Discovering Cyclic Causal Models with Latent Variables: A General SAT-Based Procedure

- **1. Introduction**
- **2. Problem Statement**
- 3. Graphs and independencies
- 4. Encoding D-connection
- 5. Algorithm
- 6. Conclusion

1. Introduction

- **2. Problem Statement**
- 3. Graphs and independencies
- 4. Encoding D-connection
- 5. Algorithm
- 6. Conclusion

Discovering Cyclic Causal Models with Latent Variables: A General SAT-Based Procedure

- Another application field for SAT-solving technology.
- Presentation only submission to this workshop to present the application area, and to get further ideas.
- To be published in International Conference on Uncertainty in Artificial Intelligence 2013, Seattle, USA.
- Hot field: Judea Pearl won the Turing Prize on probabilistic models and causality.

Causal Discovery

WORLD

Х	у	Z	W
0.4	0.56	4	120
0.5	0.23	100	130
0.1	0.01	34	123
0.23	0.03	52	23
•••	•••		•••

DATA

CAUSAL STRUCTURE

- Nodes represent random variables for measurements.
- Directed edges represents direct causal relationships.
- Bidirected arcs represent unobserved common causes.
- For example: different measurements of blood, life habits and acquired deceases.

The meaning of the edges

Directed edges represent causal relationships: When the cause is manipulated the effect changes.

 Bidirected edge represents an existence of an unobserved common cause: Manipulating either variable does not change the other.

Why SAT?

- Most often data only partly constrains the causal graph structure, part is left undetermined.
- For restricted cases there are algorithms exploiting complicated theory of this undetermination.
- For the more general case we consider here, this may be impossible.
- But, SAT-technology can be used as a solving engine for combining the different constraints!
- We can consider unobserved variables, cycles and several data sets with manipulations, and background knowledge.

1. Introduction

2. Problem Statement

- 3. Graphs and independencies
- 4. Encoding D-connection
- 5. Algorithm
- 6. Conclusion

Constraint-based Causal Discovery

CAUSAL STRUCTURE

Χ

W

W

X

Х	у	Z	W
0.4	0.56	4	120
0.5	0.23	100	130
0.1	0.01	34	123
0.23	0.03	52	23

(IN) DEPENDENCE RELATIONS

X 🗶 W X _ W | Y • x ≁ w | y, z <u>7</u> ⊥ χ

(cmp. orthogonal vectors)

- Testing statistical conditional independence relations in the data.
 - Dependence #1: x and w correlated.
 - Conditional independence #2: x does not help to predict w if we know the value of y.
- Motivation: Complete generality of causal relations (continuous, discrete, nonlinear)

Ζ

Problem Statement

- INPUT: conditional (in)dependence relations X ¥ y|C obtained by running statistical independence tests on data set(s) over variables V.
- OUTPUT: causal structures consistent with input:
 - for each pair (x,y) of variables in V
 and each edge x→y, y→x and x→y whether it
 - Is present (in all causal structures consistent with input)
 - Is absent (in all causal structures consistent with input)
 - Is unknown (present in some and absent in some causal structures consistent with input).
- First step: assume (in)dependence relations can be determined without an error!

 INPUT: (In)dependence relations tested from data.... ...

Our SAT-based approach

- 1. Run conditional independence tests on the data set(s).
- Encode the dependence and independence relations into the working formula F (assignments of F correspond to graphs consistent with input).
- 3. Determine the backbone of F for the graph properties common to all graphs consistent with input (i.e. which edges are present or absent in all graphs consistent with input).

- **1. Introduction**
- 2. Problem Statement

3. Graphs and Dependencies

- 4. Encoding D-connection
- 5. Algorithm
- 6. Conclusion

D-connection (1

R

(Rain)

W

(Wet lawn)

Falling

- Random variables x and y are dependent given C,
 x y /C, if and only if there is a d-connecting path given C between them (Pearl et al. 1990-).
- A d-connecting path given C is path such that
 - Every collider node c (=node connected with heads) on the path is in C. ••• \rightarrow (c) \leftarrow •
 - Other nodes on the path are not in C.

- R and F dependent given C={}? YES.
- R and F dependent given C={W}? NO.

D-connection (2)

- Random variables x and y are dependent given C,
 x ⊥ y|C, if and only if there is a d-connecting path given C between them (Pearl et al. 1990-).
- A d-connecting path given C is path such that
 - Every collider node c (=node connected with heads) on the path is in C. ••• \rightarrow (c) \leftarrow •
 - Other nodes on the path are not in C.

Introduction
 Problem Statement
 Graphs and Dependencies
 Encoding D-connection
 Algorithm
 Conclusion

Encoding D-connection in Prop. Logic

- Random variables x and y are dependent given C,
 x ⊥ y|C, if and only if there is a d-connecting path given C between them (Pearl et al. 1990-).
- A d-connecting path given C is path such that

 - Other nodes on the path are not in C.

Encoding D-connection in Prop. Logic

Dependence:

 $[u \not\perp v | \mathbf{C}] \bigstar$

Boolean variable TRUE iff the variables u and v are observed dependent given C.

Boolean variables TRUE iff the edge is present in the solution.

Graph:

Encoding D-separation in Prop. Logic

Dependence:

$$\begin{bmatrix} u \not\perp v \mid \mathbf{C} \end{bmatrix} \quad \Leftrightarrow \quad \bigvee_{l=1}^{l_{\max}} \left(\begin{bmatrix} u - \frac{l}{\mathbf{C}} > v \end{bmatrix} \lor \begin{bmatrix} v - \frac{l}{\mathbf{C}} > u \end{bmatrix} \lor \begin{bmatrix} u < \frac{l}{\mathbf{C}} > v \end{bmatrix} \lor \begin{bmatrix} u - \frac{l}{\mathbf{C}} - v \end{bmatrix} \right)$$

Paths:

$$\begin{bmatrix} x - \frac{l}{\mathbf{C}} > y \end{bmatrix}$$

$$[x - \frac{l}{\mathbf{C}} - y]$$

$$egin{bmatrix} x < \cdots & y \ \mathbf{C} \end{bmatrix}$$

Graph:

$$\begin{bmatrix} x - \frac{1}{\mathbf{C}} > y \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x \to y \end{bmatrix} \quad \begin{bmatrix} x < \frac{1}{\mathbf{C}} > y \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x \leftrightarrow y \end{bmatrix} \quad \begin{bmatrix} x - \frac{1}{\mathbf{C}} - y \end{bmatrix} \quad \Leftrightarrow \quad 0$$

Encoding D-connection in Prop. Logic

Dependence:

$$\begin{bmatrix} u \not\perp v \mid \mathbf{C} \end{bmatrix} \quad \Leftrightarrow \quad \bigvee_{l=1}^{l_{\max}} \left(\begin{bmatrix} u - \frac{l}{\cdots} > v \end{bmatrix} \lor \begin{bmatrix} v - \frac{l}{\cdots} > u \end{bmatrix} \lor \begin{bmatrix} u < \frac{l}{\cdots} > v \end{bmatrix} \lor \begin{bmatrix} u - \frac{l}{\cdots} > v \end{bmatrix} \bigvee \begin{bmatrix} u - \frac{l}{\cdots} > v \end{bmatrix} \right)$$

Paths:

$$\begin{bmatrix} x - \frac{l}{\mathbf{C}} > y \end{bmatrix} \quad \Leftrightarrow \quad \bigvee_{z \notin \mathbf{C}} \left(\begin{bmatrix} x - \frac{1}{\mathbf{C}} > z \end{bmatrix} \land \begin{bmatrix} z - \frac{l-1}{\mathbf{C}} > y \end{bmatrix} \right) \lor \bigvee_{z \in \mathbf{C}} \left(\begin{bmatrix} x - \frac{1}{\mathbf{C}} > z \end{bmatrix} \land \begin{bmatrix} z < \frac{l-1}{\mathbf{C}} > y \end{bmatrix} \right)$$

Graph:

$$\begin{bmatrix} x - \frac{1}{\mathbf{C}} > y \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x \to y \end{bmatrix} \begin{bmatrix} x < \frac{1}{\mathbf{C}} > y \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x \leftrightarrow y \end{bmatrix} \begin{bmatrix} x - \frac{1}{\mathbf{C}} - y \end{bmatrix} \quad \Leftrightarrow \quad 0$$

Introduction
 Problem Statement
 Graphs and Dependencies
 Encoding D-connection
 Algorithm
 Conclusion

Practical Details (1)

When discovering a network of 10 variables

- (10*9+10*9/2)=135 possible edges
- 2^135~ 10^40 different graphs
- For a data set:
 - 2^10=1024 different conditioning sets
 - Longest d-connecting path that needs to be considered is I_{max} =16 edges
 - (10*10+10*10/2+10*10/2)*1024*16= 4 915 200 path variables
 - Gigabytes of CNF formulas.

Our SAT-based approach

- 1. Run conditional independence tests on the data set(s).
- 2. Encode the dependence and independence relations into the working formula F.
- 3. Determine the backbone of F for the graph properties common to all graphs consistent with input.

HEURISTIC PRUNING OF UNNECESSARY TESTS

- Build over MiniSAT 2.2. Code is available.
- 8-12 variables, dependending on the settings.

Practical Details (3)

- How to handle errorneous constraints?
 - MaxSAT?
- How to achieve better scalability?
 - Bottle neck: Calls to SAT-solver with this many Boolean variables and CNF-formulas.
 - Other types of encodings?
 - More efficient pruning of unnecessary tests?
- How to get both?

Introduction
 Problem Statement
 Graphs and Dependencies
 Encoding D-connection
 Algorithm
 Conclusion

- New application area for SAT technology: constraint-based causal discovery
- SAT-solving to allow for a very general learning setting: cycles, latent variables, several data sets with manipulations
- Encoding, Algorithm exploiting incremental backbone computation
- How both to scale up and handle errorneous constraints?

- **1. Introduction**
- **2. Problem Statement**
- **3. Graphs and Dependencies**
- **4. Encoding D-connection**
- **5. Algorithm**
- 6. Conclusion
- **7. EXTRA SLIDES**

Real Example

WORLD

DATA

CAUSAL MODEL/STRUCTURE

	Raf	Mek	Erk	РКС
Cell 1	0.4	0.56	4	120
Cell 2	0.5	0.23	100	130
Cell 3	0.1	0.01	34	123
Cell 4	0.23	0.03	52	23
•••	•••	•••	•••	•••

Sachs et al. (Science 2005)

• Proteins affect concentrations of other proteins.

Why Causal Models?

Wouldn't it be enough to learn the probability distribution over the variables?

P(x, y, z, w)

- "How do x and w change when we observe different values of y?"
- Deeper, causal understanding allows us to predict given manipulations.
 - "How do x and w change when we manipulate y to different values?"
 - x is unaffected to manipulations of its effect y.
 - Manipulations of y change its effect w.

