Objective function is the sum of the penalities

• Clingo uses Branch-and-Bound search to find the exact
weighted Maximum Satisfiability solution.

• We scale to 11-12 within 10 minutes, depending on the
sample size and other specifics

• Previous work by Plis et al. 2015: searching neighbors of the
estimated measurement t.s. structure — resembles the
uniform weighting scheme.
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Accuracy of the Estimated System Timescale Edges

Log-prob. Uniform
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( fixed subsampling rate 2, average result of the eq. class,
6 nodes, av. degree 3, 200 samples, 100 data sets, linear models )
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Conclusion

Causal discovery from subsampled time series data:

• A non-parametric constraint satisfaction approach:
Much better scalability than previous state-of-the-art.

• A (first) constraint optimization approach:
More accurate than unweighted or unoptimal solutions.

• Future work: generalizing the model space, e.g. allowing for
unobserved confounding time series.

Thanks!
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