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x := Bx + e ⇔

x1 := e1

x2 := b21x1 + b24x4 + e2

x3 := b31x1 + b32x2 + b34x4 + e3

x4 := b42x2 + b43x3 + e4

F The model is parametrized by B and cov(e) = Σe.

F Behaviour at equilibrium:

xt := Bxt−1 + e ← background conditions invariant

x∞ := B∞x0 + (I + B + B2 + · · · )e
x∞ := (I−B)−1e

e ∼ N(0,Σe) ⇒ x∞ ∼ N(0, (I−B)−1Σe(I−B)−T )

A1 Self cycles are not identifiable from equilibrium data, so
assuming ∀i : bii = 0.

A2 The model and all possible manipulated models are
assumed stable: absolute of the eigenvalues of B and
Bm:s must all be less than 1.

Interventions & Experimental Effects
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Ck
x = (I−Bm)−1Σm

e (I−Bm)−T =
independent randomizations

↓
1 · · ·
0 1 · ·

t(x1 x3||{x1, x2}) t(x2 x3||{x1, x2}) v2
3 ·

t(x1 x4||{x1, x2}) t(x2 x4||{x1, x2}) v34 v2
4


↑

experimental effects

↑
between observed

t(x2 x4||{x1,x2}) = Regression coefficient of x2 on x4

= Sum of all open paths from x2 to x4

= b42 + b43b32 + b43b34b42 + · · ·
= (b42 + b43b32)(1 + b43b34 + · · · )

nonlinear→ =
b42 + b43b32

1− b43b34

= b42 +
b32 + b34b42

1− b43b34
b43

linear→ = b42 + t(x2 x3||{x1,x2})b43

Linear Equations
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Method

1. Input covariance matrices C1
x, · · ·Ck

x.

2. Form linear equations

 K1

K2

. . .




b12

...
b1n

b21

...

 =


t(x2 x1||•)

...
t(xn x1||•)
t(x1 x2||•)

...


3. Solve for direct effects bij .

4. Get the covariances of the error terms σij from an experiment
where both xi and xj are observed with the formula

σij = [(I−Bm)Ck
x(I−Bm)T ][i, j]

Identifiability & Underdetermination

Identifiability theorem

Given a sequence of experiments the model (B,Σe) is fully
identified by the method if and only if for each ordered
pair of variables (xi, xj) there is

F an experiment where xi is intervened on and xj is
observed (Pair Condition), and

F another experiment where both xi and xj are ob-
served (Covariance Condition).

1. Say we have done experiments intervening on variables {x1},
{x1, x2}, {x3}.

PC :


· × X ×
X · X ×
X X · ×
X X X ·

 , COV :


· · · ·
X · · ·
X X · ·
X X X ·


2. Which parameters are identified in the general case?

B :


· × × ×
× · × ×
× × · ×
X X X ·

 , Σe :


× · · ·
× × · ·
× × × ·
× × × X


F Generally, for identifying bji, pair condition must be satisfied

for all pairs (•, j).
F If pair condition for (i, j) is not satisfied, then bji is never

identified.

Completeness
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Completeness theorem

Given the data covariance matrices from a set of experi-
ments, for determining the direct effects bji, the identifiabil-
ity condition (Pair Condition) of the approach is necessary
for any method.

This hinges on the fact that if two different direct effects matri-
ces B and B̂ produce the same experimental effects in a given
set of experiments, the models (B,Σe) and (B̂, (I − B̂)(I −
B)−1Σe(I−B)−T (I−B̂)T ) can be shown to produce the same
covariance matrices for those experiments as well.

Assuming Faithfulness

Faithfulness in linear models

Any independence relation between vari-
ables is not the result of several exactly
cancelling pathways.
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For every experimental dataset
1. Run a search for finding independencies. Add constraint

equations from skeleton rule:

Skeleton rule

xi ⊥⊥ xj |S
xj /∈ Jm

bji = 0

xi xjbji

sij

bij

2. Add more constraint equations from orientation rules:

Orientation rule 1

t(xi xk||Jm) = 0
t(xi xj ||Jm) 6= 0

bkj = 0
xi

xk

bkj

xj

Orientation rule 2

xi ⊥⊥ xk |xj

t(xi xj ||Jm) 6= 0
bjk = 0

xi

xk

bjk

xj

3. Take into account the additional structure found when
selecting the next experiment.

Experiment Selection

1. Select the experiment that satisfies the pair condition for
most new pairs.

2. If any parameters are identified, consider the pair condition
for the corresponding pairs as satisfied.

Test Results

Selecting the experiment in such a way that the model is learned
accurately with the fewest number of experiments.
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F Fewer experiments are needed with sparse graphs.

F More structure is discovered earlier on with sparse graphs.

F With denser graphs the accuracy gets worse.

Sachs et al Flow Cytometry Data

Learning as much of the structure as possible given only 5 exper-
iments, intervening on {},{Mek},{PIP2},{Akt} and {PKC}.
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F Pair condition was satisfied for only 40/110 of the pairs,
yet when assuming faithfulness most of parameters have
been identified.

Summary

F Method for learning linear cyclic models with
latent variables using randomized experiments.

F Complete with regard to search space and assumptions.
F Necessary and sufficient identifiability condition.
F Underdetermination characterized.
F Faithfulness incorporated.
F R-code available.
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