Introduction

Mode

Learning Method

Theoretica Results

Adding in the Assumption of Faithfullness

Conclusion

Causal discovery for linear cyclic models with latent variables

Antti Hyttinen¹, Frederick Eberhardt², and Patrik O. Hoyer^{1,3}

¹ HIIT / Dept. of Computer Science, University of Helsinki
 ² Dept. of Philosophy, Washington University in St. Louis
 ³ CSAIL, Massachusetts Institute of Technology

PGM 2010 September 15th, 2010

15.9.2010 1 / 22

Outline

Introduction

Mode

Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

1 Introduction

2 Model

3 Learning Method

4 Theoretical Results

5 Adding in the Assumption of Faithfulness

6 Conclusion

PGM 2010

Causal discovery for linear cyclic models with latent variables Antti Hyttinen 15.9.2010 2 / 22

Introduction

Example 1 Example 2 Earlier work

Model

Learning Method

Theoretica Results

Adding in the Assumption of Faithfullness

Conclusion

I Introduction

2 Model

3 Learning Method

4 Theoretical Results

5 Adding in the Assumption of Faithfulness

6 Conclusion

PGM 2010

Causal discovery for linear cyclic models with latent variables Antti Hyttinen 15.9.2010 3 / 22

Introduction

Example 1 Example 2 Earlier work

Model

Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

How to understand the interaction between Health, Exercise, Resistance, and Illness?

Introduction

Example 1 Example 2 Earlier work

Model

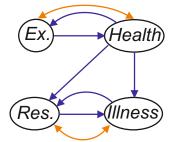
Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

How to understand the interaction between Health, Exercise, Resistance, and Illness?



Introduction

Example 1 Example 2 Earlier work

Model

Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

How to understand the interaction between Health, Exercise, Resistance, and Illness?

Ex. Health Res. Illness

✓ Cycles

 $\checkmark~$ Latent confounders

 \checkmark Some experiments possible

Introduction

Example 1 Example 2 Earlier work

Model

Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

How to understand the interaction between Health, Exercise, Resistance, and Illness?

Ex. Health Res. Illness

✓ Cycles

 $\checkmark~$ Latent confounders

 $\checkmark\,$ Some experiments possible

Challenge: Select the experiments for learning the relationships as completely and accurately as possible!

PGM 2010

Causal discovery for linear cyclic models with latent variables Antti H

Antti Hyttinen

15.9.2010 4 / 22

Example 2: Flow cytometry

Introduction Example 1 Example 2 Earlier work

Model

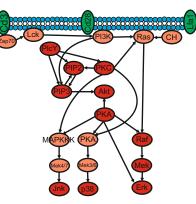
Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

How to understand cell signaling inside human T-cells?



Example 2: Flow cytometry

Introduction Example 1 Example 2 Earlier work

Model

Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

How to understand cell signaling inside human T-cells?

/lek3

✓ Cycles
 ✓ Latent confounders
 ✓ Experiments available

Example 2: Flow cytometry

Introduction Example 1 Example 2 Earlier work

Model

Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

How to understand cell signaling inside human T-cells?

✓ Cycles
 ✓ Latent confounders
 ✓ Experiments available

Challenge: Given a set of experiments, learn as much of the structure as possible!

PGM 2010

Causal discovery for linear cyclic models with latent variables

Antti Hyttinen

15.9.2010 5 / 22

Earlier work

Introduction					
Example 1					
Example 2 Earlier work					
Earlier work					
Model					
Learning		I		I	C
Method					Cont. /
		exp.	latents	cycles	Discr.
Theoretical	Spirtes et al. (FCI) (1993)		.(,	C/D
Results			✓		C/D
Adding in the	Richardson (CCD) (1996)			\checkmark	C/D
Assumption	Schmidt and Murphy (2009)	\checkmark		\checkmark	D
of					D
Faithfullness	Itani, Sachs et al. (2010)	✓		✓	D
Conclusion	Eberhardt, Hoyer, Scheines (2010)	 ✓ 	\checkmark	\checkmark	C (lin.)

Introduction

Model

An example of a linear cyclic model w. latents Behaviour at equilibrium

Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

1 Introduction

2 Model

3 Learning Method

4 Theoretical Results

5 Adding in the Assumption of Faithfulness

6 Conclusion

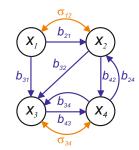
PGM 2010

An example of a linear cyclic model w. latents

Introduction

Mode

- An example of a linear cyclic model w. latents
- Behaviour at equilibrium
- Learning Method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



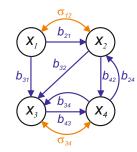
- $\begin{array}{rcl} x_1 & := & e_1 \\ x_2 & := & b_{21}x_1 & & + & b_{24}x_4 + e_2 \end{array}$
- $\begin{array}{rcl} x_3 & := & b_{31}x_1 + b_{32}x_2 & + & b_{34}x_4 + e_3 \\ x_4 & := & b_{42}x_2 + & b_{43}x_3 & + & e_4 \end{array}$

An example of a linear cyclic model w. latents

Introduction

Mode

- An example of a linear cyclic model w. latents Behaviour at
- equilibrium
- Learning Method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



- $x_1 := e_1$ $x_2 := b_{21}x_1 + b_{24}x_4 + e_2$
- $\begin{array}{rcl} x_3 & := & b_{31}x_1 + b_{32}x_2 & + & b_{34}x_4 + e_3 \\ x_4 & := & b_{42}x_2 + & b_{43}x_3 & + & e_4 \end{array}$

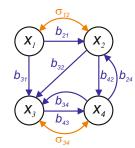
 $\mathbf{x} := \mathbf{B}\mathbf{x} + \mathbf{e}$

$$\mathbf{B} = \begin{pmatrix} \mathbf{0} & 0 & 0 & 0 \\ b_{21} & \mathbf{0} & 0 & b_{24} \\ b_{31} & b_{32} & \mathbf{0} & b_{34} \\ 0 & b_{42} & b_{43} & \mathbf{0} \end{pmatrix}, \quad \mathbf{\Sigma}_e = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & 0 & 0 \\ \sigma_{12} & \sigma_2^2 & 0 & 0 \\ 0 & 0 & \sigma_3^2 & \sigma_{34} \\ 0 & 0 & \sigma_{34} & \sigma_4^2 \end{pmatrix}$$

PGM 2010

Introduction

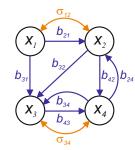
- Mode
- An example of a linear cyclic model w. latents
- Behaviour at equilibrium
- Learning Method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



 $\mathbf{x} := \mathbf{B}\mathbf{x} + \mathbf{e}$

Introduction

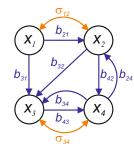
- Mode
- An example of a linear cyclic model w. latents
- Behaviour at equilibrium
- Learning Method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



 $\mathbf{x}_t = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{e} \leftarrow \mathsf{background} \mathsf{ conditions} \mathsf{ invariant}$

Introduction

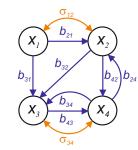
- Mode
- An example of a linear cyclic model w. latents
- Behaviour at equilibrium
- Learning Method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



 $\begin{aligned} \mathbf{x}_t &= \mathbf{B}\mathbf{x}_{t-1} + \mathbf{e} \leftarrow \text{background conditions invariant} \\ \mathbf{x}_{\infty} &= \mathbf{B}^{\infty}\mathbf{x}_0 + (\mathbf{I} + \mathbf{B} + \mathbf{B}^2 + \cdots)\mathbf{e} \end{aligned}$

Introduction

- Mode
- An example of a linear cyclic model w. latents
- Behaviour at equilibrium
- Learning Method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion

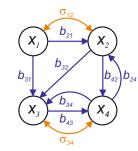


Stability Assumption: The model and all possible manipulated models are assumed stable: absolute values of the eigenvalues of **B** and manipulated **B**s must all be less than 1.

$$\begin{array}{lll} \mathbf{x}_t &=& \mathbf{B}\mathbf{x}_{t-1} + \mathbf{e} \leftarrow \text{background conditions invariant} \\ \mathbf{x}_{\infty} &=& \mathbf{B}^{\infty}\mathbf{x}_0 + (\mathbf{I} + \mathbf{B} + \mathbf{B}^2 + \cdots)\mathbf{e} \\ \mathbf{x}_{\infty} &=& (\mathbf{I} - \mathbf{B})^{-1}\mathbf{e} \end{array}$$

Introduction

- Mode
- An example of a linear cyclic model w. latents
- Behaviour at equilibrium
- Learning Method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



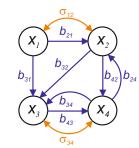
Stability Assumption: The model and all possible manipulated models are assumed stable: absolute values of the eigenvalues of **B** and manipulated **B**s must all be less than 1.

 $\begin{array}{rcl} \textbf{x}_t &=& \textbf{B}\textbf{x}_{t-1} + \textbf{e} \leftarrow \text{background conditions invariant} \\ \textbf{x}_{\infty} &=& \textbf{B}^{\infty}\textbf{x}_0 + (\textbf{I} + \textbf{B} + \textbf{B}^2 + \cdots)\textbf{e} \\ \textbf{x}_{\infty} &=& (\textbf{I} - \textbf{B})^{-1}\textbf{e} \\ \mathrm{Cov}(\textbf{x}_{\infty}) &=& (\textbf{I} - \textbf{B})^{-1}\boldsymbol{\Sigma}_{\textbf{e}}(\textbf{I} - \textbf{B})^{-T} \end{array}$

Causal discovery for linear cyclic models with latent variables Antti Hyttinen 15.9.2010 9 / 22

Introduction

- Mode
- An example of a linear cyclic model w. latents
- Behaviour at equilibrium
- Learning Method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



Stability Assumption: The model and all possible manipulated models are assumed stable: absolute values of the eigenvalues of **B** and manipulated **B**s must all be less than 1.

 $\mathbf{x} := \mathbf{B}\mathbf{x} + \mathbf{e}$

$$\operatorname{Cov}(\mathbf{x}) = (\mathbf{I} - \mathbf{B})^{-1} \boldsymbol{\Sigma}_{\mathbf{e}} (\mathbf{I} - \mathbf{B})^{-T}$$

Introduction

Model

Learning Method

- Experimental effects Linear equations Learning method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion

1 Introduction

2 Model

3 Learning Method

4 Theoretical Results

5 Adding in the Assumption of Faithfulness

6 Conclusion

PGM 2010

Causal discovery for linear cyclic models with latent variables Antti Hyttinen 15.9.2010 10 / 22

Introduction

Mode

Learning Method

Experimental effects Linear equations Learning method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

1. Input data from several randomized experiments, each intervening on possibly several different variables.

2. For each experiment:

2a. Estimate the covariance matrix \mathbf{C}_{x}^{k} .

5. Output the estimated model (B, Σ_e) .

PGM 2010

Causal discovery for linear cyclic models with latent variables Antt

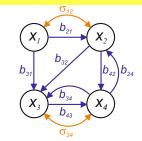
Antti Hyttinen 15.9.2010 11 / 22

Introduction

- Mode
- Learning Method

Experimental effects Linear equations

- Linear equation Learning method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



 $x_1 := e_1$

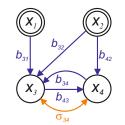
$$x_2 := b_{21}x_1 + b_{24}x_4 + e_2$$

$$x_3 := b_{31}x_1 + b_{32}x_2 + b_{34}x_4 + e_3$$

$$x_4 := b_{42}x_2 + b_{43}x_3 + e_4$$

Introduction

- Mode
- Learning Method
- Experimental effects
- Linear equations Learning method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



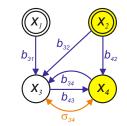
- $x_1 := Randomized value$
- $x_2 := Randomized value$

$$x_3 := b_{31}x_1 + b_{32}x_2 + b_{34}x_4 + e_3$$

 $x_4 := b_{42}x_2 + b_{43}x_3 + e_4$

Introduction

- Mode
- Learning Method
- Experimental effects Linear equations Learning
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



- $x_1 := Randomized value$
- $x_2 := Randomized value$

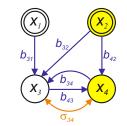
$$x_3 := b_{31}x_1 + b_{32}x_2 + b_{34}x_4 + e_3$$

$$x_4 := b_{42}x_2 + b_{43}x_3 + e_4$$

 $t(x_2 \rightsquigarrow x_4 || \{x_1, x_2\}) =$ Regression coefficient of x_2 on x_4

Introduction

- Mode
- Learning Method
- Experimental effects Linear equations Learning
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



 x_1 := Randomized value x_2 := Randomized value x_3 := $b_{31}x_1 + b_{32}x_2 + b_{34}x_4 + e_3$

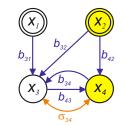
$$x_4 := b_{42}x_2 + b_{43}x_3 + e_4$$

$$t(x_2 \rightsquigarrow x_4 || \{x_1, x_2\})$$

- = Regression coefficient of x_2 on x_4
- = Sum-product of open paths from x_2 to x_4

Introduction

- Mode
- Learning Method
- Experimental effects Linear equations Learning
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



 $x_1 := \text{Randomized value}$ $x_2 := \text{Randomized value}$ $x_3 := b_{31}x_1 + b_{32}x_2 + b_{34}x_4 + e_3$

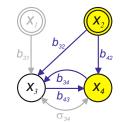
$$x_4 := b_{42}x_2 + b_{43}x_3 + e_4$$

 $t(x_2 \rightarrow x_4 || \{x_1, x_2\})$ = Regression coefficient of x_2 on x_4

- = Sum-product of open paths from x_2 to x_4
- $= b_{42} + b_{43}b_{32} + b_{43}b_{34}b_{42} + b_{43}b_{34}b_{43}b_{32} +$

Introduction

- Mode
- Learning Method
- Experimental effects Linear equations Learning method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



 $x_1 := \text{Randomized value}$ $x_2 := \text{Randomized value}$ $x_3 := b_{31}x_1 + b_{32}x_2 + b_{34}x_4 + e_3$

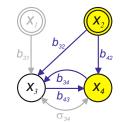
$$x_4 := b_{42}x_2 + b_{43}x_3 + e_4$$

 $t(x_2 \rightarrow x_4 || \{x_1, x_2\}) = \text{Regression coefficient of } x_2 \text{ on } x_4$

- = Sum-product of open paths from x_2 to x_4
- $= b_{42} + b_{43}b_{32} + b_{43}b_{34}b_{42} + b_{43}b_{34}b_{43}b_{32} +$

Introduction

- Mode
- Learning Method
- Experimental effects Linear equations Learning method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



- $x_1 := \text{Randomized value}$ $x_2 := \text{Randomized value}$ $x_3 := b_{31}x_1 + b_{32}x_2 + b_{34}x_4 + e_3$
- $x_4 := b_{42}x_2 + b_{43}x_3 + e_4$

 $t(x_2 \rightsquigarrow x_4 || \{x_1, x_2\})$ = Regression coefficient of x_2 on x_4

- = Sum-product of open paths from x_2 to x_4
- $= b_{42} + b_{43}b_{32} + b_{43}b_{34}b_{42} + b_{43}b_{34}b_{43}b_{32} +$
- $= (b_{42} + b_{43}b_{32})(1 + b_{43}b_{34} + b_{43}^2b_{34}^2 + \cdots)$

Introduction

Mode

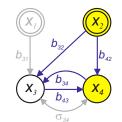
Learning Method

Experimental effects Linear equations Learning method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion



Stability Assumption: The model and all possible manipulated models are assumed stable: absolute values of the eigenvalues of **B** and manipulated **B**s must all be less than 1.

 $t(x_2 \rightarrow x_4 || \{x_1, x_2\}) =$ Regression coefficient of x_2 on x_4

= Sum-product of open paths from x_2 to x_4

$$= b_{42} + b_{43}b_{32} + b_{43}b_{34}b_{42} + b_{43}b_{34}b_{43}b_{32} + b_{43}b_{34}b_{43}b_{32} + b_{43}b_{43}b_{34}b_{44$$

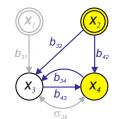
$$= (b_{42} + b_{43}b_{32})(1 + b_{43}b_{34} + b_{43}^2b_{34}^2 + \cdots)$$

= $\frac{b_{42} + b_{43}b_{32}}{1 - b_{43}b_{34}}$

Linear equations

Introduction

- Mode
- Learning Method
- Experimenta effects
- Linear equations Learning
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



- $x_1 :=$ Randomized value
- $x_2 := Randomized value$

$$x_3 := b_{31}x_1 + b_{32}x_2 + b_{34}x_4 + e_3$$

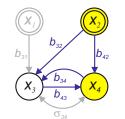
$$x_4 := b_{42}x_2 + b_{43}x_3 + e_4$$

$$t(x_2 \rightsquigarrow x_4 || \{x_1, x_2\}) = \frac{b_{42} + b_{43}b_{32}}{1 - b_{43}b_{34}}$$

Linear equations

Introduction

- Mode
- Learning Method
- Experimenta effects
- Linear equations Learning method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



 $x_1 := \text{Randomized value}$ $x_2 := \text{Randomized value}$ $x_3 := b_{31}x_1 + b_{32}x_2 + b_{34}x_4 + e_3$ $x_4 := b_{42}x_2 + b_{43}x_3 + e_4$

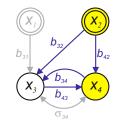
$$\begin{array}{lll} t(x_2 \rightsquigarrow x_4 || \{x_1, x_2\}) & = & \displaystyle \frac{b_{42} + b_{43} b_{32}}{1 - b_{43} b_{34}} \\ & = & \displaystyle b_{42} + \displaystyle \frac{b_{32} + b_{34} b_{42}}{1 - b_{43} b_{34}} b_{43} \end{array}$$

.

Linear equations

Introduction

- Mode
- Learning Method
- Experimenta effects
- Linear equations Learning method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion



 $x_1 := Randomized value$ $x_2 := Randomized value$ $x_3 := b_{31}x_1 + b_{32}x_2 + b_{34}x_4 + e_3$ $x_4 := b_{42}x_2 + b_{43}x_3 + e_4$

13 / 22

 $\begin{aligned} \mathbf{t}(\mathbf{x}_{2} \cdots \mathbf{x}_{4} || \{\mathbf{x}_{1}, \mathbf{x}_{2}\}) &= \frac{b_{42} + b_{43}b_{32}}{1 - b_{43}b_{34}} \\ &= b_{42} + \frac{b_{32} + b_{34}b_{42}}{1 - b_{43}b_{34}} b_{43} \\ &= \mathbf{b}_{42} + \mathbf{t}(\mathbf{x}_{2} \cdots \mathbf{x}_{3} || \{\mathbf{x}_{1}, \mathbf{x}_{2}\}) \mathbf{b}_{43} \end{aligned}$

Introduction

- Mode
- Learning Method
- Experimental effects Linear equations Learning method
- Theoretical Results
- Adding in the Assumption of Faithfullness
- Conclusion

1. Input data from several randomized experiments, each intervening on possibly several different variables.

2. For each experiment:

2a. Estimate the covariance matrix \mathbf{C}_{x}^{k} .

5. Output the estimated model (B, Σ_e) .

PGM 2010

Causal discovery for linear cyclic models with latent variables Antti Hyttinen

ien 15.9.2010 14 / 22

Introduction

Mode

Learning Method

Experimental effects Linear equations Learning method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

1. Input data from several randomized experiments, each intervening on possibly several different variables.

2. For each experiment:

2a. Estimate the covariance matrix \mathbf{C}_{x}^{k} .

2b. Estimate the experimental effects $t(\bullet \to \bullet || \mathbf{J}_k)$.

2c. Form linear constraint equations on b_{ij} .

3. Solve the linear constraint equations for b_{ij} to get **B**.

5. Output the estimated model (B, Σ_e) .

PGM 2010

Introduction

Mode

Learning Method

Experimental effects Linear equations Learning method

Theoretical Results

Adding in the Assumption of Faithfullness

Conclusion

1. Input data from several randomized experiments, each intervening on possibly several different variables.

2. For each experiment:

2a. Estimate the covariance matrix \mathbf{C}_{x}^{k} .

2b. Estimate the experimental effects $t(\bullet \to \bullet || \mathbf{J}_k)$.

2c. Form linear constraint equations on b_{ij} .

3. Solve the linear constraint equations for b_{ij} to get **B**.

4. Given **B**, calculate the covariances of the error terms σ_{ij} in Σ_e from an experiment where both x_i and x_j are observed.

5. Output the estimated model (B, Σ_e) .

PGM 2010

Introduction

Model

Learning Method

Theoretical Results Identifiability

Adding in the Assumption of Faithfullness

Conclusion

1 Introduction

2 Model

3 Learning Method

4 Theoretical Results

5 Adding in the Assumption of Faithfulness

6 Conclusion

PGM 2010

Causal discovery for linear cyclic models with latent variables Antti Hyttinen 15.9.2010 15 / 22

Theoretical Results

Introduction

Mode

Learning Method

Theoretical Results

Identifiability Completeness

Adding in the Assumption of Faithfullness

Conclusion

Theorem (Identifiability)

Given a sequence of experiments the model $(\mathbf{B}, \boldsymbol{\Sigma}_{\mathbf{e}})$ is fully identified by the method if and only if for each **ordered** pair of variables (x_i, x_j) :

- there is an experiment where x_i is intervened on and x_j is observed (Pair Condition), and
- another experiment where both x_i and x_j are **observed** (Covariance Condition).

$$PC: \begin{pmatrix} \cdot & \checkmark & \checkmark & \checkmark \\ \checkmark & \cdot & \checkmark & \checkmark \\ \checkmark & \checkmark & \cdot & \checkmark \\ \checkmark & \checkmark & \cdot & \checkmark \end{pmatrix}, \quad COV: \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \checkmark & \cdot & \cdot & \cdot \\ \checkmark & \checkmark & \cdot & \cdot \\ \checkmark & \checkmark & \cdot & \cdot \\ \checkmark & \checkmark & \checkmark & \cdot \end{pmatrix}$$

Theoretical Results

Introduction

- Mode
- Learning Method
- Theoretica Results
- Identifiability Completeness
- Adding in the Assumption of Faithfullness
- Conclusion

Theorem (Identifiability)

Given a sequence of experiments the model $(\mathbf{B}, \boldsymbol{\Sigma}_{e})$ is fully identified by the method if and only if for each ordered pair of variables (x_i, x_j) :

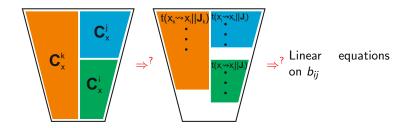
- there is an experiment where x_i is **intervened on** and x_j is **observed** (Pair Condition), and
- another experiment where both x_i and x_j are **observed** (Covariance Condition).
- **1** Singleton interventions $\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}.$

2 All but one interventions $\{x_1, x_2, x_3\}$, $\{x_1, x_2, x_4\}$, $\{x_1, x_3, x_4\}$, $\{x_2, x_3, x_4\}$ and passive observational dataset.

3 Something else like $\{x_1\}$, $\{x_2, x_3\}$, $\{x_3, x_4\}$ and $\{x_2, x_4\}$.

Completeness

- Mode
- Learning Method
- Theoretical Results Identifiability Completeness
- Adding in the Assumption of Faithfullness
- Conclusion



Completeness

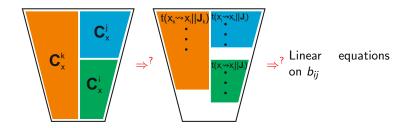
Mode

Learning Method

Theoretical Results Identifiability Completeness

Adding in the Assumption of Faithfullness

Conclusion



Theorem (Completeness)

Given the data covariance matrices from a set of experiments, for determining the direct effects b_{ji} , the identifiability condition (Pair Condition) of the procedure is **necessary** for any method.

Introduction

Model

Learning Method

Theoretica Results

Adding in the Assumption of Faithfullness Assuming faithfulness

Conclusion

1 Introduction

2 Model

3 Learning Method

4 Theoretical Results

5 Adding in the Assumption of Faithfulness

6 Conclusion

PGM 2010

Causal discovery for linear cyclic models with latent variables Antti Hyttinen 15.9.2010 18 / 22

Introduction

Mode

Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Assuming faithfulness Test results

Conclusion

Theorem (Identifiability)

Given a sequence of experiments the model $(\mathbf{B}, \boldsymbol{\Sigma}_{\mathbf{e}})$ is fully identified by the method if and only if for each **ordered** pair of variables (x_i, x_j) :

there is an experiment where x_i is intervened on and x_j is observed (Pair Condition), and

■ another experiment where both x_i and x_j are **observed** (Covariance Condition).

$$\mathrm{PC}:\left(\begin{array}{cccc} \cdot & \checkmark & \checkmark & \checkmark \\ \checkmark & \cdot & \checkmark & \checkmark \\ \checkmark & \checkmark & \cdot & \checkmark \\ \checkmark & \checkmark & \checkmark & \checkmark \end{array}\right), \quad \mathrm{COV}:\left(\begin{array}{cccc} \cdot & \cdot & \cdot & \cdot \\ \checkmark & \cdot & \cdot & \cdot \\ \checkmark & \checkmark & \cdot & \cdot \\ \checkmark & \checkmark & \cdot & \cdot \\ \checkmark & \checkmark & \checkmark & \cdot \end{array}\right)$$

Introduction

Mode

Learning Method

Theoretical Results

Adding in the Assumption of Faithfullness

Assuming faithfulness

Conclusion

Faithfulness in linear models

Any independence relation between variables is not the result of several exactly cancelling pathways.

tinen 15.9.2010 19 / 22

Introduction

Mode

Learning Method

Theoretica Results

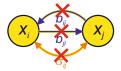
Adding in the Assumption of Faithfullness

Assuming faithfulness

Conclusion

Faithfulness in linear models

Any independence relation between variables is not the result of several exactly cancelling pathways.

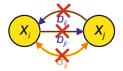


Introduction

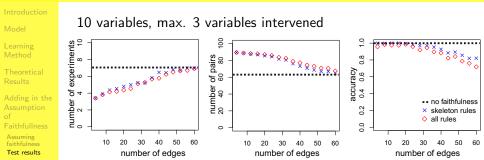
- Mode
- Learning Method
- Theoretica Results
- Adding in the Assumption of Faithfullness
- Assuming faithfulness Test results
- Conclusion

Faithfulness in linear models

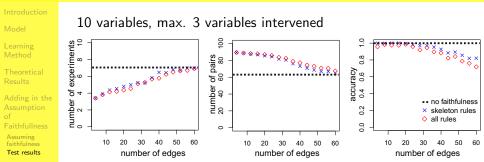
Any independence relation between variables is not the result of several exactly cancelling pathways.



- For every experimental dataset we can
 - **1** Run a PC-type of search for finding independencies.
 - **2** Add equations $b_{ji} = 0$ for any independencies found, not considering the edges that were broken by intervention.
 - 3 Apply any valid orientation rules.
 - Take into account the additional structure found when selecting the next experiment (by maximizing the number of pairs for which the pair condition is satisfied).

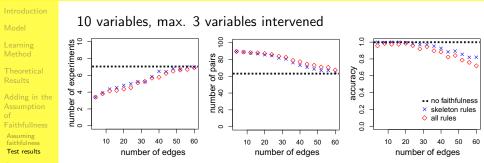


Conclusion



Conclusion

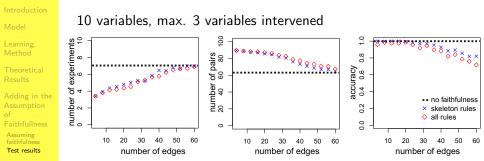
1 Fewer experiments are needed with sparse graphs.



Conclusion

1 Fewer experiments are needed with sparse graphs.

More structure is discovered earlier on (e.g. after 3 experiments) with sparse graphs.



Conclusion

- **1** Fewer experiments are needed with sparse graphs.
- More structure is discovered earlier on (e.g. after 3 experiments) with sparse graphs.
- 3 With denser graphs the accuracy gets worse.

Introduction

Model

Learning Method

Theoretica Results

Adding in the Assumption of Faithfullness

Conclusion

1 Introduction

2 Model

3 Learning Method

4 Theoretical Results

5 Adding in the Assumption of Faithfulness

6 Conclusion

PGM 2010

21 / 22

Conclusion

Introduction

Model

Learning Method

Theoretica Results

Adding in the Assumption of Faithfullness

Conclusion

Summary:

- Revised the approach of Eberhardt, Hoyer, Scheines (2010) for learning linear cyclic models with latent variables.
- **2** Updated the identifiability condition.
- 3 Showed that the procedure is complete.
- 4 Incorporated the faithfulness assumption into the procedure.

Conclusion

Introduction

Model

Learning Method

Theoretica Results

Adding in the Assumption of Faithfullness

Conclusion

Summary:

- Revised the approach of Eberhardt, Hoyer, Scheines (2010) for learning linear cyclic models with latent variables.
- **2** Updated the identifiability condition.
- 3 Showed that the procedure is complete.
- Incorporated the faithfulness assumption into the procedure.

Additionally in the poster:

- 1 A closer look at the linear equations.
- 2 Underdetermination and reasons behind completeness.
- **3** Faithfulness orientation rules and their justification.
- 4 Simulation & real world test results.

Conclusion

Introduction

Model

Learning Method

Theoretica Results

Adding in the Assumption of Faithfullness

Conclusion

Summary:

- Revised the approach of Eberhardt, Hoyer, Scheines (2010) for learning linear cyclic models with latent variables.
- **2** Updated the identifiability condition.
- 3 Showed that the procedure is complete.
- Incorporated the faithfulness assumption into the procedure.

Additionally in the poster:

- 1 A closer look at the linear equations.
- 2 Underdetermination and reasons behind completeness.
- **3** Faithfulness orientation rules and their justification.
- 4 Simulation & real world test results.

Thank you!

PGM 2010

Causal discovery for linear cyclic models with latent variables

Antti Hyttinen 15.9.2010

22 / 22