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Example 1: Health, Exercise, Resistance, llIness

Example 1

How to understand the interaction between Health, Exercise,
Resistance, and lliness?
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Example 1: Health, Exercise, Resistance, llIness

Example 1

R How to understand the interaction between Health, Exercise,
e Resistance, and lliness?

@.@ V' Cycles
v’ Latent confounders

v' Some experiments possible

Challenge: Select the experiments for learning the relationships
as completely and accurately as possible!
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Example 2: Flow cytometry

Example 1 How to understand cell signaling inside human T-cells?
Example 2
Earlier work
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Example 2: Flow cytometry

Example 1 How to understand cell signaling inside human T-cells?
Example 2
Earlier work

v Cycles
v’ Latent confounders
v Experiments available

Challenge: Given a set of experiments, learn as much of the
structure as possible!
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Earlier work

Cont. /
exp. | latents | cycles | Discr.
Spirtes et al. (FCI) (1993) v C/D
Richardson (CCD) (1996) v | C/D
Schmidt and Murphy (2009) v v D
Itani, Sachs et al. (2010) v v D
Eberhardt, Hoyer, Scheines (2010) | v v v C (lin.)
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An example of a linear cyclic model w. latents

X1 = €1
x2 = buxi + boaxs + e
x3 = baxi + baxe + basxs + €3
Xa = bazx2 + bazxs + e
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An example of a linear cyclic model w. latents

X1 =
X2 = bax
X3 =
X4 =
x = Bx+e

0 0 0 0
by 0 0 b
bs1 b3x 0 bag

0 ba bgz 0

B =

Causal discovery for linear cyclic models with latent variables

bsix1 + bzaxo

barx> + bazxz

of

012
0
0
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Behaviour at equilibrium
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Behaviour at equilibrium

G,

mo.

latents ° e
Behaviour at
equilibrium

b37 b24

BXt,1 -+ @ < background conditions invariant
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Behaviour at equilibrium

Behaviour at

equilibrium
Xy = BXt,1 -+ @ < background conditions invariant
o0 2
Xeo = B®xg+(1+B+B“+---)e
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Behaviour at equilibrium

Stability Assumption: The model
and all possible manipulated models
are assumed stable: absolute values
of the eigenvalues of B and manipu-
lated Bs must all be less than 1.

Behaviour at
equilibrium

Xy = th,:[ -+ @ < background conditions invariant
Xoo B®xo+(1+B+B%*+---)e
X = (I-B)7le
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Behaviour at equilibrium

Behaviour at
equilibrium

Xt

Xoo

Xoo

Cov(xao)

Stability Assumption: The model
and all possible manipulated models
are assumed stable: absolute values
of the eigenvalues of B and manipu-
lated Bs must all be less than 1.

Bx;_1 + € < background conditions invariant
B®xo+(1+B+B%*+---)e
(1-B)le

(1-B)'Z.(1-B)" "
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Behaviour at equilibrium

Stability Assumption: The model
and all possible manipulated models
are assumed stable: absolute values
of the eigenvalues of B and manipu-
lated Bs must all be less than 1.

Behaviour at
equilibrium

Cov(x) = (I-B)'Z.(1-B)"T
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Learning Method

1. Input data from several randomized experiments, each

learnine intervening on possibly several different variables.
Method

2. For each experiment:

2a. Estimate the covariance matrix CX.

5. Output the estimated model (B, X¢).

PGM 2010 Causal discovery for linear cyclic models with latent variables Antti Hyttinen 15.9.2010

11/ 22



Experimental effects

Oy

G 9 X = e
X2 = buxi + buxs + &
Experimental b
ffects 3 # o ox3 = bauxi+ bnx + baaxs + €3
T T

o

EE @ e x4 = bazxz + basxs + e

O,y
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Experimental effects

x1 = Randomized value
X2 = Randomized value
Experimental
‘effects X3 = baxi + bnx + baaxs + €3
inear equations
Le2iming X4 = bazxo + bazxz + e
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t(xo~>xa|[{x1,x2}) = Regression coefficient of x2 on xa
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Experimental effects

x1  := Randomized value
x» = Randomized value
Experimental
Tffects l X3 = baxi + bnx + baaxa + €3
Leryrfts X4 = baoxa + bazxz + e
t(xo~>xa|[{x1,x2}) = Regression coefficient of x2 on xa

= Sum-product of open paths from x, to x4
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Experimental effects

x1 = Randomized value
X2 = Randomized value
Experimental
Tffects ‘ X3 = baxi + bnx + baaxa + €3
inar equations
Loy X = bazxo + bazxz + e
t(xo~>xa|[{x1,x2}) = Regression coefficient of x2 on xa

Sum-product of open paths from x» to x4
bap + bszbzn + bazbzsbay + bszbzsbazbzo +
= (bag + bazb32)(1 + bazbsg + bizb3s + )
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Experimental effects

Stability Assumption: The model
and all possible manipulated models
are assumed stable: absolute values
of the eigenvalues of B and manipu-
lated Bs must all be less than 1.

Experimental
effects

t(xo~>xa|[{x1,x2}) = Regression coefficient of x2 on xa

Sum-product of open paths from x» to x4
baz + bazbzn + bazb3absr + bazbzabaz bz +
= (baz + bazbs)(1 + basbss + byzb3s + - -)
bgy + byzbsp

1 bazbss

PGM 2010 Causal discovery for linear cyclic models with latent variables Antti Hyttinen 15.9.2010 12 / 22



Experimental
effects

Linear equations

Learning
method

PGM 2010

Linear equations

X1
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X3

X4
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:= Randomized value
:= Randomized value

= baixi + baoxo + b3sxs + €3

bazrxo> + bazxz + e
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Linear equations

t(xa~xal[{x1, x2})

Causal discovery for linear cyclic models with latent variables

X1
X2
X3

X4

:= Randomized value

:= Randomized value

= baixi + baoxo + b3sxs + €3
= baoxo + bazxs + e
baz + by3bs,
1 — bazbzs
b3 + b3abg
by + ——————"bs3
1 — bgzbzs
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Linear equations

x1 = Randomized value
Experiments| x> := Randomized value
L x3 1=  b3ix1 + bnx + baaxs + €3
method X2 = b42X2 + b43X3 + e
bgs + bgzbso
t(xowxg|[{x1,x2}) = ——— —
1 — bgzbzs
_ b3 + b3abg b
- 42 5 L P43
1 — bgzbzs
= baz + t(x2x3[[{x1,%2})bas
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Learning Method

1. Input data from several randomized experiments, each
intervening on possibly several different variables.

2. For each experiment:

Learning
method

2a. Estimate the covariance matrix CX.

5. Output the estimated model (B, X¢).
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Learning Method

1. Input data from several randomized experiments, each
intervening on possibly several different variables.

2. For each experiment:

Learning
method

2a. Estimate the covariance matrix CX.
2b. Estimate the experimental effects t(e~-e||Jy).

2c. Form linear constraint equations on bj;.
3. Solve the linear constraint equations for bj;; to get B.

4. Given B, calculate the covariances of the error terms oj; in
2. from an experiment where both x; and x; are observed.

5. Output the estimated model (B, X¢).
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Theoretical Results

Theorem (Identifiability)

Given a sequence of experiments the model (B, X,) is fully
identified by the method if and only if for each ordered pair of
Identifiability variables (X,', XJ)
m there is an experiment where x; is intervened on and x; is
observed (Pair Condition), and

m another experiment where both x; and x; are observed
(Covariance Condition).

LV :
ooV Vo

pC:| T |, cove| o
A oY
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Theoretical Results

Theorem (ldentifiability)

Given a sequence of experiments the model (B, X) is fully
identified by the method if and only if for each ordered pair of
Identifiability variables (x;, Xj)

m there is an experiment where x; is intervened on and x; is
observed (Pair Condition), and

m another experiment where both x; and x; are observed
(Covariance Condition).

Singleton interventions {x1}, {x2}, {x3},{xa}.

All but one interventions {x1, x2, x3}, {x1,x2,xa},
{x1,x3,xa}, {x2,x3,xa} and passive observational dataset.

Something else like {x1}, {x2,x3}, {x3,xa} and {x2, xs}.
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Completeness

Introduction

Model
Learning

Method

Theoretical

Results ? Linear equations
on bj;

Identifiability
Completeness

Adding in the
Assumption
of
Faithfullness

Conclusion

Theorem (Completeness)

Given the data covariance matrices from a set of experiments,
for determining the direct effects bj;, the identifiability condition
(Pair Condition) of the procedure is necessary for any method.
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Assuming faithfulness

Theorem (ldentifiability)

Given a sequence of experiments the model (B, X) is fully
identified by the method if and only if for each ordered pair of
variables (x;, x;j):
m there is an experiment where x; is intervened on and x; is
observed (Pair Condition), and

Assuming
faithfulness

m another experiment where both x; and x; are observed
(Covariance Condition).

- v VY :

v oo vV v oo
PC: v v Y E COV S v

v v v v/
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Assuming faithfulness

Faithfulness in linear models

Any independence relation between
variables is not the result of several
exactly cancelling pathways.

Assuming
faithfulness
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Assuming faithfulness

Faithfulness in linear models ‘a

Any independence relation between ° A °
ji

variables is not the result of several
exactly cancelling pathways.
For every experimental dataset we can
ohainess Run a PC-type of search for finding independencies.
Add equations bj; = 0 for any independencies found, not
considering the edges that were broken by intervention.
Apply any valid orientation rules.

Take into account the additional structure found when
selecting the next experiment (by maximizing the number
of pairs for which the pair condition is satisfied).
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Test results

10 variables, max. 3 variables intervened
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Fewer experiments are needed with sparse graphs.
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More structure is discovered earlier on (e.g. after 3
experiments) with sparse graphs.
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Fewer experiments are needed with sparse graphs.

More structure is discovered earlier on (e.g. after 3
experiments) with sparse graphs.

With denser graphs the accuracy gets worse.
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Conclusion

Summary:

Revised the approach of Eberhardt, Hoyer, Scheines (2010)
for learning linear cyclic models with latent variables.

Updated the identifiability condition.
Showed that the procedure is complete.

Incorporated the faithfulness assumption into the
Conclusion procedure.
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Revised the approach of Eberhardt, Hoyer, Scheines (2010)
for learning linear cyclic models with latent variables.

Updated the identifiability condition.
Showed that the procedure is complete.

Incorporated the faithfulness assumption into the
Conclusion procedure.

Additionally in the poster:
A closer look at the linear equations.
Underdetermination and reasons behind completeness.
Faithfulness orientation rules and their justification.

Simulation & real world test results.
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Conclusion

Summary:

Revised the approach of Eberhardt, Hoyer, Scheines (2010)
for learning linear cyclic models with latent variables.

Updated the identifiability condition.
Showed that the procedure is complete.

Incorporated the faithfulness assumption into the
Conclusion procedure.

Additionally in the poster:
A closer look at the linear equations.
Underdetermination and reasons behind completeness.
Faithfulness orientation rules and their justification.
Simulation & real world test results.

Thank you!
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