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Linear Equations

Linear Cyclic Model with Latent Variables

ba171 + bosxs + €2
bs1x1 + b32x2 + b3axs + €3
baox2 + bazws + eq

% The model is parametrized by B and cov(e) = 3.
% Behaviour at equilibrium:

Bx;_1 +e <« background conditions invariant
= B¥xg+(I+B+B*+--)e
= (I-B)le
= X ~NO,JI-B)'Z.,(I1I-B)7)

Self cycles are not identifiable from equilibrium data, so
assuming Vi : by;; = 0.

The model and all possible manipulated models are
assumed stable: absolute of the eigenvalues of B and
B™:s must all be less than 1.

Interventions & Experimental Effects

independent randomizations
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experimental effects

between observed

t(x2~xq|[{x1,%x2}) = Regression coefficient of x5 on x4

= Sum of all open paths from x5 to x4
= b2 + ba3b3a + ba3b3sbaz + - -
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Method

1. Input covariance matrices C.,--- Ck.

2. Form linear equations

3. Solve for direct effects b;;.

4. Get the covariances of the error terms o;; from an experiment
where both x; and x; are observed with the formula

0ij = [(T-B™)CE(I - B™)"][i, j]

Identifiability & Underdetermination

Identifiability theorem

Given a sequence of experiments the model (B, X,) is fully
identified by the method if and only if for each ordered
pair of variables (z;, ;) there is

% an experiment where z; is intervened on and z; is
observed (Pair Condition), and

% another experiment where both x; and z, are ob-
served (Covariance Condition).

1. Say we have done experiments intervening on variables {z1 },
{21, 22}, {xs}.
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2. Which parameters are identified in the general case?
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% Generally, for identifying b;;, pair condition must be satisfied
for all pairs (e, 7).

% If pair condition for (4, j) is not satisfied, then bj; is never
identified.

Completeness

t(xmqlle).

="Kb=k = b=K'k

Completeness theorem

Given the data covariance matrices from a set of experi-
ments, for determining the direct effects b;;, the identifiabil-
ity condition (Pair Condition) of the approach is necessary
for any method.

This hinges on the fact that if two different direct effects matri-
ces B and B produce the same experimental effects in a given
set of experiments, the models (B,3.) and (B, (I — B)(I —
B) !%.(I-B) 7 (I-B)T) can be shown to produce the same

covariance matrices for those experiments as well.

Assuming Faithfulness

Faithfulness in linear models

Any independence relation between vari-
ables is not the result of several exactly
cancelling pathways.

For every experimental dataset
1. Run a search for finding independencies. Add constraint
equations from skeleton rule:
Skeleton rule
T ¢ Jm
bj; =0

2. Add more constraint equations from orientation rules:

Orientation rule 1

t(zi~xg)|Im) =0
tivaj||Im) # 0
b; = 0

Orientation rule 2

x; L xy |z,
t(zi~ag||[Im) # 0
by =0

. Take into account the additional structure found when
selecting the next experiment.

Experiment Selection

. Select the experiment that satisfies the pair condition for
most new pairs.

. If any parameters are identified, consider the pair condition
for the corresponding pairs as satisfied.

Test Results

Selecting the experiment in such a way that the model is learned
accurately with the fewest number of experiments.
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% Fewer experiments are needed with sparse graphs.
% More structure is discovered earlier on with sparse graphs.
Y With denser graphs the accuracy gets worse.

Sachs et al Flow Cytometry Data

Learning as much of the structure as possible given only 5 exper-
iments, intervening on {},{Mek},{PIP2},{Akt} and {PKC]}.
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yet when assuming faithfulness most of parameters have
been identified.

Summary

% Method for learning linear cyclic models with
latent variables using randomized experiments.
% Complete with regard to search space and assumptions.
% Necessary and sufficient identifiability condition.
% Underdetermination characterized.
% Faithfulness incorporated.
% R-code available.




