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Context-specific Independence [Boutilier et al. ’96]

X ⊥⊥ Y |C ,Z = 0

i.e. P(X |Y ,C ,Z = 0) = P(X |C ,Z = 0)

but P(X |Y ,C ,Z = 1) 6= P(X |C ,Z = 1) (possibly)

• A very natural independence restriction for any modelling task.
• For example:

INCOME ⊥⊥WEATHER| JOB = clerk

INCOME 6⊥⊥WEATHER| JOB = farmer

• Alarm has several of these:

HREKG ⊥⊥ CRRCAUTER| HR = LOW
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Motivation

Q

X Y AND X ⊥⊥ Y | Q = 0 ⇒ ?

W

• Can we orient causal edges based on CSIs in a principled way?

• What are good graphical models for understanding CSIs?
• Can we get better causal or probabilistic models by using CSIs?
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BNs over LDAGs



Bayesian Networks over Labeled DAGs [Pensar et al. 15]

P(X ) X = 0 X = 1
0.5 0.5

P(A) A = 0 A = 1
0.5 0.5

A

��

��
X

A=0
��

Y

Z

A=1

BB

P(Z |A,X ) Z = 0 Z = 1
AX = 00 0.1 0.9
AX = 01 0.1 0.9
AX = 10 0.5 0.5
AX = 11 0.6 0.4

P(Y |A,Z) Y = 0 Y = 1
AZ = 00 0.1 0.9
AZ = 01 0.2 0.8
AZ = 10 0.6 0.4
AZ = 11 0.6 0.4

• A label on an edge encodes contexts where the edge is
absent. More formally:

• Label on X → Z is a set of assignments to the other parents
of Z : e.g. A = 0 on X → Z .

• Any assignment in a label denotes a local CSI:
e.g. X ⊥⊥ Z | A = 0.

• CPT has rows consistent with the assignment equal.
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Another Bayesian Network over a Labeled DAG

P(X ) X = 0 X = 1
0.5 0.5

P(A) A = 0 A = 1
0.5 0.5

A

��

��
X

AY=00,01
��

Y

AX=10,11
��

Z

P(Z |A,X ,Y ) Z = 0 Z = 1
AXY = 000 0.5 0.5
AXY = 001 0.9 0.1
AXY = 010 0.5 0.5
AXY = 011 0.9 0.1
AXY = 100 0.1 0.9
AXY = 101 0.1 0.9
AXY = 110 0.6 0.4
AXY = 111 0.6 0.4

P(Y |A) Y = 0 Y = 1
A = 0 0.1 0.9
A = 1 0.6 0.4

• Local CSIs: X ⊥⊥ Z | AY = 00, X ⊥⊥ Z | AY = 01,
Y ⊥⊥ Z | AX = 10, Y ⊥⊥ Z | AX = 11
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Modelling local structure in BN CPTs

Alternative modelling strategies [Koller & Friedman, ch. 5]:

• Decision tree -based CPTs (subsumed in the binary case)
• Rule-CPTs
• Noisy-ORs, logistic models, etc.

LDAGs [Pensar et al. ’15]:

• Allow for developing theory using the labels.
• Markov equivalence defined based on the labels.
• Visual representation of CSIs in a single
structure.

A

��

��
X

A=0
��

Y

Z

A=1

BB
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Separation Criteria



CSI-separation of [Boutilier et al. 96] for LDAGs

A

��

��
X

A=0
��

Y

Z

A=1

BB
⇒

A

��

��
X

��

Y

Z

⇒ X ⊥⊥CSIY | A = 1

Original LDAG context A = 1 specific DAG

• In a context S = s specific DAG of an LDAG edges with labels
consistent with S = s are removed.

• X and Y are CSI-separated given C ,S = s, iff
X and Y are d-separated given C , S in the context S = s specific
DAG.

• CSI-separation is sound and it subsumes d-separation.
• But CSI-sep. is incomplete: X ⊥⊥ Y ! NP-hard!
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New Necessary Separation Criterion for LDAGs

Theorem

For X ⊥⊥ Y |C ,S = v [S ] to be implied by an LDAG over V
X ,Y have to be a d-separated given C ,S

in all context V = v specific DAGs.

• E.g. on right X ,Y are d-connected
given Z when Q = 0,R = 0,
thus there are parameters such that
X 6⊥⊥ Y | Z .

Q

��
R=1
��

R

Q=1
�� ��

X Z Y

• If nodes are d-separated in all context V = v specific DAGs,
but not CSI-separated, they may be independent or dependent.

• In the following we assume faithfulness w.r.t. to the theorem.
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Markov Equivalence for LDAGs

A

��

��
X

A=0
��

Y

Z

A=1

BB

A

��

��
X

AY=00,01
��

Y

AX=10,11
��

Z

• LDAGs are Markov equivalent iff
all their context V = v specific DAGs are Markov equivalent
[Pensar et al. 15].

• LDAG-colliders: X → Z ← A without X − A in some context
V = v specific DAG

• LDAG-non-colliders: Z − A− Y without Z − Y in some
context V = v specific DAG

• Markov equivalent LDAGs share them: X − Z − Y is neither.
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Constraint-based learning



PC of Spirtes et al.

1 Skeleton search: Try to find a separating set S such that
X ⊥⊥ Y | S .

2 Orient colliders: X → Z ← Y if Z /∈ S .
3 Run further orientation rules to make sure no cycles or new

colliders are possible.

A

��

��
X

A=0
��

Y

Z

A=1

BB
⇒

A

X Y

Z

⇒

A

��

X

��

Y

��
Z

True graph PC skeleton PC result

PC produces wrong orientation in the presence of CSIs!
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LPC Skeleton Search

• Instead, we search for separating contexts S = s, s.t.
X ⊥⊥ Y | S = s.

• Delete edges if X ⊥⊥ Y | S = s for all s.
• Otherwise record the separating contexts on the edge.

A

��

��
X

A=0
��

Y

Z

A=1

BB
⇒

X ⊥⊥ A
X ⊥⊥ Y

X ⊥⊥ Z | A = 0
Z ⊥⊥ Y | A = 1
X ⊥⊥ Z |AY = 00
Z ⊥⊥ Y |AY = 10
X ⊥⊥ Z |AY = 01
Z ⊥⊥ Y |AY = 11

⇒

A

X

A=0,AY=00,01

Y

A=1,AX=10,11

Z
True graph CSIs LPC skeleton
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LPC Orientation

A

��

��
X

A=0
��

Y

Z

A=1

BB
⇒

A

X

A=0,AY=00,01

Y

A=1,AX=10,11

Z

⇒

A

��

X

A=0,AY=00,01
��

Y

A=1,AX=10,11

Z

True graph LPC skeleton

LPC result

• In the paper we give technical conditions for detecting
LDAG-(non-)colliders from the LPC skeleton result.

• LDAG-colliders can be oriented: e.g. X → Z ← A.
• LDAG-non-colliders are used in further orientation with
modified PC rules [Meek ’95].

• LPC is conjectured to be orientation complete.

13 / 20
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Simulations: Orientation Accuracy

10-node binary LDAGs, 300 models, over the true distribution.

algo av. degree label prob. edges found corr. oriented reversed
PC 2.99 0 % 4481 3498 0
cPC 2.99 0 % 4481 3498 0
LPC 2.99 0 % 4481 3498 0

• Without CSIs due to labels, algorithms work similarly.

algo av. degree label prob. edges found corr. oriented reversed
PC 2.18 50 % 3276 2243 103
cPC 2.18 50 % 3276 2285 0
LPC 2.18 50 % 3276 2319 0

• With CSIs due to labels, PC makes orientation errors.
• cPC does not but orients less.
• LPC orients more and all orientations are correct.
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Score-based learning



BIC for LDAGs

• Maximizing BIC [Chickering ’97]:

maxG
∑
X∈V

s(X , paG (X )),

s(X , paG (X )) = max
LABELS

s(X , paG (X ), LABELS)

• LABELS imply a partition of rows:

X

A=0
��

A

��
Z

⇔

P(Z |A,X ) Z = 0 Z = 1
AX = 00 θ1 1− θ1
AX = 01 θ1 1− θ1
AX = 10 θ2 1− θ2
AX = 11 θ3 1− θ3

⇔ { {1, 2}, {3}, {4} }

s(X , paG (X ), LABELS) = L− R · logN/2
L is max. likelihood, R number of parts, both w.r.t. LABELS.

• For 4 binary parents, 27 million different label structures.
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Branching . . .

{ {1, 2, 3, 4} }

{ {1}, {2}, {3}, {4} } //

++

{ {1, 2}, {3}, {4} } //

++

{ {1, 2, 3}, {4} }

33

{ {1, 2, 4}, {3} }

· · · { {1, 2}, {3}, {4} } //

33

{ {1, 2}, {3, 4} }

• Search over partitions of rows from complex towards simpler.

• Keep a set of parts fixed (in red).
• Combine the first unfixed part to the fixed parts to avoid
visiting the same partitions more than once (symmetry
breaking).
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. . . and Bounding

{ {1, 2, 3, 4} }

{ {1}, {2}, {3}, {4} } //

++

{ {1, 2}, {3}, {4} } //

++

{ {1, 2, 3}, {4} }

33

{ {1, 2, 4}, {3} }

· · · { {1, 2}, {3}, {4} } //

33

{ {1, 2}, {3, 4} }

• Upper bound for partitions further in the branch:

L− f · logN/2

Here L is the current likelihood, f is the number of fixed parts.

• Initial best: best solution to the subsets of parents.
• LDAG consistency check whenever a new best found.
• Scales up to 4 parents.
• Finally: maximization over the local scores by Gobnilp.

17 / 20



. . . and Bounding

{ {1, 2, 3, 4} }

{ {1}, {2}, {3}, {4} } //

++

{ {1, 2}, {3}, {4} } //

++

{ {1, 2, 3}, {4} }

33

{ {1, 2, 4}, {3} }

· · · { {1, 2}, {3}, {4} } //

33

{ {1, 2}, {3, 4} }

• Upper bound for partitions further in the branch:

L− f · logN/2

Here L is the current likelihood, f is the number of fixed parts.
• Initial best: best solution to the subsets of parents.

• LDAG consistency check whenever a new best found.
• Scales up to 4 parents.
• Finally: maximization over the local scores by Gobnilp.

17 / 20



. . . and Bounding

{ {1, 2, 3, 4} }

{ {1}, {2}, {3}, {4} } //

++

{ {1, 2}, {3}, {4} } //

++

{ {1, 2, 3}, {4} }

33

{ {1, 2, 4}, {3} }

· · · { {1, 2}, {3}, {4} } //

33

{ {1, 2}, {3, 4} }

• Upper bound for partitions further in the branch:

L− f · logN/2

Here L is the current likelihood, f is the number of fixed parts.
• Initial best: best solution to the subsets of parents.
• LDAG consistency check whenever a new best found.

• Scales up to 4 parents.
• Finally: maximization over the local scores by Gobnilp.

17 / 20



. . . and Bounding

{ {1, 2, 3, 4} }

{ {1}, {2}, {3}, {4} } //

++

{ {1, 2}, {3}, {4} } //

++

{ {1, 2, 3}, {4} }

33

{ {1, 2, 4}, {3} }

· · · { {1, 2}, {3}, {4} } //

33

{ {1, 2}, {3, 4} }

• Upper bound for partitions further in the branch:

L− f · logN/2

Here L is the current likelihood, f is the number of fixed parts.
• Initial best: best solution to the subsets of parents.
• LDAG consistency check whenever a new best found.
• Scales up to 4 parents.

• Finally: maximization over the local scores by Gobnilp.

17 / 20



. . . and Bounding

{ {1, 2, 3, 4} }

{ {1}, {2}, {3}, {4} } //

++

{ {1, 2}, {3}, {4} } //

++

{ {1, 2, 3}, {4} }

33

{ {1, 2, 4}, {3} }

· · · { {1, 2}, {3}, {4} } //

33

{ {1, 2}, {3, 4} }

• Upper bound for partitions further in the branch:

L− f · logN/2

Here L is the current likelihood, f is the number of fixed parts.
• Initial best: best solution to the subsets of parents.
• LDAG consistency check whenever a new best found.
• Scales up to 4 parents.
• Finally: maximization over the local scores by Gobnilp.

17 / 20



Remedies for Overfitting

• An extra edge does not always increase the BIC penalty:

P(Z |X ) Z = 0 Z = 1
X = 0 0.4 0.6
X = 1 0.6 0.4

⇒

P(Z |X ,Y ) Z = 0 Z = 1
XY = 00 0.4 0.6
XY = 01 0.4 0.6
XY = 10 0.4 0.6
XY = 11 0.7 0.3

• Strong Score Pruning Delete a local score if it is not better
than for a subset by a margin controlled by t.

• Mixed BIC Penalty Penalize by
a · LDAG-based BIC + b · DAG-based BIC.

• LDAG over Optimal DAG Skeleton Only orient with the
LDAG-based BIC score.
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Simulations: Probabilistic Model Accuracy

10-node binary LDAGs, 0.5 label probability. At most 3 parents.
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• LDAG-based BIC overfits considerably (red).

• With strong score pruning LDAG is better than a DAG (yellow
vs. purple).

• With more samples DAGs catch up but still keep CSIs hidden.
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BB

• Structure learning for labeled DAGs.

• Principled orientation of causal edges using CSIs with LPC:
• Based on separation criteria and Markov equivalence of LDAGs.
• More orientations more correctly than PC when CSIs present.

• Better probabilistic models with score-based discovery:
• Using the LDAG-based BIC score.
• A Branch and Bound for local score calculation.
• Strong score pruning to avoid overfitting.

• CSIs are common and powerful but discovering them
in sample data can be quite challenging!
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