
On Controlling the Size of Clusters in Probabilistic Clustering

Aditya Jitta and Arto Klami
Helsinki Institute for Information Technology HIIT,

Department of Computer Science, University of Helsinki

Abstract

Classical model-based partitional clustering algorithms, such
as k-means or mixture of Gaussians, provide only loose and
indirect control over the size of the resulting clusters. In this
work, we present a family of probabilistic clustering models
that can be steered towards clusters of desired size by pro-
viding a prior distribution over the possible sizes, allowing
the analyst to fine-tune exploratory analysis or to produce
clusters of suitable size for future down-stream processing.
Our formulation supports arbitrary multimodal prior distri-
butions, generalizing the previous work on clustering algo-
rithms searching for clusters of equal size or algorithms de-
signed for the microclustering task of finding small clusters.
We provide practical methods for solving the problem, using
integer programming for making the cluster assignments, and
demonstrate that we can also automatically infer the number
of clusters.

Introduction
Clustering is a canonical data analysis and machine learning
tool for discovering group structure underlying the data. In
this work, we study partitional clustering algorithms (meth-
ods that partition the data space into disjoint regions) from
the perspective of the cardinality of the clusters, presenting
algorithms that allow the user to provide prior information
on the desired number of objects in typical clusters.

Standard model-based partitional clustering algorithms,
such as the classical k-means algorithm and probabilistic
mixtures (McLachlan and Peel 2004) (e.g. Gaussian mixture
model), are agnostic to the size of the clusters. The user can
(and often has to) specify the desired number of clusters, but
has very limited control over the size distribution of the clus-
ters. Instead, it is determined implicitly via the model and
the learning algorithm. For example, k-means prefers clus-
ters of equal size whereas mixture models allow expressing
preference on the relative sizes, but neither method enforces
these preferences and the practical result may deviate sig-
nificantly from the expected one. Non-parametric clustering
models proposed for automatizing the choice of the num-
ber of clusters, such as the Dirichlet process mixture (Teh
2010), do this at the cost of losing even more of the con-
trol since the process underlying the choice of complexity

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

explicitly encodes preferences on the size distribution. See
Miller and Harrison (2013) for good explanation of how
Dirichlet process encourages the so-called rich-get-richer-
property: it provides solutions consisting of a few large clus-
ters and a large set of small clusters.

The lack of control for the size stems from a seemingly
innocent modeling assumption behind partitional clustering
algorithms: the objects are assumed independent and identi-
cally distributed (i.i.d). Each object independently chooses
its cluster allocation, which enables computationally effi-
cient algorithms but prevents explicit control for cluster
sizes. A natural remedy, suggested by Klami and Jitta (2016)
in the context of microclustering, is to consider models with
i.i.d. clusters instead: The data collection is generated as
a set of K independent clusters that each independently
choose how many objects to generate, instead of directly
generating N independent objects that map to the K clus-
ters. Making this transition for, e.g. mixtures of Gaussians,
is easy at the level of the model specification, but unfortu-
nately results in computational challenges since the cluster
allocations for the N samples now need to be carried out
jointly by some form of constrained optimization. We will
address these challenges in this work.

Various specific clustering models addressing the size dis-
tribution have been proposed before. Bennett, Bradley, and
Demiriz (2000) avoided empty clusters by setting a mini-
mum size for each cluster, Banerjee and Ghosh (2006) stud-
ied a variant of k-means that enforces equal size for all clus-
ters, and Zhu, Wang, and Li (2010) consider algorithms that
take arbitrary pre-determined cluster sizes as inputs for ex-
ample to attempt solving classification problems with clus-
tering algorithms. Perhaps the most closely related con-
cept, however, is that of microclustering (Miller et al. 2015;
Klami and Jitta 2016) that searches for clustering solutions
where the number of clusters K grows sub-linearly with
the number of objects N ; intuitively this corresponds to
clustering solutions guaranteed to return small clusters. Our
formulation generalizes theirs by allowing arbitrary priors
on cluster sizes, and we provide considerably more effi-
cient algorithms by focusing on maximum a posteriori so-
lutions instead of attempting fully Bayesian analysis that re-
quires either inefficient sample-by-sample allocation (Miller
et al. 2015) or solving weighted discrete sampling problems
(Klami and Jitta 2016) – while Bayesian inference is in gen-

eral desirable, for clustering applications we often want a
point estimate for the cluster allocations in the end and hence
it does not necessarily pay off to solve an unnecessarily com-
plex problem.

Our quest for controlling the size of the clusters can
be motivated from two perspectives: (i) Guiding clustering
when used for exploratory analysis, and (ii) Enabling use
of clustering for applications where the clusters are fed for
future down-stream processing. In exploratory analysis the
goal is to gain insight for an unknown data source, which
is often very ill-defined problem, and hence all techniques
that allow steering the process by additional prior knowl-
edge are helpful. Existing techniques include for example
methods that can take into account must-link and cannot-
link constraints between objects (Wagstaff et al. 2001), pos-
sibly run in an interactive manner to allow adapting the so-
lution if unsatisfied with the results (Balcan and Blum 2008;
Awasthi, Balcan, and Voevodski 2014). Our tools enable the
analyst to provide prior information on size of the desired
clusters. This can be helpful e.g. when using clustering to
discover gene regulatory networks (D’haeseleer, Liang, and
Somogyi 2000); multimodal prior over the number of genes
typically involved in such networks helps discovering bio-
logically plausible clusters. The second motivation is con-
ceptually very different but can still be reached with the
same techniques: If clustering is used not for exploration but
as tool to distributing a set of objects into further processing
e.g. by means of crowd-sourcing or to create teams of simi-
lar individuals (Kim et al. 2015), we would like to be able to
control the size of the clusters to get balanced solutions. Be-
ing able to control for cluster sizes is also important when
aligning clusters discovered in multiple data sources (Jitta
and Klami 2017).

The core technical challenges in our work relate to the
joint assignment of all objects into the clusters so that the
cluster sizes adhere to the preferences. This needs to be car-
ried out by constrained optimization, as observed already by
Bennett, Bradley, and Demiriz (2000) and several others in
restricted special cases. In this work we provide two practi-
cal solutions for the problem, demonstrate them in the con-
text of a simple mixture-based clustering model, and ana-
lyze their properties empirically. We also highlight how the
model family supports automatically selecting the number of
clusters. The analyst needs to indicate the preferred cluster
sizes by providing a suitable prior, but need not provide ad-
ditional technical parameters such as the number of clusters
that is often asked for as the first input in classical clustering
algorithms.

Problem Formulation
The specific problem addresses in this paper is to cluster
N objects xn represented by D-dimensional vectors into K
clusters such that the cluster sizes sk (the number of sam-
ples in each cluster) follow a prior probability distribution
p(s) specified by the analyst. In particular, we provide so-
lutions that make no assumptions on p(s) other than it is a
probability distribution over non-negative integers. We solve
this problem using probabilistic partitional clustering algo-
rithms, presenting an extension of mixture models to sup-

port such prior distributions, and search for parameters cor-
responding to the maximum a posteriori (MAP) solution.

Related Work
In the following we discuss related work on a more technical
level, highlighting how the proposed formulation advances
the state-of-the-art.

Perhaps the most closely related work is on the concept
of microclustering proposed recently by Miller et al. (2015)
to denote clustering solutions where the size of the clusters
grows sub-linearly with the number of objects in the data
collection. They achieve this by imposing a negative bino-
mial prior on the cluster size, and Klami and Jitta (2016)
proposed an alternative microclustering model using hard
constraints for the cluster size. Our solution generalizes on
theirs by supporting arbitrary prior distributions on the clus-
ter sizes, instead of limiting to the special case of unimodal
priors that lead to small clusters. Furthermore, we provide
considerably more scalable algorithms by focusing on MAP
estimate instead of full Bayesian inference. Full Bayesian
analysis is important when focusing on small clusters, but in
general setups we typically want to report a point estimate,
a single clustering solution, for the analyst anyway.

Some interactive clustering algorithms focus on the size
of the clusters as well, by letting the analyst provide feed-
back to achieve desired clustering results. Balcan and Blum
(2008) presented techniques that allow splitting individ-
ual clusters or merging two clusters, and Awasthi, Balcan,
and Voevodski (2014) proposed localized algorithms for the
same problem, letting the algorithm re-assign only objects
in the indicated clusters. In this work we do not build an in-
teractive clustering model as such, but instead consider prior
preferences on cluster sizes as an alternative for an interac-
tive procedure.

Our method is closely related to several clustering meth-
ods that use constrained optimization for making the clus-
ter assignments. Bennett, Bradley, and Demiriz (2000) used
a minimum cost flow formulation to solve k-means prob-
lems with minimum requirement for cluster sizes to prevent
empty clusters, and Banerjee and Ghosh (2006) provided al-
gorithms for k-means with roughly balanced cluster sizes.
Zhu, Wang, and Li (2010) and Malinen and Fränti (2014)
extended this line of work to models where the desired size
for each cluster can vary and is provided, for example, by ex-
isting class labels, and Rujeerapaiboon et al. (2017) added
support for outliers. Our formulation belongs to this fam-
ily of methods, but supports more general prior information
on the sizes, including complicated and potentially multi-
modal prior distributions. Our algorithmic choices are also
more general; we use simple integer program formulations
and generic solvers to support arbitrary priors. The special
cases described above can typically be solved more effi-
ciently with algorithms tuned for each case.

Finally, it is worth mentioning that constrained optimiza-
tion enables also directly solving clustering problems based
on pairwise distances, for example using correlation clus-
tering (Bansal, Blum, and Chawla 2004). We focus solely
on partitional clustering models that explicitly represent the
clusters.

Model and Methods
We consider clustering models from a probabilistic perspec-
tive, working with generative models for a given finite data
collection X = {xn}Nn=1 where the objects xn are typi-
cally described by a set of some D features. The models
are specified using N latent variables zn that indicate the
cluster choice for each object, and K distributions that gen-
erate the observations conditional on the cluster allocation
(parameterized by θk).

A prototypical example of this family is a finite mixture
model (McLachlan and Peel 2004), for which the joint den-
sity factorizes over the samples as

p(X,Z|θ) =

N∏
n=1

K∏
k=1

[p(zn = k)p(xn|θk)]
I[zn=k] ,

where I[·] is the identity function that evaluates to one if
the input is true and to zero otherwise. With the choice of
p(xn|θk = {µk,Σk}) = N (µk,Σk) (normal distribution
with mean µk and covariance Σk) and p(zn) = Mult(π)
(multinomial distribution with K-dimensional cluster prob-
ability parameter π) we get the mixture of Gaussians model.
An important practical detail for such mixtures is that
during inference, we can treat each sample independently
when updating the cluster allocations since p(Z|X, θ) =∏N
n=1 p(zn|xn, θ), enabling efficient expectation maximiza-

tion and Gibbs sampling algorithms.
The model we propose for mixture-based clustering with

explicit control for cluster sizes replaces the i.i.d. samples
with i.i.d. clusters. That is, the joint density is now factorized
as

p(X,Z|θ) =

K∏
k=1

[
p(sk)

N∏
n=1

p(xn|θk)I[zn=k]

]
, (1)

where sk indicates the number of samples in the kth clus-
ter. This formulation allows expressing prior preference on
cluster sizes by specifying a suitable probability for p(s),
but the convenience of updating the cluster allocations for
each sample independently is lost: The conditional proba-
bility p(Z|X, θ) no longer factorizes over the samples.

Without a factorizing conditional the cluster assignment
step becomes computationally more difficult, and can be
solved by two alternative strategies. Miller et al. (2015) pro-
posed algorithms that update the allocation for each of the
object at a time based on p(zn|Z−n, X, θ), explicitly con-
ditioning on allocations of all other samples (but marginal-
izing over θ). Such a procedure, however, converges very
slowly (or not at all) for various interesting choices of p(s),
such as multimodal distributions or distributions with very
narrow support. The other solution, adopted in this work as
well, is to jointly determine all of the allocations Z using
constrained optimization. This strategy requires more com-
putation for performing the allocations, but converges faster.

For maximizing the joint density (1) we consider a generic
alternating algorithm. Given an initial choice for θk, we al-
ternate between

1. Estimate new allocation Z jointly for all samples based
on p(Z|X, θ)

2. Estimate new parameters θk independently for every clus-
ter given p(θk|Xk), where Xk collects the samples for
which zn = k

In this work, we seek for the maximum a posterior solu-
tion, which means the first step corresponds to a simple con-
strained optimization problem. For full Bayesian analysis
this step would need to be replaced by enumeration of all
possible allocations with sufficiently large likelihood, which
scales only for very small problems; Klami and Jitta (2016)
adopted this choice and had to limit their experiments to
problems with at most hundreds of objects.

Since the second step depends on the particular likelihood
chosen as the data-generating distribution and is identical
to standard mixture modeling, we will not describe the de-
tails for that part. Instead, we will next explain two practical
methods for solving the first step for various choices of p(s).

Methods for Cluster Assignment
The assignment is found by maximizing the joint log-
likelihood

log p(Z|X, θ) = log p(X|θ, Z) + log p(Z)

=
∑
n

log p(xn|θzn) +
∑
k

log p(sk), (2)

which has to be solved for all zn simultaneously because sk
counts the number of objects assigned to the kth cluster.

The necessary inputs for any method solving this can be
collected in a matrix

Cnk = log p(xn|θk)

storing the log-likelihoods of the individual data points for
all cluster choices and a vector

da = log p(s = Sa)

storing the log-priors for possible cluster sizes. We denote
by S = {S1, . . . SA} the support of the probability p(s), so
that S1 indicates the smallest possible cluster size with non-
zero probability and SA indicates the largest possible cluster
size. A counts the number of possible cluster sizes, but the
values in set S need not be contiguous.

In the following we present two practical methods that
find the assignment maximizing the likelihood using con-
strained optimization. The first poses the problem as binary
integer program and the other as a mixed integer program,
and we use standard solvers, here Gurobi, for solving them.

Method 1: Arbitrary Priors
The joint assignment problem can be solved for arbitrary
prior distributions by formulating it as a binary integer prob-
lem, parameterized by a matrix Π ∈ [0, 1]N×K where
Πnk = 1 indicates the nth sample is assigned to the kth
cluster, and by a matrix Bka ∈ [0, 1]K×A where Bka = 1
indicates the kth cluster has exactly Sa objects. Each row in
Π and B is special ordered set of type 1 (SOS1), meaning
that at exactly one element can be non-zero.

Given the above parameterization the joint assignment
can be solved by the following binary integer problem:

max

N∑
n=1

K∑
k=1

Cnk ×Πnk +

K∑
k=1

A∑
a=1

Bk,a × da (3)

s.t.
K∑
k=1

Πnk = 1 ∀n

A∑
a=1

Bk,a = 1 ∀k

N∑
n=1

Πnk =

A∑
a=1

Bk,a × Sa ∀k,

where the multiplication × is element-wise. The objective
itself is simply the joint likelihood, the first two constraints
encode the SOS1 property of the indicator matrices, and the
third constraint guarantees the indicators Bka capture the
cluster sizes. The method is applicable for all possible priors
since the objective is encoded by binary variables selecting a
suitable element from d, and scales in complexity as a func-
tion of the width A of the support of p(s). It has (N +A)K
binary variables and N + 2K constraints, of which N +K
correspond to SOS1.

An important property of the above formulation is that
by setting S1 = 0 we can provide non-zero probability for
empty clusters. By further letting K to be sufficiently large
number, the method can vary the number of clusters actu-
ally being used for modeling the data and hence provides
means for automatic complexity control. This is an alterna-
tive to traditional non-parametric Bayesian models, such as
Dirichlet process mixtures (Teh 2010), for controlling the
complexity.

Method 2: Log-concave Priors
The method presented above works for arbitrary prior distri-
butions, but it pays off to consider dedicated algorithms for
restricted classes of priors on cluster sizes. One particularly
interesting special case is unimodal prior distributions that
indicate preference for a given size of clusters. Many natu-
ral ways of encoding such preference can be provided with
priors that are log-concave (e.g. normal distribution, uniform
distribution over convex sets, Poisson, and the negative bino-
mial distribution used by Miller et al. (2015) for microclus-
tering), and it pays off to attempt constructing more efficient
methods for this special case.

A natural way to solve constrained maximization prob-
lems with concave losses is to provide a piece-wise linear
approximation for the loss, and then replace the loss with a
real-valued free parameter constrained to lie below the en-
velope formed by the line segments. In optimal solution the
free parameter always lies on one of the segments, corre-
sponding to linear approximation of the original loss. We
apply this technique for the second part of the objective in
(2) as illustrated in Figure 1. The prior log-probability of ev-
ery cluster is indicated by wk that is bounded from above
by J line segments, characterized by their intercept Ij and

Cluster 1 Cluster 2

lo
g

p(
s)

Cluster size (s)

Figure 1: Illustration of mixed integer program formulation
for the cluster assignment. The log-prior for the cluster sizes
(solid black line) is approximated with a piece-wise linear
function (solid red lines), and for every cluster we assign a
real-valued variable wk constrained to lie below the enve-
lope formed by the linear segments. In optimal solution wk
always lies on the segment corresponding to the current clus-
ter size; the dotted continuations of other line segments are
used as constraints but are inactive in the optimal solution.

slope ∆j . The approximation for the prior is constructed be-
fore running the method.

The full formulation of the assignment problem as mixed
integer program is then

max

N∑
n=1

K∑
k=1

Cnk ×Πnk +

K∑
k=1

wk (4)

s.t.
K∑
k=1

Πnk = 1 ∀n

wk ≤ Ij + sk∆j ∀k, j, (5)

where sk =
∑
n Πnk is the size of the kth cluster. This for-

mulation hasNK binary variables andK real variables with
N SOS1 constraints and KJ inequality constraints. In prac-
tice the number of line segments required for sufficiently ac-
curate approximation for the prior depends on the width A
of the support of p(s). In our experiments we set J to 1/4 of
A, but note that the results would not change qualitatively
unless using very small J .

Implementation Details
The practical performance of the generic method described
above depends on a couple of small details, which we will
cover next.

Initialization
The methods needs to be initialized by providing some rea-
sonable values for the cluster parameters θk before solving
for the assignments for the first time. To speed up conver-
gence, it is generally a good idea to spread the initial clusters

evenly over the data space, and hence we adopt the initial-
ization strategy used by the k-means++ algorithm (Arthur
and Vassilvitskii 2007). That is, we first choose one data ob-
ject at random as the centroid for one of the clusters. The
following centroids are randomly selected amongst the rest
of the data objects by probability inversely proportional to
the distance to the closest already selected data point.

In case the cluster parameterization involves other terms
besides the centroids, such as the covariance in case of mix-
ture of Gaussians, they can be initialized by randomly sam-
pling from the prior.

Prior Specification
A critical element of the proposed model family is specifi-
cation of the prior over the cluster sizes. This cannot be au-
tomated, since it represents the goals of the analyst and may
be highly subjective. In practical use the algorithm needs to
be coupled with an interface for specifying the prior.

The model family supports various ways of specifying the
prior, for example:

1. Delta distribution assigning all probability mass to a given
cardinality; this enables replicating the balanced cluster-
ing by Banerjee and Ghosh (2006).

2. Uniform distribution over a continuous range of cardinal-
ities; this special case corresponds to the microclustering
model by Klami and Jitta (2016), and if using only a mini-
mum constraint we obtain the model by Bennett, Bradley,
and Demiriz (2000).

3. Continuous standard density over non-negative integers,
typically the Poisson distribution of negative binomial;
the latter choice corresponds to the microclustering model
by Miller et al. (2015).

4. Mixture of standard densities, for example mixture of
Gaussians (evaluated at non-negative integers) where the
user specifies the mean, standard deviation and weight for
each component to encode multimodal prior density. We
are not aware of earlier works that support such priors.

Tunable Parameters
Standard probabilistic clustering models require specifying
the number of clusters and possibly their relative weights.
Our formulation is not free of tuning parameters either, but
instead replaces these choices with two new ones.

The more critical choice is the relative strength of the
prior and the likelihood. If the size preferences are provided
using a relatively flat prior, the likelihood part of the ob-
jective function dominates and the only effect of the prior
is to prune out solutions the prior p(s) discards by assign-
ing zero probability for them. In the other extreme, the prior
completely dominates the objective and attempts to find only
clusters that match the preferred size. In practice we suggest
running the method with increasing weight for the prior until
the empirical histogram of cluster sizes matches sufficiently
well with the prior.

The other tunable parameter is the probability of empty

clusters1, set using p(s = 0). Together with the choice of
K, the number of clusters, it influences the actual number
of clusters being used to model the data. A practical strategy
is to first estimate the expected number of clusters under the
prior K̂ = N

Ep(s)[s]
, where Ep(s)[·] denotes the expectation

over the distribution p(s) and is computed only over s > 0.
We can then run the model with K set to some value that is
slightly larger than K̂, for example K = 1.5K̂, letting the
model to automatically prune out clusters not required for
modeling the data. The degree of pruning is controlled by
the tuning parameter p(s = 0).

Experiments
In this section we provide three empirical experiments
demonstrating the behavior of the methods. All experiments
are carried out on artificial data sets and using perhaps the
simplest possible probabilistic clustering model to best high-
light the properties of the proposed methods for assigning
the samples and to illustrate the effect of the prior informa-
tion on cluster sizes.

The model we use assumes Gaussian clusters with
isotropic covariance Σk = σ2I shared by all clusters, with
uniform prior for the centroids. This model implements the
closest analogue to k-means within the proposed family of
clustering models, so that σ2 controls the importance of the
prior information provided for the cluster sizes. This is seen
by multiplying the objective log p(X|Z, µ) + log p(Z) =
− 1

2σ2

∑
n ‖xn − µzn‖2 +

∑
k log p(sk) with 2σ2 to arrive

at the equivalent objective

−
∑
n

‖xn − µzn‖2 + 2σ2
∑
k

log p(sk).

Nevertheless, we point out that similar results would be ob-
tained with more complex mixture models, such as mixtures
of Gaussians with other covariances and when using proper
priors for the cluster centroids µ.

The cluster assignments for this model are carried out us-
ing either Method 1 or 2, whereas the parameter updates cor-
respond exactly to classical k-means: Given Z we simply set
µk to the mean of samples assigned for the kth cluster.

Illustration
We first illustrate the effect of providing alternative prior dis-
tributions over the size of the clusters, using a simple arti-
ficial data set that consists of three natural clusters with 50
objects in each. Figure 2 shows the result of the model, using
Method 1 for assigning the samples into clusters, for three
different choices for the prior distribution. We see the result
matches perfectly with the provided prior, allowing the ana-
lyst to reveal finer structure in the data.

Scalability and Comparison of Methods
For log-concave priors we have two alternative methods
for making the cluster assignments. The first one contains
more parameters but can be solved as pure integer problem,

1Method 2 needs to be coupled with additional binary indicator
to support this.

0 25 50 75 100
Cluster Size (s)

−100

−50

lo
g

p(
s)

0 25 50 75 100
Cluster Size (s)

−100

−50

lo
g

p(
s)

0 25 50 75 100
Cluster Size (s)

−100

−50

lo
g

p(
s)

Figure 2: Illustration of how different prior preferences (top row) for the cluster sizes influence the clustering result (bottom
row). The model is able to break natural clusters into smaller ones when so desired (middle column), and allows providing also
multimodal preferences that lead to solutions with both large and small clusters (right column).

whereas the second one requires mixed integer program-
ming but has very few additional parameters. It is not a pri-
ori obvious which method is more computationally efficient,
and hence we illustrate the computational efficiency of both
solutions on a range of artificial data experiments.

Figure 3 shows convergence plots for both methods for
three clustering problems of varying size. In all cases the
data itself is drawn from uniform distribution and hence has
no natural cluster structure, and the total number of objects
grows from 1,000 to 10,000. The cluster size preference is
provided by a negative binomial distribution with parame-
ters r = 100 and p = 0.5, corresponding to preference with
mode at 100 objects per cluster and practical support (clearly
non-zero probability) for values between roughly 40 and
200. For Method 2 we approximate the prior in this range
with piecewise linear function with J = 40 pieces.

Even though Method 2 constitutes a reasonable attempt
of producing a dedicated method for this special case, we
observe that Method 1 that works for arbitrary priors is ac-
tually faster for all scenarios. This result generalizes for dif-
ferent kinds of data distributions and priors as well, but is
not shown here explicitly. It is possible that faster dedicated
methods for the unimodal special case could be constructed,
but even if this was the case the result illustrates that the gen-
eral method is efficient enough for clustering problems of
interesting size and is to be preferred in all use-cases. Prob-
lems in the order of thousands of objects can be solved in a
few seconds on a single computer, and problems in the or-
der of tens of thousands of objects are solvable in tens of
minutes.

Effect of Tuning Parameters
Besides providing the shape of the prior distribution p(s),
the analyst has access to two control parameters: The rel-

10−2 10−1 100 101 102 103 104

Time (s)

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0
lo

g
p(

X
,Z

)

N=1000 N=3000 N=10000

Method 1
Method 2

Figure 3: Comparison of the two alternative methods for the
cluster assignments. Method 1 (solid line) uses binary pro-
gramming and works for arbitrary priors, and is found to be
more efficient than Method 2 (dashed line) that only works
for log-concave priors and is based on mixed integer pro-
gramming. The difference is persistent across different prob-
lem sizes indicated by the color.

ative strength of the prior and the probability assigned for
empty clusters. We illustrate their effects in Figure 4, using
a prior p(s) that is a normal distribution (evaluated at integer
values) with mean 50. The underlying data consists of 1,000
objects generated from a mixture model with 20 natural (but
partly overlapping) clusters of 50 objects each, and hence
even with a flat prior some clusters are of the desired size.

The relative strength of the prior and likelihood can be

0 20 40 60 80 100

σ0 = 10

0 20 40 60 80 100

σ0 = 1

0 20 40 60 80 100

σ0 = 0.2

0 20 40 60 80 100
Cluster size (s)

K = 20

p(s = 0) = 0

0 20 40 60 80 100
Cluster size (s)

K = 50

p(s = 0) = 0

0 20 40 60 80 100
Cluster size (s)

K = 50

p(s = 0) = 0.9

Empty clusters = 28

Figure 4: Top row: Illustration of how decreasing the standard deviation of the prior, seen as sharpening of the prior distribution
(red dashed line) to favor more strongly the preferred size of 50 objects per cluster, influences the empirical histogram (blue
bars) of cluster sizes. With flat prior (left) the result contains clusters of varying size, but with strong prior all clusters contain
very close to 50 objects. The scale for the prior p(s) is here the same in all three sub-plots. Bottom row: Illustration of how
setting non-zero probability for empty clusters allows inferring the right number of clusters even when running the method with
excess clusters. The left plot shows the result when the ideal number of clusters, here K = 20, is provided as an input for the
method. When providing too many clusters,K = 50 in the middle plot, the resulting clusters become smaller than the indicated
preference since all clusters must include some objects. The right plot uses K = 50 clusters but allows empty clusters as well,
and we see the model learns to use roughly the ideal number of clusters while leaving the remaining ones empty.

controlled by the standard deviation σ0 of the prior2. The
top row shows how decreasing σ0 from 10 to 0.2 shifts the
results from ordinary k-means towards one that strongly en-
forces a preference of 50 objects per cluster, letting the user
control how tightly the preference is taken into account.
With strong prior, the empirical histogram of cluster sizes
peaks exactly at 50.

The bottom row illustrates the possibility for automatic
complexity control. Searching for a solution with K = 50
clusters without allowing for empty clusters results in clus-
ters that are way smaller than the preferred size, but by let-
ting p(s = 0) to have non-zero probability we still find
roughly the right number of non-empty clusters (in this run
22) with the correct size, while the method automatically in-
fers that the remaining 28 clusters are empty. Here a prior
with σ0 = 4.0 was used and the probability assigned for
empty clusters was p(s = 0) = 0.9.

2For this simplified model the strength is influenced by the ratio
of the likelihood variance σ2 and the prior variance σ2

0 ; we set the
former to 1 without loss of generality.

Discussion
Providing tools for guiding exploratory analysis is impor-
tant since the goal of the analysis is often vague, yet the
analyst is often able to provide various kinds of guiding
signals. In the context of clustering people have previ-
ously studied techniques for providing explicit constraints
for individual pairs of objects (Wagstaff et al. 2001), al-
gorithms that can force clusters of equal size (Banerjee
and Ghosh 2006) or clusters that match exactly sizes pro-
vided for the algorithm (Zhu, Wang, and Li 2010). Some
research has also been devoted to interactive clustering al-
gorithms that allow the user to inspect the result and then
provide feedback on clusters that should be split or merged
to change the level of refinement (Balcan and Blum 2008;
Awasthi, Balcan, and Voevodski 2014). Our work is also re-
lated to microclustering (Miller et al. 2015; Klami and Jitta
2016) that controls cluster sizes by assuming simple uni-
modal prior distribution over cluster sizes.

In this work, we extended this line of research by lay-
ing out a probabilistic formulation that allows the analyst to
provide a distribution over possible cluster sizes to steer the
clustering process. Our formulation is more general than the
previous work, supporting multimodal priors over the cluster
sizes. We provided practical methods that combine already

available pieces to solve the problem, alternating between
cluster parameter updates and (mixed) integer programming
for allocating the objects to clusters. The proposed formu-
lation also allows the user to tune the relative strength of
the prior and supports adapting the number of clusters dur-
ing optimization. In this work we demonstrated what kind
of effects these tuning parameters have for the solution, but
future research on practical interfaces for eliciting the tun-
ing parameters from the analyst would be needed to create
practical exploratory analysis tools.

We demonstrated on artificial data that we are able to
solve problems up to tens of thousands of objects, making
the proposed method a practical alternative for many cluster-
ing problems. Nevertheless, scaling up for even bigger prob-
lem instances is a worthy future direction, and in particular
we would expect that it is possible to device dedicated algo-
rithms for the special case of unimodal log-concave priors
even though in our experiments the method applicable for
arbitrary priors was found to be more efficient.

Acknowledgments
The work was supported by Academy of Finland (grants
251170 and 266969) and Tekes (project Scalable Probabilis-
tic Analytics (SPA)).

References
Arthur, D., and Vassilvitskii, S. 2007. K-means++: The
advantages of careful seeding. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms, volume 8,
1027–1035.
Awasthi, P.; Balcan, M.; and Voevodski, K. 2014. Local
algorithms for interactive clustering. In Proceedings of the
31st International Conference on Machine Learning.
Balcan, M., and Blum, A. 2008. Clustering with interactive
feedback. In Proceedings of the 19th International Confer-
ence on Algorithmic Learning Theory, 316–328.
Banerjee, A., and Ghosh, J. 2006. Scalable clustering algo-
rithms with balancing constraints. Data Mining and Knowl-
edge Discovery 13(3):365–395.
Bansal, N.; Blum, A.; and Chawla, S. 2004. Correlation
clustering. Machine Learning 56(1-3):89–113.
Bennett, K.; Bradley, P.; and Demiriz, A. 2000. Constrained
k-means clustering. Technical report, Microsoft Research.
D’haeseleer, P.; Liang, S.; and Somogyi, R. 2000. Genetic
network inference: from co-expression clustering to reverse
engineering. Bioinformatics 16(8):707–726.
Jitta, A., and Klami, A. 2017. Few-to-few cross-domain
object matching. In Advanced Methodologies for Bayesian
Networks, volume 73 of Proceedings of Machine Learning
Research, 176–187.
Kim, B. W.; Kim, J. M.; Lee, W. G.; and Shon, J. G.
2015. Parallel balanced team formation clustering based on
MapReduce. In Advances in Computer Science and Ubiqui-
tous Computing, volume 373 of Lecture Notes in Electrical
Engineering, 671–675. Springer.

Klami, A., and Jitta, A. 2016. Probabilistic size-constrained
microclustering. In Proceedings of the Thirty-Second Con-
ference on Uncertainty in Artificial Intelligence.
Malinen, M. I., and Fränti, P. 2014. Balanced k-means for
clustering. In Proceedings of the Joint IAPR International
Workshop on Structural, Syntactic, and Statistical Pattern
Recognition, 32–41.
McLachlan, G., and Peel, D. 2004. Finite mixture models.
Wiley.
Miller, J., and Harrison, M. 2013. A simple example of
Dirichlet process mixture inconsistency for the number of
components. In Advances in Neural Information Processing
Systems 26, 199–206.
Miller, J.; Betancourt, B.; Zaidi, A.; Wallach, H.; and
Steorts, R. C. 2015. Microclustering: When the clus-
ter sizes grow sublinearly with the size of the data set.
arXiv:1512.00792.
Rujeerapaiboon, N.; Schindler, K.; Kuhn, D.; and Wiese-
mann, W. 2017. Size matters: Cardinality-constrained
clustering and outlier detection via conic optimization.
arXiv:1705.07837.
Teh, Y. W. 2010. Dirichlet process. Encyclopedia of ma-
chine learning 280–287.
Wagstaff, K.; Cardie, C.; Rogers, S.; and Schrödl, S. 2001.
Constrained k-means clustering with background knowl-
edge. In Proceedings of the 18th International Conference
on Machine Learning, 577–584.
Zhu, S.; Wang, D.; and Li, T. 2010. Data clustering with
size constraints. Knowledge-Based Systems 23(8):883–889.

