
Causal discovery for linear cyclic models with latent variables
Antti Hyttinen1, Frederick Eberhardt2, and Patrik O. Hoyer1,3

1 HIIT / Dept. of Computer Science, University of Helsinki, Finland
2 Dept. of Philosophy, Washington University in St Louis, MO, USA

3 CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Supplementary material

Remark. At the end of section 2 we mention the existence of special circumstances when it is possible to
identify some direct effects b(• → x j) even when it is not the case that all pair conditions of the form (•, x j)
are satisfied. Here is an example. Consider a model for V = {x1, x2, x3}where a single experiment with Jm =

{x1} has been performed. The pair condition is satisfied by this experiment for the pairs (x1, x2) and (x1, x3).
One of the equations the experiment yields is t(x1 x3||Jm) = t(x1 x2||Jm) b(x2 → x3) + b(x1 → x3). If it
now turns out that the measured experimental effect t(x1 x2||Jm) = 0, then the direct effect b(x1 → x3) is
determined although the pair condition for the pair (x2, x3) is not satisfied.

Lemma 1. Let the true model generating the data be (B,Σe). For each of the experiments (Em)m=1,...,M the
obtained data covariance matrix is Σm

x . If there is a direct effects matrix B̂ , B such that for all (Em)m=1,...,M
and all xi ∈ Jm and x j ∈ Um it produces the same experimental effects t(xi x j || Jm), then the model (B̂, Σ̂e)
with Σ̂e = (I − B̂)(I − B)−1Σe(I − B)−T (I − B̂)T has data covariance matrices Σ̂m

x = Σ
m
x for all m = 1, ...,M.

Proof. Consider an experiment Em = (Jm,Um), i.e. an experiment in which the variables in Jm are intervened
on. Additionally, we let Jm denote a diagonal matrix where element Jm[i, i] = 1 if variable xi is intervened
on, and Jm[i, i] = 0 if xi is not intervened on. (Context will make it unambiguous whether it refers to the
set or the matrix.) Also using Uk = I − Jk, the matrices index the rows and columns corresponding to
intervened or observed variables respectively. By these definitions we can write the manipulated model for
this experiment as follows (see the definition of the manipulated model in Section 2 in the paper):

Bm = UmB
Σm

e = Jm + UmΣeUm.

Solving eq. (1) in the paper for x, for the manipulated model, we obtain x = (I − Bm)−1e with the above co-
variance matrix for e. Hence the covariance matrix of the observed data in this experiment can be presented
as

Σm
x = E{xxT } = (I − UmB)−1Σm

e (I − UmB)−T = (I − UmB)−1(Jm + UmΣeUm)(I − UmB)−T

Because by the definition of the experiment all intervened variables are marginally independent with unit
variance, they have no experimental effects on each other. That is, Jm(I − UmB̂)−1 = Jm(I − UmB̂)(I −
UmB̂)−1 = Jm. Similarly, Jm(I − UmB)−1 = Jm. The experimental effects part of the covariance matrix is
thus

UmΣ
m
x Jm = Um(I − UmB)−1(Jm + UmΣeUm)(I − UmB)−T Jm

= Um(I − UmB)−1(Jm + UmΣeUm)Jm

= Um(I − UmB)−1Jm



By the antecendent of the Lemma the experimental effects of the two models are equal in experiment Em:

Um(I − UmB̂)−1Jm = Um(I − UmB)−1Jm

Combining the above two results it directly follows that also

(I − UmB̂)−1Jm = (I − UmB)−1Jm

Now

(I − UmB̂)−1Um(I − B̂) = (I − UmB̂)−1(I − UmB̂ − Jm)

= I − (I − UmB̂)−1Jm

= I − (I − UmB)−1Jm

= (I − UmB)−1(I − UmB − Jm)

= (I − UmB)−1Um(I − B)

and the data covariance matrices are equal:

Σ̂m
x = (I − UmB̂)−1(Jm + UmΣ̂eUm)(I − UmB̂)−T

= (I − UmB̂)−1Jm(I − UmB̂)−T

+(I − UmB̂)−1Um(I − B̂)(I − B)−1Σe(I − B)−T (I − B̂)T Um(I − UmB̂)−T

= (I − UmB)−1Jm(I − UmB)−T

+(I − UmB)−1Um(I − B)(I − B)−1Σe(I − B)−T (I − B)T Um(I − UmB)−T

= (I − UmB)−1(Jm + UmΣeUm)(I − UmB)−T = Σm
x

�

Theorem 1 (Completeness Theorem). Given the data covariance matrices from a sequence of experiments
(Em)m=1,...,M over the variables in V, all direct effects b(xi → x j) are identified if and only if the pair
condition is satisfied for all ordered pairs of variables w.r.t. these experiments.1

Proof. This follows directly from the combination of Lemma 1 (above) and Theorem 1 in (Eberhardt et
al., 2010) as follows. First, if the pair condition is satisfied for all pairs the sufficiency part of Theorem 1
of Eberhardt et al (2010) applies and B is identified. Second, when there is one or more pairs for which
the pair condition is not satisfied, by the necessity part of their result there exists some B̂, not equal to the
true B consistent with all the experimental effects from the performed experiments. By Lemma 1 of the
present paper, there exists values for Σ̂e such that the full covariance matrices (in all experiments) match
those produced by the the original model. Hence based on the covariance matrices of the observed data we
cannot distinguish between the models (B,Σe) and (B̂, Σ̂e). Thus, B is not identified in this case. �

Theorem 2 (Model Identifiability Theorem). Given a sequence of experiments (Em)m=1,...,M over the vari-
ables in V the model (B,Σe) is fully identified if and only if for each ordered pair of variables (xi, x j) there is
an experiment Eb = (Jb,Ub) with xi ∈ Jb and x j ∈ Ub and another experiment Ee = (Je,Ue) with xi, x j ∈ Ue.

Proof. Assume first that for each ordered pair of variables (xi, x j) there is an experiment Eb = (Jb,Ub) with
xi ∈ Jb and x j ∈ Ub. By Theorem 1 in Eberhardt et al (2010) the total effects t(• •) are identified. The direct
effects can be computed simply by B = I − DT−1, where D rescales the columns of T−1. Now for the pair
xi, x j there is an experiment Ee = (Je,Ue) with xi, x j ∈ Ue. The covariance matrix entries can be obtained

1Note the inevitable limitation of identifiability with regard to self-loops discussed in (Eberhardt et al., 2010).



from the formula Σe
x = (I − B)−1(Je + UeΣeUe)(I − B)−T by rearranging UeΣeUe = (I − B)Σe

x(I − B)T − Je.
Since multiplication by Ue only puts the columns and rows corresponding to intervened variables to zero,
we can read off the elements Σe[i, i],Σe[ j, j],Σe[i, j]. Repeating this for each pair the whole matrix Σe is
determined.

If for some pair (xi, x j) there is no experiment Eb in which xi ∈ Jb and x j ∈ Ub, by the Completeness
Theorem (above) B is not identified. If for some pair (xi, x j) there is no experiment Ee = (Je,Ue) with
xi, x j ∈ Ue, then the confounding edge is cut in every experiment, and so the confounding covariance
parameter for this pair does not in any way affect the observed data and thus remains undetermined. �
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