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Summary
We examine the identifiability of causal models with latent
confounding, given a set of experiments in which subsets
of the observed variables are subject to interventions.

In general identifiability is impossible on the basis of ex-
periments where only few variables are subject to inter-
vention per experiment, which is often the case.

Identifiability is possible for a class of causal models
whose conditional probability distributions are restricted
to a ‘noisy-OR’ parameterization.

Identifiability is preserved under an extension of the
noisy-OR CPD that allows for negative influences.

Several learning algorithms are introduced and tested for
accuracy, scalability and robustness.

1. On the Identifiability of Causal Models with Latent Confounding
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Passive observational data or experiments intervening on
only a few variables at a time are generally insufficient to
identify the parameters and the structure of a causal
model with latent confounding.

For example, the two graphs on the left imply the exact
same independences in single intervention experiments
and when passively observed.

Furthermore, there exist parameterizations for the two
graphs that produce the exact same distributions in those
situations as well.

Thus, the presence of the red direct link cannot be deter-
mined unless both X1 and X2 are subject to an interven-
tion in the same experiment.

2. Noisy-OR Model with Latent Confounding

Structural Equation Model

X1 := E1

X2 := (B12 ∧ X1) ∨ E2

X3 := (B13 ∧ X1) ∨ (B23 ∧ X2) ∨ E3

Binary random variables X1, X2 and X3 are observed.
Links B12, B23 and B13 and disturbances E1, E2 and E3
are all unobserved binary random variables, introducing
noise to the simple OR expressions.

Conditional Probability Distributions Links are inde-
pendently distributed with model parameters b12 =
P(B12 = 1), b13 and b23.

P(X1 = 0|E1) = (1− E1)

P(X2 = 0|E2,X1) = (1− E2)(1− b12)
X1

P(X3 = 0|E3,X1,X2) = (1− E3)(1− b13)
X1(1− b23)

X2

disturbance
(unobserved)

dependence representing
latent confounding

observed
variable

link B  with link23
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Latent Confounding Latent confounding is represented
by an arbitrary distribution P(E3

1) (total of 23 parameters).
Any latent confounding (restricted by the noisy-OR CPD)
can be presented through E1, E2 and E3.

Joint Distribution

P(X 3
1 ) =

∑
E3

1

P(X1|E1)P(X2|X1,E2)P(X3|X1,X2,E3)P(E3
1)

Data Generation Draw a sample of disturbances E3
1 from

P(E3
1), links B12,B13,B23 from their independent distribu-

tions, and determine X1,X2 and X3 from the SEM equa-
tions.

Context Specific Independence Property Noisy-OR
CPDs have the following property.

(X1 ⊥⊥ E2 || X1)⇒ (X1 ⊥⊥ E2 | X2 = 0 || X1)

If parents X1 and E2 of variable X2 are independent
in some context (here when intervening on X1), then
additionally conditioning on their common child X2 = 0
does not destroy this independence. This is evident
from the SEM equations, if X2 = 0, then E2 = 0 and
(B12 ∧ X1) = 0, thus the value of E2 does not provide
any additional information about the value of X1.

3. Identifiability
The parameters of any three variable model can be iden-
tified from single intervention experiments and passive
observational data.

Step 1 Find a causal order from the ancestral relation-
ships directly observed in the experiments and rename
variables such that the causal order is X1,X2,X3.

Step 2 Estimate link probability b12 by Cheng’s causal
power formula, using the intervention on X1 to make E2
independent of X1.

b12 =
P(X2 = 1||X1 = 1)−

X2 = 1 caused by
its other causes︷ ︸︸ ︷

P(X2 = 1||X1 = 0)
1− P(X2 = 1||X1 = 0)︸ ︷︷ ︸

renormalization
Similarly, estimate b23 by intervening on X2.

b23 =
P(X3 = 1||X2 = 1)− P(X3 = 1||X2 = 0)

1− P(X3 = 1||X2 = 0)

intervened/randomized
variable

Step 3 Estimate the link probability b13 by additionally
conditioning on X2 = 0 s.t. the blue indirect path is inter-
cepted.

b13 =
P(X3 = 1|X2 = 0||X1 = 1)− P(X3 = 1|X2 = 0||X1 = 0)

1− P(X3 = 1|X2 = 0||X1 = 0)

The context specific independence property guarantees
that the red path remains intercepted.

Step 4 Estimate the noise distribution from the passive
observational data by solving a matrix equation:

P(X 3
1 |E3

1)︷ ︸︸ ︷
. . . ... ... ...
· · · (1− b12) 0 0
· · · 0 (1− b13)(1− b23) 0
· · · b12 b13 + b23 − b13b23 1


P(E3

1)︷ ︸︸ ︷
...

P(E3
1 = 101)

P(E3
1 = 110)

P(E3
1 = 111)

 =

P(X 3
1 )︷ ︸︸ ︷

...
P(X 3

1 = 101)
P(X 3

1 = 110)
P(X 3

1 = 111)


The matrix on the left is lower triangular with a nonzero
diagonal, and thus invertible.

All parameters of a noisy-OR model with latent con-
founding are identified from the combination of a pas-
sive observational data set and a set of experiments
where for each ordered variable pair (Xi,Xj) there
is an experiment where Xi is randomized and Xj is
observed. This condition is often also necessary.

4. Learning Algorithms

Efficient Conditioning Conditioning reduces the effec-
tive sample size for estimating the link probabilities. How-
ever, if it happens in step 2 (above) that b12 = 0 or
b23 = 0, then the blue path does not exist and condition-
ing on X2 is unnecessary when estimating b13. The cor-
rect conditioning sets for each link can always be deter-
mined based on links already estimated. In addition, the
experimental data can also be taken into account when
estimating P(E3

1).

EM-algorithm For up to eight variables, the model can
also be learned using a version of the EM-algorithm.

5. Extension to Negative Influences

In noisy-OR models, the parents X1 and X2 being ON has
a positive effect on their child X3 being ON. However, the
noisy-OR parameterization can be extended to also allow
for negative influences:

X3 := E3 ∨ (B13 ∧ X̃1) ∨ (B23 ∧ X̃2),

where for positive/generative causes X̃i = Xi and for
negative causes X̃i = ¬Xi. Now X1 = 0 can cause
X3 = 1. The context specific independence property and
the identifiability of the model are preserved.

6. Simulations
Accuracy of Links
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Accuracy Accuracy of the learning algorithms with in-
creasing sample sizes. EM is most accurate, EC beats
the algorithm based on the identifiability proof (ID).
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10 000 samples in total
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Scalability Structural errors when using the EC-
algorithm on models with different sizes. Some statisti-
cally insignificant links are deleted.

Robustness Models were learned from single interven-
tion and passive observational data, generated by a
‘noisy-interactive-OR’ model while the amount of latent
confounding and interaction of the parents was varied.
The shade of each square represents the average predic-
tive accuracy in double intervention experiments. Lighter
shades indicate better results. Standard Bayesian Net-
work without hidden variables (BN) predicts accurately
when there is little confounding, noisy-OR (EM) predicts
accurately when there is only little interaction.


