

����

����

����

����������	
�������	
�������	
�������	
�����
����������
����������
����������
������������������
�����
�����
�����
���������������������

��������������������������������������
��������������
��������������
��������������
������������

�������������
����������
����������
����������
���

����������������

�

�

�

�

�

�

���� !���"#$�%&&#

��������������������

����
��������
��������
��������
��������

����
����
����
����
��������

%&&#%&&#%&&#%&&#''''%%%%����

 2

Proactive Reasoning in Mobile HCI:
Tackling Uncertainty and Appropriate Task Support

Antti Salovaara
Helsinki Institute for Information Technology
P.O. Box 9800, 02015 HUT, Finland
antti.salovaara@hiit.fi

HIIT Technical Reports 2004-2

ISSN 1458-9478

Copyright © 2004 held by the authors.

Notice: The HIIT Technical Reports series is intended for rapid dissemination of articles and
papers by HIIT authors. Some of them will be published also elsewhere.

 3

����������	
�������	
�������	
�������	
�����
����������
����������
����������
������������������
�����
�����
�����
�������������������������

��������������������������������������
��������������
��������������
��������������
�������������������������
����������
����������
����������
���

Antti Salovaara

Helsinki Institute of Information Technology, Helsinki, Finland

�!(���)��

Mixed-initiative user interfaces provide a way to reason about user’s time-varying goals using
decision theory to decide when a system should invoke actions to support the user. Using
this approach as a starting point, this paper extends the theory with hierarchical task
analysis, showing ways to address questions of (1) how to define what actions the system
should have in its repertoire, (2) how support could be provided in multiple ways in a
situation, depending on system’s certainty of user’s current task, and (3) how the topology of
a probabilistic reasoning graph should be derived. A conceptual evaluation is carried out
against concrete observations from elevator maintenance work. The analysis suggests that
the extended framework can be best used in such mobile contexts where activity is goal-
directed and orderly, and system’s actions will not change user’s activity remarkably.

 4

"� �����*+)�����

Understanding the purpose of user’s actions is crucial to any context-aware system that is
intended for providing real-time support for the user. Research conducted this far has shown
that this goal is extremely difficult to achieve in a larger scale than possibly in a command
line keystroke level. The area of interest in context-aware computing and mobile HCI is
however much bigger than that, and thus harder to tackle.

The problem of understanding user’s activity shows various paths as a solution: (1) designing
work so that the user will act more predictably, (2) making the activity more understandable
to the computer through well-designed dialogue with the user, or (3) integrating uncertainty of
user’s intentions to the design of context-aware systems. While the first alternative may be
possible in some settings, it tends to make users subordinate to the computing system and
lose the benefits of flexibility in human behavior. The second approach requires user
engagement and is not possible in unobtrusive context-aware systems. Thus, the last
approach seems the most appropriate one.

In this paper, uncertainty will be tackled in the framework of mixed-initiative user interfaces
[8], which is a decision-theoretic approach to selecting right type of proactive task support in
real-time use situations. The original treatment by Horvitz shows how a system can decide
whether to invoke an action or not, as will be shown in a short recapitulation in this paper.
The theory has not yet been fully developed, though. For instance, it does not address
clearly how the user should be supported in more than one way in a situation, or how to
know what supporting actions should be linked to each user goal or task. In addition, the
decision-theoretic approach has not yet been introduced to mobile HCI research (or context-
aware computing away from the desktop).

Therefore, this paper will extend the theory by analyzing its connections to hierarchical task
analysis (HTA) (e.g., [17]). The connection to HTA comes from linking specificity levels of
supporting actions with the user’s task description hierarchy. This may potentially provide a
way to define how specific support in each situation can be allowed without disturbing the
user, while the certainty of his or her present task is continuously changing. After having
developed the model, its feasibility is evaluated against one use context (elevator
maintenance work) and two observed use situations where worker’s unexpected behavior
would pose problems to a context-aware system.

%� ��,���-�*'������������(��������.�)�(��**��((���)�������/�

Mixed-initiative user interfaces, presented by Eric Horvitz, aim for coupling interface agents
and direct manipulation through collaboration between the agent and the user. One of the
primary questions is the consideration of costs and benefits of automated actions to the user,
and to this, Horvitz proposes decision-making as a function of inferred probabilities of the
user’s goals. As a starting point, he lists 12 principles that address the critical factors behind
successful decision-making, touching issues such as user attention and efficient
mechanisms for establishing and maintaining mutual understanding of the present task. The
ones related to probabilities and of interest in this paper are replicated below ([8], pp. 159-
160, original emphases).

 5

(2) Considering uncertainty about user’s goals. Computers are often uncertain about
the goals and current focus of attention of a user. In many cases, systems can benefit
by employing machinery for inferring and exploiting the uncertainty about a user’s
intentions and focus.

(4) Inferring ideal action in light of costs, benefits, and uncertainties. Automated
actions taken under uncertainty in a user’s goals and attention are associated with
context-dependent costs and benefits. The value of automated services can be
enhanced by guiding their invocation with a consideration of the expected value of
taking actions.

(8) Scoping precision of service to match uncertainty, variation in goals. We can
enhance the value of automation by giving agents the ability to gracefully de-grade
the precision of service to match current uncertainty. A preference for “doing less” but
doing it correctly under uncertainty can provide user’s with a valuable advance
towards a solution and minimize the need for costly undoing and backtracking.

In mixed-initiative user interfaces, the fundamental tool for measuring action’s helpfulness to
a user is to look at its expected utility. The purpose is to estimate the benefit of invoking a
certain action, given the agent’s beliefs about user’s goals. Expected utility is different in
each situation, that is, it changes continuously.

At a closer look, Horvitz’s decision-theoretic treatment is following. Having observed the
evidence E (e.g., a sequence of user actions, data about the context, and so on) for user
having a goal G, let us assume that the agent now knows the likelihood p(G | E) for user
having that goal. Agent should now know whether to invoke an action A or not. There are
four decision alternatives that the agent needs to consider, each associated with its own
utility u to the user (utility being a function of how much the task can be progressed, how
much the user is distracted, side-effects, and so on):

• u(A,G): utility of agent invoking action A, having inferred user’s goal G correctly.

• u(A,G): utility of agent invoking action A, having inferred user’s goal G incorrectly.

• u(A,G): utility of agent not invoking action A, having inferred user’s goal G correctly.

• u(A,G): utility of agent not invoking action A, having inferred user’s goal G incorrectly.

Now the expected utility eu(A | E) of invoking the action A becomes a sum of the related
utilities, weighted with the probabilities of user having (G), or not having (G), the goal in light
of observed evidence E:

 eu(A | E) = u(A,G) p(G | E) + u(A G) p(G | E) (1)

Since p(G|E) = 1–p(G|E), the equation can be rewritten as

 eu(A | E) = u(A,G) p(G | E) + u(A,G) [1 – p(G | E)] (2)

For the actions that the agent has at hand, a separate expected utility is computed to choose
the most appropriate action for the situation. But there still remains the question of whether
the action should be invoked at all. That is, in what situations should now the agent invoke
the seemingly most appropriate action?

The diagram in Figure 1 shows Horvitz’s decision-theoretic answer to the question, from a
viewpoint of one specific situation with respect to an agent’s single action and user goal. In
each situation E is different, and the utilities u are unique for each action–goal pair. Thus a
separate analysis is needed for each situation and action. The two lines in the figure show
the expected utilities of the two alternatives (i.e., whether to act or not) open to the agent.

 6

Essentially, the diagram shows how to make the yes/no decision for an action. The solution
lies in estimating p(G | E), that is, the confidence of how sure the agent is about the goal,
given the evidence. In the case of Figure 1, if the confidence is high enough, the action
should be taken. The probability p* at the intersection of the two lines dictates the threshold
whether to act or not.

After having presented this model, Horvitz shows how the principles were put into use in an
anthropomorphic MS Outlook assistant that helps organizing information within incoming
emails. For instance, when the agent finds a likely proposal for an appointment in a mail, it
suggests placing the event into a calendar. If the agent is uncertain about the exact time, it
only opens the correct calendar page, but otherwise may put the event into its place and wait
for user’s approval.

0�
��!���������.��1����*���

As can be understood from the analysis, choosing the most appropriate action at each
moment can be generally an intractable problem. It would require continuous matching of all
the possible user goals G and agent actions A against the observed evidence E, over and
over again, since the evidence changes from a situation to another. Therefore in practice, the
number of possible goals and associated actions to consider should be somehow limited.

In his principle no. 8 Horvitz suggests that the precision of service (i.e., system’s autonomous
actions) should be adapted to the uncertainty about user’s present task. That is, for each
situation, there should be a set of alternative ways to provide help. The more certain the
agent is of user’s goal, the more specific support should be provided. When the confidence is
low, actions should be helpful in a more general level, in order to decrease the amount of
inappropriate, task-specific obtrusive actions. This orders the actions according to their
specificity. Let us now analyze how this hierarchical ordering could be benefited.

p(G | E)

p*

No action
Actio

n

1.00.0

u(¬A,¬G)

u(A,¬G)

u(A,G)

u(¬ A,G)

eu(A)
and

eu(¬A)

Figure 1. A diagram depicting the decision whether to act or not to act in a
given situation. The shaded area, determined by the threshold probability p*,

shows when the agent should act (adapted from [8]).

 7

02"� �����)��������������)1�)�����(3�����/(�(�

By far, the probabilistic treatment within mixed-initiative user interfaces framework describes
how to decide whether to act or not, but it leaves open the question of how to define what are
the possible agent’s actions in each situation, and how they are related to uncertainties.

As stated in the previous section, the actions form a hierarchy. To progress in the analysis, it
is helpful to think about them in relation to user’s task hierarchy. The most specific agent’s
actions are related to user’s detailed-level tasks, and the more general actions to higher-level
tasks. If user’s activity is seen as a task hierarchy, this forms a natural mapping from agent’s
task support actions to user’s activity.

Hierarchical task analysis (HTA) (e.g., see [17]) as a user research method describes activity
as a goal–sub-goal structure. One or multiple plans are associated with goals, each plan
describing a sequence of occurrences that need to take place in order to the goal be
achieved. The meaning of the term task in this framework is rather vague [17]. In this paper,
it is used as a behavioral concept: what is done in practice to achieve a goal. As opposed to
a goal, it is something that the agent can perceive. Therefore, from now on in this paper, we
will be talking about tasks T rather than goals G because of terminological safety.

Benefits of combining HTA with mixed-initiative user interfaces’ probabilistic reasoning can
be summarized as follows:

• Having modeled user’s activity in detailed level, it becomes easier to say what user’s
actions (i.e., observed evidence E) are related to which user’s task T. That is, it provides
the background for defining the probabilities p(T | E) that will govern how the agent will
be interpreting user’s activity. One of the best predictors of user’s future activity is very
likely user’s previous task. This information can also be included in E.

• HTA helps to tell what specific needs the user has related to each task. With this
information, it is easier to associate agent actions A with user’s tasks T and assign the
respective utilities u(A,T) heuristically.

• Knowing the task structure simplifies agent’s work of maintaining hypotheses of what the
user is most probably doing at each moment, and considering what actions the agent
should invoke. This helps in achieving computational tractability, compared to the basic
solution that was described in the beginning of this elaboration section.

We now turn to look what the third benefit would bring about and how it could be achieved.

02%� 4��-�!��������5����������.��(��6(��)�����/��(��7�����

At any given time, user is performing actions in task hierarchy’s leaf level operations. The
agent, trying to interpret the task from the evidence it perceives of the activity, has a set of
hypotheses p(T | E) for tasks T to choose from in different levels in the task hierarchy. Since
detailed-level tasks are likely to require more evidence in order to p(T | E) be high, a path
reaching from the most general task in the hierarchy to an actual leaf-level operation yields a
sequence of probabilities in descending order.

If an agent is maintaining an interpretation about what the user is doing at each time, it needs
a threshold probability for deciding how detailed interpretation it is willing to adopt, given the
observed evidence about the activity. The threshold determines how deep in the hierarchy

 8

the agent can go before the confidence levels p(T | E) of the hypotheses drop so low that
committing to believe that the user really is doing the tasks cannot be trusted anymore.

Flexible interpretation can now be achieved as a combination of two different ways in this
probabilistic framework. First, as time passes and new information about user’s activity is
accumulated to E, some other task in another place in the task hierarchy may become more
probable than the present one, based on how p(T | E) for different tasks T change. This way
the agent can change its interpretation to the most probable task. It may be a good idea to
constrain how far in the hierarchy from the present point of interpretation the new one is
allowed to lie, to ensure continuity and reduce the amount of hypotheses to consider.

Secondly, the new evidence may show that the interpretation in the hierarchy may change
along the same path to more detailed-level or higher-level descriptions of the same task. The
interpretation can be strengthened by committing to a more detailed task, or weakened,
which takes it towards more general tasks. By being able to back up to the topmost task and
this way reaching any task in the hierarchy, the agent rarely gets trapped in any certain sub-
tree.

A potential benefit of having such an interpretation comes from communication possibilities
with the user: if the agent can tell what task it believes user is doing, the agent’s actions
become more intelligible to the user. This is one way how an agent can explain its reasoning
to the user.

For finding appropriate actions for supporting the user, a threshold probability may not be
necessary, however, since the decision of how to support user can also be based on
expected utilities eu(A). Since one of the components for calculating the expected utility is
the task’s probability p(T | E), highly improbable tasks will get a low expected utility, and will
thus not be preferred to be invoked. This replaces the need for a designated probability
threshold.

Deciding about what actions to invoke is discussed next.

020� �+55�����7��(����������55��5������8�/�

Figure 2 shows conceptually how the same agent action can help user in multiple tasks.
There, action A is associated to a more general level task than B, C and D, which are for
more specific support. Each action is associated with a task in a suitable hierarchy level,
following the understanding the designer had about user’s varying needs in the work
process. So, the designer of the system can predefine these actions. Now, in Figure 2,
depending on the amount of confidence of user’s task, the agent can provide help on two
different levels. If p(T1.1 | E) for task T1.1 is high enough, the agent can invoke both A, B and
C to help user. If not, the agent may play it safe, invoking only action A.

If computational complexity is not a problem, the suitable actions to support user can be
carried out by first finding the most probable leaf-level task (i.e., a task in the bottom level of
the hierarchy) that the user is doing. This can be done either (1) with an exhaustive search
over all the leaf-level tasks, or (2) progressively by first finding the most probable top-level
task, of which the most probable sub-task is searched, and this way proceeding deeper until
the agent has a hypothesis for the leaf-level task.

When the task hypothesis is known, a decision must be made what actions to invoke to help
in the task. This is done by defining a threshold level for the expected utility that an action

 9

must exceed before the agent invokes it. As suggested by Pattie Maes [12], the level could
be adjusted by the user, to adapt the agent for personal preferences.

Figure 3 shows how invoking the correct actions would be done in task T1.1 (which is a leaf-
level task). Let us assume that the agent has found T1.1 to be the most probable user’s task
in either of the two ways: with exhaustive or progressive search. Depending on how
confident the agent is of user performing T1.1, it may now invoke action A only, or actions A
and B, or actions A and B and C. These corresponding possibilities are marked with 1, 2 and
3 in the figure, respectively.

In case 1, agent’s confidence of task T1.1 is low. The result is that the expected utilities for
each action are low as well, which can be seen by noting that the dashed line intersects the
lines for actions B and C below the threshold level. Therefore, in this case only A is seen
useful for the user.

Cases 2 and 3 show how actions B and C differ from each other. In case 2, the confidence
p(T1.1 | E) is big enough for the agent daring to invoke also action B, and only in case 3 the
confidence is sufficient to make all the actions’ expected utilities high enough to be invoked.

This way agent’s precision of service can be matched with uncertainty, as was asked in
principle no. 8 in mixed-initiative user interfaces. Task-analysis based user research helps in

Task 1
Supporting action A

Task 1.1
Supporting

actions B and C

Task 1.2
Supporting

action D

Plan: 1.1 - 1.2

Figure 2. A simple conceptual task hierarchy, each task associated
with one or more agent’s actions to support the user.

p(T1.1 | E) 1.00.0

u(A,¬T1.1)

u(A,T1.1)

u(C,T1.1)eu

do B

u(B,¬T1.1)

u(B,T1.1)

u(C,¬T1.1)

do C

threshold
do A

1

2
3

Figure 3. A re-investigation of Figure 1 with multiple actions to
consider at the same time, all of them relevant to task 1.1.

 10

naming different supporting actions for different specificity levels of activity, allowing for
support in different ways in different times. This way, a wide range of different proactive
behaviors can be provided (see [15]).

02#� ��..����)�(���*�
-���(���(�,2�2�2�������96(���*���

Certain differences have now appeared with respect to the model by Horvitz. First, the
designer of the system has defined what actions by the agent are useful for each user’s task
by applying HTA in user research. Horvitz has not suggested a way for doing this, and
therefore in his approach, actions and goals have not been linked together a priori. With the
help of task analysis, this is possible, thus allowing different ways to assist user depending
on the level of confidence.

Second, utility assessment for each action, u(A,T), is the same as in the original model,
except for one exception. Like before, the designer must determine two utilities for each
action: u(A,T) for p=0.0 (for those potentially harmful situations when action is invoked
although the user is not doing task T), and u(A,T) for p=1.0 (when the agent is absolutely
sure that the current task is T). The new constraint, originating from the ordering of actions
according to the task hierarchy, is that the lines for actions in the same path in the hierarchy
must not intersect each other in the graph. In Figure 3 this means that lines for actions A, B
and C must not intersect. Otherwise their positions in the task hierarchy (Figure 2) would
become insensible: their mutual order would be different depending on the confidence the
agent would have about task T1.1.

Third, there is more than one action to consider for each goal, and they form a hierarchy, not
a flat set of mutually equal choices.

02:� �((+ 5����(�����1��
-���*�*���*���

The model developed implies the following underlying assumptions about the nature of
user’s activity:

• No multitasking. Task hierarchy as a representation of activity is suitable only for
situations when the user does not interlace actions about multiple activities together. The
model cannot tell apart these threads of actions.

• Activity can be easily perceived. Following the user using a task hierarchy requires that
user leaves a trace of actions that can be used as an evidence E for tracking. This
excludes mentally heavily emphasized work from the domains that can be tackled with
the model.

• Work is orderly. If the work is chaotic or otherwise unpredictable, HTA is not an optimal
modeling technique.

• General-level task support can be inherited to support all the sub-tasks as well. In the
presentation above, the higher-level actions are always invoked to support deeper-level
tasks. This may not be the case in all situations. For instance, if agent’s higher-level
action reads “keep lights on”, some sub-task may still require absolute darkness. It may
therefore be necessary to add overriding rules to the action repertoire.

 11

Assumptions when considering building context-aware systems based on this model are:

• Task hierarchy must be probabilistic. In order to estimate confidences of the tasks,
transitions from one task to another must be determined with probabilities, not with rigid
ordered arcs like in traditional HTA.

• Agent does not (try to) change user’s work routine remarkably. Following the user based
on already modeled work procedures requires that agent’s helpful actions do not change
them that dramatically that the task hierarchy would not be valid anymore. If many of
agent’s actions are tips, notifications, and other suggestions of new ways of work, user’s
activity can be heavily altered by those actions. On the contrary, in the case of subtle
unobtrusive support this property is not a problem. In spite of all, it may be necessary to
take responses to agent’s actions into account in modeling user’s future actions.
Although the activity would change because of the context-aware system, the service
provided by the system exhibits graceful degradation, since reasoning on higher-level
tasks is likely to stay valid longer.

• When creating the task hierarchy through user observations, also contextual information
related to each task must be collected. This information is needed for developing the
probabilistic model and should cover the same information channels that the system can
perceive and use in real-time settings. The information may include user’s actions,
agent’s actions that make a change in the context, and any other events in the context
from extraneous sources (e.g., weather conditions etc.). Looking this from context
modeling perspective, the task hierarchy can then be considered an activity-centered
layered model, where each layer describes the context in increasing situation specificity.

In the following sections, the model is evaluated against empirical findings of a work domain
that fulfills most of the implied assumptions. Then in the discussion, some of the particularly
tricky characteristics in human behavior are discussed.

#� ���(����7��!�+��
�����������������)��8��3�

Our team studied elevator maintenance work in a project that aimed for identifying benefits of
context awareness and proactive computing in service work by applying user-centered
design methods to the problem. For ubiquitous and context-aware computing research,
service work is an interesting domain because of the reasons listed below.

• Maintenance activities can be made perceivable to machines. This is not easily possible
in many other contexts of work. Elevators are both mechanical and electronic devices
containing a wide variety of technologies. In the future, they can be equipped with
sensors, which makes tracking operations and task sequences possible.

• The work spans many contexts. Because of installations in different buildings, every
maintenance visit is carried out in a different physical context. Repair tasks are time-
critical work, which poses problems since moving between sites takes up a lot of time.
These properties together make service work an interesting field to study also from a
mobile HCI point of view.

• Activity takes place in natural settings. Bringing context-aware computing research out
from laboratory settings is important for the ecological validity of the whole field.
Interactive spaces in laboratories are always contextually more or less artificial. By
studying also real work we can get ideas on how to cope with the complexity in real life.

 12

• Service work is a new design domain in context-aware computing. By far, ubiquitous and
context-aware computing has not been studied in relation to service work, although the
above-listed reasons make it an appealing research subject. Ethnographic studies on
service work have been conducted by Barley [1], Orr [14] and Yamauchi et al. [19] and to
some extent within mobile HCI research (see [20] for a summary), but they have not
been directly connected to context-aware computing.

Work was studied using following techniques:

• Contextual inquiry. 3 workers were studied during their daily work. Contextual inquiry is a
method combining observation and interviewing in user’s real context, and is a part of
Contextual Design developed by Beyer and Holtzblatt [2]. In addition to seeing the main
activities of service work in the first person, photographs on tools in use could be
collected.

• Photograph-based artifact analysis. 4 workers were asked to take photos of their tools
during their daily work. The films were developed and then an interview was arranged
where the workers discussed their shots in pairs. Discussions were taped and
transcribed onto paper, and were but once organized as paired interviews [13]. The
outcome was then used to supplement direct observations from contextual inquiry.

#2"� 8��3����+)�+���

Following factors shape the activity in elevator maintenance work:

• Machines are located in different buildings within a territory that the worker is responsible
alone. Maintenance requires a lot of driving from a site to another. At the elevator, the
work has to be done in the presence of customers. The work context is therefore both
mobile and dynamic.

• Safety regulations must be adhered to, to avoid injuries to the worker or the customers
when the machine is in use or under maintenance. Elevators have also many in-built
mechanisms for coping in faulty situations.

• Visits are further divided into routine maintenance and time-critical repair visits. Elevators
are visited routinely to proactively prevent faults that put the system out of order. Routine
maintenance visits are scheduled in advance, frequencies depending on the amount of
use and conditions at the location. Repair visits, however, are always unpredictable and
have to be reacted immediately, often interrupting a routine visit.

Due to these reasons, maintenance visits often follow the same procedure. The worker either
selects a site from a list of to-be-visited elevators, or receives a message about a time-critical
repair task. He then drives to the location, does either the routine maintenance or solves the
fault (which may sometimes be difficult and require spare parts), leaves and sends a report
about the visit. Then the sequence is repeated. At the location, the tasks follow a routinized
order which increases the quality of service. The work is not however completely prescribed
but allows for variation, depending on the situation and amount of hurry. That is, the work is
orderly in large scale.

Figures 4 and 5 show a task hierarchy of the work. For the sake of presentation, only those
subtrees have been decomposed that are of interest in the following sections. Certain tasks
have been equipped with actions that a supporting system could invoke. They will be
considered in the use cases below.

 13

Let us now suppose that the present work would be supported with a proactively working
context-aware system that knows the work structure like in Figure 4 and 5. Its sensor data
would consist of data in worker’s electronic calendar (which they will eventually have in a
PDA), the states of elevator’s safety circuits (inspectable already now at the engine room),

Do a single maintenance visit

Determine
the next site

Get to the
elevator

Support: speech
synthesizer

Plan: Repeat 1 – 2 – 3 – 4
– 5 until the day is over

Do the work
at the site

Leave
the site

Send
report

Select from
calendar

Receive a
repair msg

ADOPT ROUTINE
MAINTENANCE
(MTN) MODE

ADOPT REPAIR
MODE

Plan: either 1 or
2 (2 overrides 1)

City-level
navigation

Short-range
navigation

Plan: 1 - 2

Find a route
through the city

Plan: In REPAIR MODE: 1
In MTN MODE: 1 - optionally 2

Stop to
have lunch

Find parking
place close to

the door

1 2

21

Get
inside the
building

Get to the
elevator

12 3

Plan: 1 - 2 - 3

Repair the
elevator

Do maintenance
procedures

1

Plan: In REPAIR MODE: 1
In MTN MODE: 2

1

1

1

2

2
2

3 4 5

Will not be described
further here

Will be redescribed in
Figure 5

Figure 4. Hierarchical task model for a single maintenance visit.

Do maintenance procedures
Support: start showing elevator state in

PDA with notifications when safety circuits go off

1

Plan: 1 – 2 – 3

Place
stickers
saying
“under
mainte-
nance”

1 Clean
shaft

bottom
Support: put all

lights on in bottom
floor near elevator

if possible

2 Check
signal

lights and
other level

safety
equipment

Check
that

car roof
is clean

Work
at

engine
room

Collect
stickers

3 4 5 6

Get to
shaft bottom

Get yourself
and the car to
bottom floor

Get car
out from

door
opening

Clean
the

bottom

Put toolbox
in doorway to
jam doors open
(extra safety trick)

Use tool to
override door-

closing
mechanism

Command
car up

out of way

Clean the bottom
from litter and oil

Get up
from bottom

Plan: 1 – 2 – 3

Plan: 1 – 2 – 3

Climb
up

Pick
toolbox Release

the door-
closing

mechanism

Plan: 1 – 2 – 3

1

1

1

1

2

2

2

2

3

3

3

3

Plan: 1 – 2 – 3 and 4 in either order – 5 – 6
Continuous task: visual inspection

Figure 5. Routine maintenance procedures redescribed from Figure 4.

 14

and location sensing based on GSM cells and within-building beacons of 1-meter accuracy
near the elevator. All of these are quite moderate requirements.

The three cases below are accounts from real observations and have features that would
pose problems for a context-aware system interpreting user’s activity. An analysis shows
how the proposed probabilistic model would cope with the situations. The first case presents
a system for supporting worker’s awareness of the state of the elevator, and the second a
system for facilitating problem-solving.

#2%� ��(��"������������������+)1��������.��/��,��)1�

In this case, workers’ PDA would have a program for context interpretation, and it would
proactively notify user about system-related states probably of interest.

The observed situation was following:

The worker (named John here) was doing routine maintenance to a two-year old elevator. As he
was checking the amount of oil in the guide bars in the shaft bottom, he noticed by looking at
the guiding wheel’s position that the steering cable (which determines the halting position of the
car) had stretched a bit. The actual cable-shortening procedure would have taken about an hour
of precious time, so this time John just decided to adjust the guiding wheel into a lower position,
thus tightening the cable. John unscrewed the brackets and knocked the wheel a bit with a jaw
spanner. The whole procedure took about 5 minutes.

John continued with cleaning and checking lights. Finally he switched the elevator back into
operation and ordered it to take him up to the engine room in the top floor. The elevator did not
however start moving, and John began to debug for reason: he remembered that he had not
touched the safety switches while adjusting the wheel, he checked that no doors were open and
that the switches on the top of the car were in the right configuration. These were fast checks
that usually rule out the most obvious reasons for the problem.

John climbed the stairs to check error codes in the engine room’s control board. A code told that
he had anyway touched the safety switches near the wheel. He confirmed the error message
and the elevator started working again.

The PDA, equipped with sensor data of worker’s location and safety circuit state, would in
the beginning of the story have held shaft bottom duties as the strongest interpretation, due
to knowing from the calendar that the visit was about routine maintenance and that the
worker was at shaft bottom. It would have not anticipated the quick repair task that the
worker started doing that caused the safety circuit go off. The event would have been notified
to the worker via PDA. Since touching this particular safety switch is not unusual while
working in the shaft bottom (since the switch and the worker are close to each other), the
obtrusiveness of the notification could have been adjusted appropriately to a mild level.

#20� ��(��%����)�*��7����	�(���������-5�)��*������

Here, the system would be installed in the worker’s car, to be used while driving. Knowing
the site to visit next from the calendar data, the system would provide suitable information
from the machine’s log (which already now is transmitted via Internet to a central server)
using a speech synthesizer and statistical analysis of likely most helpful information. This
kind of information given in advance would help in debugging the fault as soon as the worker
would reach the site.

 15

The worker had agreed to meet people at a construction site at 13.00 but it was only 12.15. He
noticed that he could change the route a bit and visit an office building whose elevator had
required extra care during the last month. There was just enough time to do a new routine
maintenance. Originally, he had planned to visit this elevator in the end of the week.

When finding out from GSM positioning data that the route in the city deviates too much from
the expected track, the system providing information through loudspeakers should ask whether
it should terminate its recounting, or change the elevator of interest.

In the beginning of the story, the most likely interpretation would be that the worker is doing
the city-level navigation task, heading to the construction site. At some point the confidence
for the navigation task would drop and the expected utility of providing information about right
elevator would sink below the threshold level. The user could be asked whether he still would
like to listen. With GSM-based positioning, inferring the correct elevator would probably not
be possible before the worker would move to short-range navigation task, so shutting down
the synthesizer is the most realistic scenario.

The analyses her show that the extended model seems to be feasible for reasoning about
the user’s situation and providing context-aware support.

:� �����������

The problem of understanding human behavior computationally can be a result from (1) the
difficult-to-analyze characteristics in human behavior, (2) theoretical challenges in developing
suitable computable mathematical models, and (3) practical difficulties in collecting noise-
free, accurate and informative real-time data in the use context. In the following sub-sections,
the first two of the aspects are discussed more thoroughly. The third one is out of scope of
this paper, since it is mostly a technological problem and does not touch user modeling.

:2"� �����)�)��(�����+ �����1������

Human behavior is known to exhibit following characteristics, among others:

Multi-tasking: The user may be interlacing multiple threads of activity that may be directed to
achieve both the same or different goals.

• Situatedness: The context poses both a constraint and a resource for carrying out the
actions in different ways in different situations. The plan for producing the actions is fixed
neither, but acts also as a resource for the user, determining the activity only in a large
scale [18].

• Opportunism and creativity: Humans are creative in finding new opportunities in doing
things more efficiently. They may find new uses for a tool or change plans abruptly if new
ones seem easier and more suitable [5].

• Ambiguity: The same action sequence can mean different things at different times, and
vice versa: different strategies can be used to achieve the same goal [11].

If the activity includes cooperation with other people, as very often is the case, a social layer
is added to the problem. In that case a big part of information created in the activity is based
on language and subtle cues and is thus difficult to capture and analyze by machines. When
in collaboration, people also establish a continuous error correction procedure between each

 16

other to ensure intersubjective understanding of each other’s intentions [4]. This is also very
difficult to implement in computers.

From these, let us analyze multitasking more closely, since it is clearly in conflict with HTA’s
single task decomposition approach, and is thus specifically interesting to the model
presented in this paper.

:2%� �+���'��(3��7���������(�����(5�)�����

What makes multi-tasking difficult for activity interpretation is that it interlaces evidence about
multiple tasks onto the same timeline. If the multiple tasks have not been expected to occur
simultaneously and if they do not have strong interdependencies that would bring order
between the events, trying to fit the observations to a single task hierarchy will not yield good
results.

As a general solution, asking the user about his or her task is out of question because of
many reasons. First, it is obtrusive and therefore against the purpose of context-aware
systems. Second, the context may make it impossible to get an answer from the user. Third,
task switches can be so fast-paced that communication is not possible.

Multi-tasking can be seen as a process that adds a new layer in front of the proposed
probabilistic approach, by mixing the inputs. If the observations could be pre-processed and
directed to task-specific threads, the interpretation problem would be transformed back to its
original setting, to be separately carried out for each thread. There are however certain
problems. In real life, a user can use a single action to progress multiple tasks at the same
time. In addition, users start new tasks and terminate old ones asynchronously, and the
changes in the number of threads can be difficult to tell, making it hard to direct events
neatly. Let us however continue the investigation by omitting these possibilities from
consideration.

Cognitive psychology tells that user cannot pay attention to but one complex task at a time.
Therefore, knowing where attention was focused by the time of the action can help to tell
what the task was at that time. There are some ways to do this:

• Equip tools with sensors that can provide real-time data about their use. The tool is a
mediator between the user and the object of activity, and thus an indicator about his or
her task. Sensing about tools is therefore probably more useful than sensing about
temperature, for instance.

• Use gaze-tracking to see where the user is looking. This is a very effective way to infer
about attention [16], but its use is limited to very controlled use contexts.

A good array of sensors can produce synchronous data patterns that can be identified and
analyzed separately, since they are probably related to the same task. This can be a useful
pre-processing strategy in domains where gathering data through many channels is possible,
the tasks are initiated and terminated sharply, and the sensor data is free enough from noise
and other distractions.

As a summary, telling unrelated actions apart is a hard problem and is a general problem,
not only specific to HTA-based interpretation approaches. Well-working solutions to the
problem do not exist, but if multi-tasking is known to be a prevalent characteristic in the
context, a general strategy to follow could be to design the tools for different tasks to provide

 17

real-time data via different channels, and then use algorithms to separate those channels
according to their patterns.

:20� ���1� ���)�����*����)��)����1�����7�(�

HTA has been generally shown to be a well-working technique for describing activity, but
deploying it in probabilistic (or stochastic) modeling can be problematic because of its rigidity
of representation.

The earlier work of Eric Horvitz et al. in Lumière Project [7] (of which eventual outcome was
the MS Office Assistant) used dynamic Bayesian networks for temporal reasoning of user’s
goals. The prototype was used to provide assistance for MS Excel spreadsheet operations.
The domain was more knowledge work oriented than the mobile elevator maintenance work
presented in this paper, and therefore the relations between actions and corresponding goals
were difficult to model. Because the activity could not be captured into procedures and
hierarchies, also the relations between goals and the appropriate help needed were hard to
assess. The solution by Horvitz et al. was to videotape real use situations and use experts to
infer what could be the goal in each situation, having seen only the interaction in the
videotape. Both the users’ and the experts’ reasoning was captured through talk-aloud
thinking. With this information, the relevant variables and conditional probabilities in the
Bayesian network were assigned. This was difficult and required a lot of effort. The parts of
the network shown by Horvitz et al. resemble HTA but are more complex.

In domains where HTA or other similar task representation techniques can be applied,
assigning probabilities may possibly be simplified. The steps in the process are (1) using
HTA as a backbone and extending it with other necessary influencing factors, (2) thinking
what context and activity variables will be available in mobile situations, and (3)
bootstrapping the model’s probabilities from real observations. In Lumière project, the
influencing factors that extended the activity-related nodes in network included user profiles
and task difficulty measures. These factors are valid also in mobile design domains.

In mobile situations, technology often determines what contextual variables are available for
context-aware reasoning. Nowadays the typical sources of information are GSM-based
location coordinates and a list of wireless services in the surroundings, and in what state
each of these services is. These are the evidence E that will be used for teaching the model
and reasoning about the activity. Also latent variables can be added to the model to describe
factors that are not directly perceivable. Decay properties for variables are also needed [7].
That is, if something has happened a minute ago, it may be less significant than if it had
happened a second ago. It may also happen that the variable’s significance does not have
any decay. For instance, the mode variable in Figure 4 persists throughout a single site visit.
Mode variables are necessary also because basic Bayesian networks cannot model
repetitions and loops.

The third step listed above is the calculation of the values in conditional probability tables, to
name each variable’s overall significance in reasoning. A possible way for doing this is to first
videotape activity and then manually code it into a temporal data series that tells the tasks
and sensor data available at each point of time. The probability tables can be calculated from
this information automatically.

Coding videotape is however very time-consuming. In a study about the work in a cell biology
laboratory, Consolvo, Arnstein and Franza used a technique called lag sequential analysis

 18

(LSA) for analyzing the work quantitatively [3]. They watched for 23 different variables in the
videotape, including personnel movements, tool use and body positions. Having 18 hours of
video, it took 40,5 hours for training people to ensure inter-person comparability, and 85,5
hours for actual coding. They used the coded data to evaluate their ubicomp prototype in the
laboratory, and not for creating activity models, however. In our case coding will probably
take more time, since Consolvo et al. used one-minute time slices, which is too coarse for
the purposes in this paper.

Although coding is tedious, it may pay back later. Having enough data available, it can be
used both for teaching the model (as was discussed above), and also for evaluating the
result. In this case part of the data is excluded from teaching phase and is spared for
simulating real use situations in the new model, allowing for investigating model’s tracking
capabilities. This can be helpful in many ways. It allows for experimentation with the network
structure, decay functions and the necessary input channels that are needed for satisfactory
interpretation, and their influence on computational complexity. Experimentation can be
carried out computationally without a need for building prototypes, which saves time and
money.

As a summary, creating a probabilistic model based on the information from HTA is
theoretically possible, but cannot be automatized. Effort is needed in extending the hierarchy
with extra nodes and constructing data in order to automatically assign the probabilities in
each network node.

;� ������*���(���)1�

Activity interpretation and goal recognition in HCI have been approached in many ways over
time. This section provides a look on related hierarchical approaches.

Kuenzer et al. [9] have compared six different hidden Markov model topologies (special
cases of dynamic Bayesian networks), most of them hierarchical, to interpret a GUI
interaction task. The task had a hierarchical structure, but although a HTA was conducted to
describe the task, it was not used for teaching the model. Instead, the models had 34 hidden
states (input variables) on each level, representing the possible user interactions. That is,
there were 34 different commands constantly available to the user in the user interface. The
results showed no significant differences between the models in predicting users’ actions. On
average, predictions were correct in 46% of the cases, while pure guessing would have
resulted in 1/34 � 2,9% accuracy. Kuenzer et al. did not report whether the models would
have been light enough for real-time use. With the arrangement of 34 hidden states, the
sizes of the transition probability tables varied between 103 and 105 depending on the
model, which means that the models could have been too heavy for real-time use.

Other approaches to interpreting user’s activity hierarchically include the works by Hoppe [6]
and Lesh et al. [10]. Both are based on modeling interaction using production rules and thus
they are not probabilistic models. Hoppe’s approach was based on finding the best fit
between an interaction sequence and hierarchical task descriptions. The domain was Unix
command prediction. Hoppe does not provide results with real user data, and therefore the
model’s feasibility is difficult to assess. The other production rule system was by Lesh et al.
for collaborative agent-user problem-solving, and is based on production rules called recipes.
Because their model relies on continuous turntaking between the agent and the user, goal
prediction accuracy is not possible to evaluate due to the human component in the model. In

 19

addition, the approach would not fit for the purposes of this paper, since it is not designed for
unobtrusive inference “over the shoulder”.

<� ���)�+(���(�

This paper started with a short introduction to probabilistic reasoning about user goals in
mixed-initiative user interfaces. Then, needs for further investigation were identified
regarding how the model should allow for user support in more than one way in a situation,
and what supporting actions and user tasks should be tied together. As a potential solution,
hierarchical task analysis was suggested, high-lighting its capabilities for describing activity in
different layers of specificity. This property allows for identifying means of support that vary
from very general actions to very specific ones, thus creating a natural mapping between the
uncertainty of interpretation and generality of task support. This mapping was used for
extending the original decision-theoretic approach.

Using HTA in extending the model implies that it is most likely suitable for domains where
activity is orderly and goal-directed, and system’s proactive support does not change user’s
activity to the extent that the description created using HTA would not hold anymore. The
extended model seems applicable for mobile contexts where it is typical that activity may not
be observed with an extensive number of sensors. This was confirmed with a conceptual
evaluation against observations from elevator maintenance work. After that, questions of
multi-tasking and practical issues of model construction were discussed.

=� �)3��,��*7 ���(�

The empirical part of this study was funded by The Finnish Work Environment Fund, Kone
Corporation and Finland’s Slot Machine Association. Other participants in addition to the
author were Hannu Kuoppala, Sirpa Riihiaho, Petri Mannonen. Wendy Mackay, Antti
Oulasvirta, Miikka Miettinen and Mika P. Nieminen provided valuable input in different stages
of developing the ideas and writing the paper.

>� ��.����)�(�

1 Barley, S.R. Technicians in the workplace: Ethnographic evidence for bringing work into
organization studies. Administrative Science Quarterly 41, 3 (1996), 404–441.

2 Beyer, H. and Holtzblatt, K. Contextual design: Defining customer-centered systems.
Morgan Kaufmann, San Francisco, CA, USA, 1998.

3 Consolvo, S., Arnstein, L. and Franza, B.R. User study techniques in the design and
evaluation of a ubicomp environment. Proc. Ubicomp’02, Lecture Notes in Computer
Science 2498, 73–90.

4 Heritage, J. Garfinkel and ethnomethodology. Polity Press, Cambridge, UK, 1984.

5 Hollan, J., Hutchins, E. and Kirsh, D. Distributed cognition: Toward a new foundation for
human–computer interaction research. ACM Transactions on Human–Computer
Interaction 7, 2 (2000), 174–196.

 20

6 Hoppe, H.U. Task-oriented parsing – A diagnostic method to be used by adaptive
systems. Proc. CHI’88, ACM Press (1988), 241–247.

7 Horvitz, E., Breese, J., Heckerman, D., Hovel, D. and Rommelse, K. The Lumière project:
Bayesian user modeling for inferring the goals and needs of software users. Proc.
UAI’98, Morgan Kaufmann (1998), 265–265.

8 Horvitz, E. Principles of mixed-initiative user interfaces. Proc. CHI’99, ACM Press (1999),
159–166.

9 Kuenzer, A., Schlick, C., Ohmann, F., Schmidt, L. and Luczak, H. An empirical study of
dynamic Bayesian networks for user modeling. Paper presented at Workshop on
Machine Learning for User Modeling in UM’01. Sonthofen, Germany, July 13, 2001.

10 Lesh, N., Rich, C. and Sidner, C.L. Using plan recognition in human–computer
collaboration. Proc. UM’99, Springer-Verlag (1999), 23–32.

11 Mackay, W.E. Which interaction technique works when? Floating palettes, marking
menus and toolglasses support different task strategies. Proc. AVI’02, ACM Press
(2002), 203–208.

12 Maes, P. Agents that reduce work and information overflow. Communications of the ACM
37, 7 (1994), 31–40 and 146.

13 Mannonen, P., Kuoppala, H. and Nieminen, M.P. Photograph-based artefact analysis.
Proc. Interact’03, IOS Press (2003), 833–836.

14 Orr, J.E. Talking about Machines: An ethnography of a modern job. ILR Press, Ithaca,
NY, USA, 1996.

15 Salovaara, A. and Oulasvirta, A. Six modes of proactive resource management: A user-
centric typology for proactive behaviors. Proc. NordiCHI’04, ACM Press, 57–60.

16 Shell, J., Selker, T. and Vertegaal, R. Interacting with groups of computers.
Communications of the ACM 46, 3 (2003), 40–46.

17 Shepherd, A. Analysis and training in information technology tasks. In Diaper, D. (ed.),
Task Analysis for Human–Computer Interaction, Ellis Horwood (1989), Chichester, UK,
15–55.

18 Suchman, L.A. Plans and situated actions: The problem of human–machine
communication. Cambridge University Press, Cambridge, UK, 1987.

19 Yamauchi, Y., Whalen, J. and Bobrow, D.G. Information use of service technicians in
difficult cases. Proc. CHI’03, CHI Letters 5(1), 81–88.

20 York, J. and Pendharkar, P.C. Human–computer interaction issues for mobile computing
in a variable work context. Intl. J. of Human–Computer Studies 60, 5-6 (2004), 771–797.

