

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 1

MEDIATED SHARING AS SOFTWARE DEVELOPERS’
STRATEGY TO MANAGE EPHEMERAL KNOWLEDGE

Complete Research

Antti Salovaara, Aalto University School of Business, Finland, antti.salovaara@aalto.fi
Virpi Kristiina Tuunainen, Aalto University School of Business, Helsinki, Finland,

virpi.tuunainen@aalto.fi

Abstract
According to some estimates, half of the knowledge in software programming goes out of date every
three years. This ephemeral nature of programming-related knowledge demands knowledge
management practices that the two traditional strategies—knowledge codification and knowledge
personalization—are not able to satisfactorily solve. In this paper, we analyse what ephemeral
knowledge is and what requirements it has for knowledge management in the context of software
programming. We present a case study on a software company whose developers’ work is affected by
the ephemerality of knowledge, and describe the practices that address the requirements created by
ephemeral knowledge. In particular, we found that although individual developers’ knowledge
management practices were highly heterogeneous, they were a basis for a very efficient information
monitoring, filtering and discussion system on a collective level. The primary technologies in this
system—microblogging and shared instant messaging chat—were used in a manner that could be
categorized neither as part of codification nor personalization strategy. Instead, they suggest a third
knowledge management strategy that we label as “mediated sharing”. We describe its operation with
three characteristics. This provides a starting point for further research on how ephemeral knowledge
could be managed.
Keywords: ephemeral knowledge, knowledge management strategy, mediated sharing, software
development.

1 Introduction
Adapting to and acting upon the changes in the surrounding environment is one of the key criteria for
business competitiveness. Taking advantage of changes in the business environment requires
capability to absorb new knowledge and update previously held views. The idea of new knowledge
surpassing older one in relevance implies a concept of ephemerality, that is, fluctuation of relevance.
Knowledge may become out-dated over time and needs to be discarded, but it may also regain its
relevance later. In the literature, the trend of decreasing relevance is often described in terms of “half-
life of knowledge”, defined as the amount of time within which knowledge erodes in a particular
domain (Machlup, 1962). Studies have suggested that half-life varies across domains, being 3 to 5
years in software programming, for example (New York Times 1991; Kruchten 2008; Charette, 2013).
As ephemerality has quite clearly been recognized in knowledge-intensive working life—such as in
software engineering—one would expect that knowledge management (KM) literature would have
often discussed topics such as re-education of personnel or on-going maintenance of codified
knowledge. However, to our best knowledge, topics such as these are mostly absent in the KM
literature. Alavi and Leidner’s (2001) well-known review of KM research mentions only that
knowledge codification may result in unwanted rigidity and may compromise performance (p. 112).

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 2

Others have described ephemerality merely as a characteristic of project-specific knowledge (Leseure
and Brookes, 2004).
To fill this gap in the extant KM literature, in this paper, we will present an empirical case study on
knowledge sharing practices among software developers who must continuously update their
knowledge of software libraries, computer platforms, and programming tools in order to stay up to
date in technological progress. We will seek answers to two research questions: 1) whether and how
the ephemerality of knowledge can be observed in software developers’ work; and 2) how the
developers’ knowledge management practices address the challenges of ephemerality of knowledge.
Based on our analysis, we will evaluate whether the existing KM strategies—codification and
personalization (Hansen et al., 1999) in particular—can respond to the challenges of ephemerality. The
findings suggest a need to consider a third knowledge management strategy that we call mediated
sharing. This strategy entails knowledge workers’ use of lightweight knowledge sharing tools that
support personal knowledge management by rapidly distributing pieces of knowledge within and
across organizational boundaries. By presenting the case study and its implications to knowledge
management strategy literature, the paper will generate novel understanding of knowledge
management in domains challenged by continuous change.

2 Defining Ephemeral Knowledge
Earlier research has presented numerous dimensions of knowledge, including for instance, tacit vs
explicit knowledge (Polanyi, 1967; Nonaka and Takeuchi, 1995); internal (i.e., in-house) vs external
(Cassiman and Veugelers, 2006; Menon and Pfefers, 2003); individual vs collective (Nonaka and
Takeuchi, 1995); and the continuum from foreground to background knowledge (Bhatt, 2001). These
dimensions, however, do not address the temporal dimension of knowledge, such as fluctuations of
relevance and needs for continuous updating of one’s knowledge.
Also the possibility of knowledge being or becoming out-dated has been acknowledged in earlier
research (see e.g., Bhatt, 2001). However, a dedicated discussion on ephemerality of knowledge or the
temporal fluctuation in its relevance has been scarce in KM literature. We build our definition of
ephemeral knowledge on earlier KM literature. In the context of a study on management of project-
based knowledge, Leseure and Brookes (2004) define ephemeral knowledge as knowledge that “is
useful for one project but has a low probability of ever being used again” (Leseure and Brookes, 2004,
p. 107). Its opposite is kernel knowledge, defined as “knowledge that need to remain and be nurtured
within a company in order to sustain high project performance in the long-term” (ibid., p. 107). The
wider question of whether knowledge could be ephemeral also beyond the project-specific context and
what that would imply for knowledge management more generally is, however, ignored.
Siemieniuch and Sinclair (1999) focus more closely on the concept of half-life of knowledge and
presentation of a lifecycle perspective to knowledge management. They observe that “there is the
deterioration of value in knowledge because of the changing competitive environment”, (p. 521). Their
discussion on ephemerality focuses on the ways in which out-dated information can be recognized, but
leaves open the questions on the preferred ways of acquiring new knowledge.
Motivated by the analyses of these few extant studies, we find that a more comprehensive
conceptualization of ephemeral knowledge is needed. Our purpose is to build on the work of Leseure
and Brookes (2004) and Siemieniuch and Sinclair (1999) and substantiate it with empirical material.
We consider any piece of knowledge—whether project-based or something else—as having some
level of ephemerality. While Leseure and Brookes (2004) postulated a dimension reaching from non-
project-specific kernel knowledge to project-specific ephemeral knowledge, we consider a more
general temporal continuum in which stable and ephemeral types of knowledge can be found in the
opposite extremes. Stable knowledge is closely related to the concept of kernel knowledge (Leseure
and Brookes, 2004): it remains true over extended periods of time and across different contexts.
Ephemeral knowledge, in contrast, may remain empirically veridical (i.e., correspond to the observed
reality) only for a relatively short period of time.

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 3

More specifically, stable knowledge consists of information whose foundations has not significantly
changed over time and are believed to remain the same also in the future. For example, in software
programming, design patterns that codify the best ways to program certain often-occurring software
elements (Gamma et al., 1994) could be described as stable kernel knowledge. Even though
programming languages, software platforms and programming tools have changed over time, the
foundation on which design patterns have been built have remained largely unchanged, rendering
design patterns a stable piece of knowledge.
Ephemeral knowledge, in contrast, consists of information that may be more recent or which are on a
brink of becoming obsolete any time. For instance, knowledge about competing software libraries and
standards are considered ephemeral: while software can be built based on any of the available
libraries, it is done with an awareness that the global programmer community may abandon the
adopted library, leading to its slower and slower maintenance and ultimately to its untrustworthiness.
Whether a piece of knowledge is stable or ephemeral depends on the shared but not necessarily
explicitly discussed opinion within the relevant community of experts. Whether a piece of knowledge
is stable or ephemeral is therefore based on a subjective perception that may also fluctuate over time.
Because of this, a piece of knowledge may be considered originally as being ephemeral, and later as
stable when more experience of its validity has been gathered. Subsequent events may turn it
ephemeral again, if they point out errors in it, or if more useful knowledge emerges. This fluctuation
resembles the processes of accumulation of scientific knowledge: novel theories are regarded as
tentative (i.e., ephemeral) until more evidence accumulates verifying their value and making them a
stable part of the shared scientific knowledge. Later, they may lose their relevance when replaced with
new, competing theories (cf. Kuhn, 1962).
To summarize, the concept of ephemeral knowledge provides a temporal viewpoint to knowledge,
which is independent of the extant knowledge dichotomies (see the beginning of this section for
examples of dichotomies). Concerning the widely used tacit vs. explicit dimension, for example, we
find that explicit knowledge can be both ephemeral (e.g., design sketches in project work; Leseure and
Brookes, 2004) or stable (e.g., textbooks on physics). Tacit knowledge, in turn, is often deeply
internalized knowledge and therefore most often stable, but may become ephemeral when the context
changes and the old skills are not useful anymore. The tacit vs. explicit dimension does not concern
the temporality of the knowledge, but the way in which it is transferable between the actors.

3 KM Strategies and Ephemeral Knowledge
KM literature has traditionally declared a distinction between codification and personalization
strategies (Hansen et al., 1999; Boh, 2007). In the following, we will conceptually evaluate whether
two strategies’ usefulness in work contexts where a significant part of knowledge may be ephemeral.

The first of the two primary KM strategies, codification, refers to careful externalization of knowledge
from experts and its storage in databases where it can be accessed and used easily by anyone in the
organization (Hansen et al., 1999). A prime example is a knowledge repository that can be queried for
information (Zack, 1999). In this strategy, context-specific details about the knowledge are removed
(or retained in an easily understandable story-like format (Davenport and Prusak, 1998; Linde, 2001).
Such a decontextualization may be problematic in work contexts dealing with ephemeral knowledge.
Firstly, both updating of the knowledge and retrieving it require effort and employees easily forget
them (see, e.g., Stenmark and Lindgren, 2004). Secondly, because the knowledge is weakly connected
to the reality where it is intended to be used, it can easily transpire that a piece of knowledge remains
unattended in the knowledge repository while the environment for which it has been applicable
changes (Siemieniuch and Sinclair, 1999), or the codification cannot keep up with emergent
knowledge processes (cf. Markus et al., 2002). As a result, codification strategy cannot cope with the
requirements of managing ephemeral knowledge. We use these two prime problems to suggest
requirements for a strategy suitable for contexts where ephemeral knowledge is prevalent:

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 4

Requirement 1: Effortless content flow to relevant people: Organizations need to be able to identify the
knowledge that needs to be discarded or updated with newer content. This should not incur
additional burden for the employees or else motivating them for this becomes difficult.

Requirement 2: Keeping the knowledge connected to the context of use: A piece of knowledge may
become ephemeral because the context within which it is intended to be used changes.
Organisations need to know when their knowledge contents need updating. This happens best if
the knowledge is closely connected to the context where it is used.

Personalization is the other of the two widely acknowledged KM strategies, and has been recently
more widely advocated (Earl, 2001; Ackerman et al., 2013). It is based on the idea of expertise sharing
(Hansen et al. 1999). It entails creation of knowledge in teams and its transfer through collaboration
and social interaction between people (e.g., Nonaka and Takeuchi, 1995). Several ways to implement
this strategy have been developed, including creation of expert networks and being active members in
them (e.g., Earl, 2001), establishing problem-solving teams (e.g., Nonaka and Takeuchi, 1995), and
development of directories of experts and their skills with a purpose of facilitating finding experts
(e.g., Whelan, 2013). In all of these implementations, personalization strategy meets the above-
presented Requirement 2 excellently by bringing the organization in touch with people who have deep
understanding and first-hand connection to its application. However, Requirement 1 is poorly met,
because transfer of knowledge across the organization is slow if it is based on person-to-person
interactions. As a result, while the personalization strategy works better than codification, it also has
limitations in coping with ephemeral knowledge.
Another perspective to KM strategies is provided in Earl’s (2001) classification of six “schools of
strategy” that describe how companies manage their knowledge. Of the six schools, the systems and
engineering schools are close to the codification strategy. The commercial school focuses on the
business value of company’s knowledge assets and is outside the scope of our study. Finally,
cartographic, organizational, spatial and strategic schools aim at bringing people together and are
therefore personalization-oriented. The Requirements 1 and 2 are compatible with the organizational
school’s aims, where the focus is on knowledge building in expert communities. Earl (2001) describes
only in a general level the means by which successful expert communities can be nurtured. Our study
can be seen as an attempt to concretise these aims.
While the dichotomy of codification and personalization strategies (Hansen et al.’, 1999) can be used
to depict a wide range of KM practices and approaches, including Earl’s (2001) six schools of
strategy, we find it insufficient for classifying some of the recently emerged knowledge sharing
mechanisms facilitated by ICT tools, such as, enterprise social network services, instant messaging
(IM) and micro-blogging (e.g., Yammer, Skype’s chat functionality and Twitter, respectively). The
use of these tools relies on person-to-person communication (i.e., personalization) but are based
mostly on brief textual externalized communications (i.e., codification). These mechanisms have the
advantage of raising employees’ awareness of new knowledge as well as exposing them to a flow of
information related to their peers’ on-going work (Herbsleb et al., 2002; Gutwin, Penner and
Schneider, 2004). If these tools are widely adopted in the organization, new knowledge can reach
everyone rapidly and help people update their knowledge (Requirement 1). The conversation enabling
nature of these tools allows the discussions to be tied with on-going work, and thereby the knowledge
remains connected to the context in which the it is used (Requirement 2).
Based on this conceptual analysis, we conclude that these tools that cannot be fully comprehended
with the dichotomy of codification vs. personalization strategies (Hansen et al.’, 1999) may offer a
solution to the needs arising from ephemeral knowledge. We will next present a case study of an
organization where the employees were actively using such tools.

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 5

4 Case Study: Managing Ephemeral Knowledge in Frontend
Development

This paper builds on our previous work (Salovaara and Tuunainen, 2013) on knowledge sharing in
distributed software engineering teams and their instant messaging (IM) based knowledge sharing.
The software company in question—Futurice (www.futurice.com)—has almost 200 employees and is
focused on commissioned projects in which tailor-made software products (websites, web
applications, mobile services etc.) are built for customers that come from different industries and are
of different sizes. Our specific focus is on Futurice’s 30–40 frontend developers who program the user
interface related parts as well as the gateways from the different devices (computers, phones, tablets)
to the backend servers.
In the present paper, we complement the conceptual analysis above by addressing our two research
questions: whether and how ephemerality of knowledge can be observed, and how the developers’
knowledge management practices address the challenges of ephemerality of knowledge. Our data is of
three types:
1) IM chat message corpus from the frontend developers’ single Skype discussion thread. The data
covers a complete log of messages from a 28-month period (September 2011 to December 2013) and
contains 25 945 messages.
2) Interviews on personal knowledge management and sharing practices. We interviewed six frontend
developers over a course of five months. The long time span allowed us to interleave analysis and data
collection and adapt the interview structure iteratively. This served well the exploratory theory-
building oriented nature of our study. The interviews addressed informants’ general perception of
knowledge in software development as well as practices of knowledge acquisition, acting on it, and
sharing it. Informants also filled in a “personal KM sheet”—a structured form that asked him to
specify his sources of information, to list the ICT tools that he uses to obtain this information, to
describe how he processes the information, and what ICT tools he uses in this process.
3) Counts of incoming and outgoing communication. We calculated how many programming-related
messages one of our informants received and how many messages he sent during 25 days.
In addition, we participated seven times in frontend developers’ weekly show-and-tell meetings that
gave us better ability to interpret our data, and observed the informants demonstrating their use of
different KM tools in practice during the interviews.
We carried out the interviews in the company premises, recorded them and transcribed afterwards.
They lasted between 35 and 73 minutes. All the informants were male, between 28 and 37 years of age
(average 31). They had been employed at Futurice from 1 month to 9 years (avg. 4), of which they had
worked as frontend developers 1 month to 4 years (avg. 3). Before joining Futurice, they had worked
as professional programmers between 2 and 6 years (avg. 4). Three informants had a M.Sc. degree and
two had a B.Sc. degree from computer science or a related field. One had an MA degree in education.
In the analysis, we started by reading the interviews and making qualitative observations. After having
developed an understanding of the personal KM practices, we started the analysis of the IM chat. By
reading IM chat discussions, we collected a large set of technical terms such as library names. We then
used Google Search to find out their competitors. For example, when searching for competitors to
Backbone, we used “Backbone vs” as a query in Google to find blogs that compared frameworks. We
quickly had lists of competing libraries and frameworks programming tasks, such as event handlers,
CSS accelerators, dependency managers, and so on. We wrote a simple script in Python programming
language that could search for keyword appearances in the IM chat and draw graphical visualizations
of each term’s appearance on a common timeline. Some of them are presented in the following
section.
Finally, we read the interviews again and focused on those parts where the informants discussed
ephemerality of knowledge, its temporal fluctuation of relevance, how they coped with it, and what

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 6

ICT tools they used. We analysed these parts (54 in total, some of which were ½ page long) and
analysed them separately, searching for common categories. This process had elements of grounded
theory method with respect to open and axial coding (Strauss and Corbin, 1990) but was not
thematically entirely open-ended. Instead, the quotes were purposely sampled to contain only issues
related to personal KM practices and nature of ephemeral knowledge (i.e., topics relevant to our
research questions). As the very final step we quantified the amount of incoming and outgoing
communication for one informant.

5 Findings

5.1 Evidence for ephemeral knowledge
Both the interviews and our analyses on the IM chat discussions confirmed that the ephemerality of
knowledge can be observed in software developers’ work. In interviews, the informants pointed out in
particular that libraries and frameworks have the characteristic of being short-lived:

“Those UI [user interface] libraries that have some new components, they keep on popping up all the
time. Like, what is Twitter’s Bootstrap, that’s now really big, now there’s Topcoat from Adobe, that’s
an exact competitor. And more responsive UI frameworks appear all the time. So that, what’s the best
at the moment is a moving target.” (Informant D)

“Ember.js, that has been around already for a while. But if I’m right, at that time [when it was
released] we didn’t have any new projects being launched here at Futurice, so we did not even have
time to get started with Ember when Angular.js already came around. And now, Facebook has made
React, which also tries to help frontend’s most visible part, the view. And it’s partly overlapping
Angular.js. If you are using React, there’s no point of using Angular.” (Informant E)

With these two often interchangeably used terms—libraries and frameworks—the informants referred
to open source software components that are used to accelerate JavaScript programming by providing
structure, abstractions and higher-level commands for various crucial operations. The selection of the
set of right frameworks for the project requires expertise. As the second quote above indicates, the
libraries often have functional dependencies: programmers are not entirely free in their choice of
frameworks, because choosing one will necessitate inclusion of another. Second, our informants told
that there are usually several alternative software frameworks to choose from that differ in terms of
two often conflicting characteristics of maturity and progressiveness. Third, we were told that the
credibility of the framework developers’ core team affects how developers perceive the quality of the
library and whether they are willing to trust in the long-term commitment to the framework’s
development. Several factors are therefore at play when a project team makes decisions on the
development libraries it will use.
In the frameworks’ competition for popularity, the weaker frameworks lose their users and the detailed
knowledge about these frameworks loses its relevance. Ephemerality of such knowledge could be
observed also by analysing term frequencies in the IM chat. Figure 1 visualizes the decreasing
frequency of discussion on Backbone and thereby its ephemeral relevance at Futurice. The terms
following Backbone provide other examples. They are related to mobile phone manufacturer Nokia
and its previous operating systems (i.e., Symbian, S40 and S60). Their frequency patterns reflect
Nokia’s and its operating systems’ decreasing importance in the market and thereby ephemerality of
knowledge related to them. The same applied to the knowledge of Windows Phone 7 (i.e., “wp7”) that
was replaced by Windows Phone 8 in 2012.
Interestingly, however, also iPhone and HTML5 portrayed decreasing trends although their relevance
in the market was not decreasing. Several reasons may explain this. First, a decrease in frequency may
indicate also stabilization of knowledge, in which case the technology or framework becomes so
commonplace and familiar to everyone that it needs to be rarely discussed. Alternatively, other
simultaneous processes might be at play, such as changes in the software projects that are in progress.

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 7

5.2 Evidence for one area of knowledge losing its relevance to a competitor
In frontend development, many programming tasks can be accomplished in several alternative ways
using different libraries and frameworks. The competition between the libraries sometimes leads to
“revolutions” in which a previously dominant framework becomes replaced with another framework.
The already mentioned migration from Backbone to Angular is a prominent example. Another
revolution was the adoption of promise-based asynchronic programming such as client–server
communication.

“A big insight during the last couple of years has been, we were quite early users in our project, the
handling of asynchronic programming using promises instead of callbacks. That’s now abstracted
away into promises, and that increases the level of abstraction in the code and looks nicer. You can’t
live without them anymore, but first there was a lot of learning and puzzlement. Especially the first
time when you had to start using them. During the last year the whole scene has had an enlightenment
with them.” (Informant B)

A third example was the widespread adoption of Grunt, a task runner for automating the steps in
frontend software compilation. Command line based build scripts and a framework called Ant
was in use, but no well-working solution for this task existed before its release:

“But one thing that has of course helped in many ways is that there is now a Node-based Grunt tool
for automating build processes. Previously that work has been almost non-existent or some very
custom-made handling […] We had some custom scripts and Jake tool, which is a JavaScript version
of Make. You could do some things with that, but that was a bit so and so […] When you didn’t Grunt
which is accepted and liked by everyone, someone used Jake, another wrote Bash scripts, and a third
used Python. Which meant that the result was quite a mess.” (Informant B)

Figure 2 visualizes the three examples above—the adoption of Angular, programming with promises,
and use of Grunt—and the frequency patterns in our IM chat data illustrating how new frameworks
overtook the relevance from their competitors.
As Figure 2 shows, the discussion on Backbone did not die altogether after Angular’s release. There is
a “long tail” that overlaps the period when Angular started to interest the developers. It is a result of
the legacy effect that sustains the relevance of popular frameworks. By having been the leading
framework for at least two years, many projects continued to depend on Backbone and many
developers were still using it. This, in turn, sustained discussions around it.
We conclude that ephemerality of knowledge can be observed in software developers’ work, as
demonstrated by the patterns for ephemeralized knowledge (Figure 1) and more complex patterns such
as revolutions (Figure 2).

 Sept 2011 Dec 2013

Figure 1. Frequency of term appearances in the IM chat for areas of knowledge that proved
ephemeral.

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 8

5.3 How developers’ KM practices address the ephemerality of knowledge
To attend to the question of how the developers’ knowledge management practices address the
challenges of ephemerality of knowledge, we analysed our informants’ deliberations on the choice of
frameworks (addressed in this sub-section) and the practices by which they kept themselves updated
about the state of the art in frontend development (addressed in the two following sub-sections).
Although the quotes above showed that the frontend developers were aware that many of the
frameworks will be only ephemeral and will not have a long lifetime, they waiting indefinitely to see
which ones will survive would have compromised their productivity. Their challenge therefore was to
select those frameworks that offered high utility and reliability but also had a high likelihood for a
long lifespan.
We identified two approaches by which our informants strived for making the right decisions when
choosing frameworks and libraries. The first approach for coping with the ephemerality of knowledge
was conservative adoption. Although the developers were aware of several newer frameworks, they
preferred tried and tested ones in their projects. In particular, developers tried to use framework
combinations that had a wide global following and were therefore likely to remain actively developed
also in the future. Developers tried to apply the same safe configurations across several projects also
because familiarity speeds up development and decreases errors.
We named the other approach as continuous staged learning. As the next sub-section will show, the
developers used several ICT tools to acquire information about the on-going progress in the field. In
the most superficial stage, the learning consisted of scanning: following several news sources and
browsing their contents through. Scanning did not need to be comprehensive or systematic. Because
the news circulated in several ICT-based media, informants knew that they would eventually reach
them:

“The biggest challenge is that there is crazy amount of information. About a year ago I followed those
sources very carefully, hacker news and twitter, or reddit’s certain sub-reddits, but […] I think that I
have now grown up a bit and learned to be a bit less neurotic. I have started to rely on myself.
Anyway, I’m active in these things both at Futurice and outside [in the community], participated in
local user group meetings. Finally the important things will emerge. If you participate in the meetings
and scan the chat and weekly meetings, nothing big will go past your ears.” (Informant C)

“All in all there’s so much incoming information, although I’m also following a very narrow field. But
the things that you hear about are so much the same, it does not really matter if you miss 80% of it.”
(Informant D)

 Sept 2011 Dec 2013

Figure 2. Three examples where one framework (the last one in each of the three boxes)

became more actively discussed than its competitors, thereby overtaking its
competitors’ relevance.

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 9

The next stage in continuous learning involved more engaged investigation. If a developer noticed
news about a certain framework repeatedly, he invested more time for learning about it. The
investigation involved visits to the framework’s website and other sources in the Internet, and
sometimes also small-scale programming, usually on the developer’s own time. A considerable
amount of time could pass between the first news-based exposure and the engaged investigation. Our
informants told that postponing the engaged investigation about novel frameworks was intentional. It
helped them become more confident that the time they put into investigation would pay off:

“Yes, I have all the time a list of things in my mind that I think I should know more about. But sooner
or later you bounce into them anyway.” (Informant B)

In the IM chat, we could observe different stages of continuous learning. The first remarks (see Table
1) were anecdotal, but gradually the developers started to express their specific interest about the
framework and ask for more information. Finally, the questions became more specific, indicating that
the framework had already been adopted.

1. First references:

2 March 2012
(the first time that
Angular is
mentioned)

A:

B:

C:

anyone got experience on knockout.js?

didn't C do some hacking with it at some point? I personally planned to try it long time
ago, but never had the time. Another similar lib worth trying might be Angular.js

It seems that MVC-type of libraries (Spine, BB [Backbone], Angular, Ember? etc) are
all solving the same problem. Thus, just pick a good tool and learn it well. No real need
to switch between projects.

3 August 2012 D:

E:

any of you tested JavascriptMVC as an alternative to Backbone or Spine?

AngularJS might be a valid alternative, haven't tried though

2. Explicit expressions of interest:

20 March 2013 F:

G:

which are the current competitors for backbone.js, those that can be taken seriously? i
guess still not that many around?

F: at least AngularJS is interesting. or well, I know smart people who take it quite
seriously. maybe Ember and BatmanJS too? (though i've heard not-so-good things about
using batman on a large project.)

3 April 2013 H: seeing too much hype on angular that I think I cannot ignore it anymore !

3. Detailed questions and remarks:

25 July 2013 I: Really cool thing I learned about AngularJS today: you can assign promises to scope
and Angular replaces it with the value once the promise is resolved

1 August 2013 J: I struggle with an AngularJS issue: scoping in directives

4 September 2013 K: had a tremendous time setting up e2e tests for angular with karma today

Table 1. Stages of increasing interest in Angular in the IM chat.

5.4 Heterogeneity of ICT tools in personal knowledge management
We found that each programmer had developed his individual way of staying up to date about the on-
going developments in the frontend development community. These different ways were in almost all
of the cases ICT-based, although also face-to-face user meetings were mentioned. The number and
diversity of different personal KM tools surprised us: 34 tools and channels belonging to 20 different
categories, including both information sources (e.g. email newsletters, web forums, and RSS readers)

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 10

and information storages (e.g., browser bookmarks, offline content readers, and podcasts). This list is a
conservative estimate, since it is likely that all the sources of information were not mentioned.
Informants had personalized processes for handling the information flows from the source tools to
storages. In the most common flow pattern, a piece of news was received through Twitter, a
newsletter, RSS feed or a developer web forum. It contained a short synopsis of the news content
accompanied with a link to a more extensive blog post, framework’s website, or other article in the
Internet. The developer opened the link and left it open in the web browser, where it could stay
unattended for weeks or even months. At a later time, if the developer still found the content relevant,
he stored it in an offline content storage (e.g., Instapaper) or an e-reader. At each stage, the developer
filtered away those pieces of news that did not seem relevant enough for a more detailed attention.
There was a lot of individual variation in the use of these tools and their combinations.

5.5 Collective filtering of knowledge across organizational boundaries
In addition to the individual-level heterogeneity in the choice of personal KM tools, our data suggests
that the developers’ individual efforts create a highly effective collective knowledge filter.
Figure 3 provides a simplified visualization of this collective filter’s operation and presents some
statistics on informant C’s personal KM activity over the period of one month. While a comprehensive
analysis of Futurice’s frontend developers’ knowledge sharing networks and patterns would be out of
this paper’s scope, we use a single informant to illustrate his use of heterogeneous ICT tools for the
benefit of all Futurice’s frontend developers. We limited our data collection to three knowledge
sources: a web forum (Reddit’s two discussion spaces called “sub-reddits”), the JavaScript Weekly
newsletter and the tweets of all the Twitter contacts that C was following. Figure 3 shows the volume
of communication in these channels—1760 tweets or re-tweets, 617 new discussions in Reddit (each
containing several messages), and 24 news highlights—that constitute a theoretical upper bound of
knowledge that C would have been exposed to if he had committed the time to read through all the
communication in these channels.
While we know that the developers do not attend to all the content that they have received (see section
5.3.), we do not know exactly how much of the knowledge C attended to. We do see, however, from
the records of outgoing communication, that during this particular month, C tweeted or re-tweeted
only 13 messages, and contributed to Futurice’s IM chat with 250 messages, 109 of which provided
hyperlinks to content in the Internet. We believe that this one-person analysis of knowledge filtering
provides indicative evidence that collective content filtering is both a necessary and a powerful

Figure 3. Example of a frontend developers’ collective information filter. The values shown are

the numbers of messages received (white arrows) and sent (gray arrows) by informant
C between 1–25 November 2014 in some of his communication channels.

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 11

method for frontend developers to manage the information overload in their personal knowledge
management.
More conceptually speaking, we suggest that the collective filter emerges from the joint activity where
all the developers exhibit similar knowledge sharing behaviour. The efficiency of the filter is based on
the following three characteristics. First, each developer is both a recipient and a source of information
for others. Second, each developer filters knowledge by forwarding or creating less messages than he
personally receives. Third, developers tend to specialise on certain topics in their information
monitoring, sharing, and creation, thereby having a content-based division of labour. Most developers
have special fields of interest within which they follow news more actively, or on which they work on
themselves. Other developers with similar interests can use these higher-expertise peers as information
proxies, relieving them from the effort of seeking the most relevant news in the same topic area. This
is an effective way of decreasing noise and unnecessary content in the information channels that one
follows.
In our case study, the most important tool in the filter was Twitter and its re-tweeting feature in
particular. In the interviews, the informants told that it was often better to follow selected experts than
to attempt to follow the tweets from each original source directly. The developers could rely on the
fact that if a new piece of information was relevant enough, it reached them eventually anyway.
The other important filter tool complementing Twitter’s functionality was the IM chat. While Twitter
served as a source of external knowledge and information, the IM chat was used within the company
for internal knowledge sharing, as shown in the quotes from our informants. In our previous analysis
we found that IM was used especially for informing about new issues (31%), peer help (30%) and
remarks on programming-related details (11%) (Salovaara and Tuunainen, 2013).
Although the personal KM methods were highly heterogeneous across individual developers, these
two ICT tools—microblogging and IM chat—served as unifying knowledge sharing mechanisms that
all the developers at Futurice used actively.

6 Discussion
In this paper, we examined ephemerality of knowledge and its implications for knowledge sharing
practices among developers in a software company. We defined ephemeral knowledge as information
that the focal community believes to become out-dated as the time passes because the context in which
the knowledge is intended to be used is expected to change. Ephemerality of knowledge complicates
decision-making because it decreases decisions’ long-term trustworthiness. It is therefore a potentially
vital challenge for decision-making and KM. In our study on frontend developers, a prime example of
such a decision-making problem was the choice between competing software libraries.
We used interviews and term frequency visualizations to show that software development knowledge
includes ephemeral knowledge and that ephemerality is a challenge that developers are constantly
facing. We also showed that developers had varying individualized ways of coping with this
challenge. Despite the heterogeneity of personal KM practices, on a collective level these practices
complemented each other by producing a highly efficient emergent knowledge filter. This filter
transcended organizational boundaries and linked the developers to the global developer network.

6.1 Limitations
Our exploratory case study unavoidably has limitations and leaves many issues in need for further
investigation. First, it is not clear how well term frequencies can be used as proxy measures of
knowledge relevance. In particular, interpreting what absence of discussion means is complicated. If
something is not discussed, it may mean that the topic is not relevant or that it is generally well
understood and therefore not in a need of discussion. Future research should develop new measures
that would help disentangle the two interpretations and explain other ambiguities.

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 12

Another limitation is related to the difficulties in quantifying the volume of knowledge sharing. Our
last analysis addressed only a limited set of channels of one informant. To study collective information
filtering in more detail, a more comprehensive measure is needed. Finally, space did not allow us
report individual personal KM practices in more length.

6.2 KM strategy based on mediated sharing
Based our conceptual analysis, we concluded that ephemeral knowledge poses two requirements for
organizations’ KM processes. First, ephemerality of knowledge presupposes mechanisms for effortless
flow of content to the relevant people who can then replace the old with new knowledge (Requirement
1). Second, in order to identify when knowledge needs to be discarded and replaced, it must stay
connected to its context of use and not be stored in a decontextualized manner in a detached
knowledge repository where it can be forgotten (Requirement 2). We evaluated how the well-known
KM strategies of codification and personalization (Hansen et al.’s, 1999) are able to tackle the
challenges of ephemerality of knowledge. We noted that especially the recent lightweight messaging-
based information sharing tools such as IM chats as well as social networking and microblogging
services (e.g., Yammer and Twitter) are difficult to map to either of the two strategies. Moreover, our
empirical case study suggested that it is these tools that are actually used in a context where ephemeral
knowledge is a continuous challenge. In short, the lightweight messaging-based information sharing
tools seem to suit for the developers’ management of ephemeral knowledge and seem to be missing a
place in the codification–personalization dichotomy (see Table 2).
As an implication of this, we propose a conceptualization of a third KM strategy that would
complement the well-established codification and personalization strategies (Hansen et al., 1999).
Table 2 illustrates the need for introducing the third strategy. While the mechanisms and tools in the
codification strategy meet neither of the two requirements and the ones in the personalization strategy
can answer only to the connectedness-related requirement, the previously uncategorized novel ICT
based information sharing tools meet both of the requirements. Their similarities can be described with
the following common characteristics:
• Point-to-pointness: Knowledge flows directly from producers to consumers without intervening

storages. This makes mediated sharing stand apart from codification-based sharing where
knowledge is stored in repositories before it is used. Point-to-pointness supports effortless content
flow to relevant people (Requirement 1) by removing intervening storages.

• Boundlessness: Knowledge sharing may take place also between strangers and it can transcend
organizational boundaries. For example, in our case study, frontend developers used Twitter to
receive new knowledge from the global community. Boundlessness accelerates knowledge sharing
by enabling unhindered flow of content (Requirement 1). Physical boundlessness makes mediated
sharing differnet from personalization-based sharing, which usually depends on effortful rich
communication that usually is possible only when the parties are in the same space.

• Piecewiseness: Knowledge is shared in small pieces that are effortless to produce and consume.
This feature allows conversation-like knowledge sharing also when the sharing takes place through
an ICT-mediated channel. In this way, piecewiseness helps to keep the shared content connected to
the context (Requirement 2).

We argue that mediated sharing describes particularly well, with a single term, the three
characteristics by which ephemeral knowledge can be addressed, and captures the essential
characteristics of the ICT based tools that our inquiry found lacking a category. Similarly to the
personalization strategy, also the mediated sharing strategy is based on communication. However,
while personalization is about transfer of tacit knowledge through collaboration and socialization, the
sharing mechanism in the mediated sharing strategy is lighter, by being mediated by an ICT-based
communication medium.

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 13

Mechanisms and tools

Requirement 1:
Effortless content
flow to relevant

people

Requirement 2:
Connectedness to
the context of use

Codification strategy:
Company-wide digital knowledge repositories No No
Informal document exchange

Personalization strategy:
Creation of expert networks and being a member in them Yes
Teamwork Yes
Expert directories No Yes
Hallway conversations and informal social activities Sometimes
Organized meetings and training sessions across
organizational units

 No

Mediate sharing strategy:
Social network sites
Instant messaging Yes Yes
Microblogging services

Table 2. Knowledge sharing mechanisms in three strategies and their suitability for meeting
the KM requirements of ephemeral knowledge.

In Earl’s classification of KM strategies (2001), mediated sharing strategy shares characteristics of the
technocratic engineering school on one hand, due to its focus on knowledge flows, and behavioural
organizational school on the other, due to its focus on networks and communities. The resemblance
with the engineering school is however mostly coincidental; although Earl mentions knowledge flows
he considers them in a context of shared databases. Our approach, in contrast, is messaging-based. The
organizational school is therefore most compatible with mediated sharing. One difference, however, is
that mediated sharing is based on a decentralized point-to-point principle. Earl, in contrast,
recommends that knowledge sharing is facilitated by a “human hub (or moderator)” (p. 225).
Future research should investigate whether the three characteristics are necessary and sufficient
criteria for an ICT tool that should support sharing of ephemeral knowledge. None of the three tools
listed under the new KM strategy in Table 2 possesses all of these characteristics, alone. However, IM
and micro-blogging have these characteristics when their use is combined. Our case study showed
how knowledge workers might orchestrate their use in a self-organized manner. Also a combination of
micro-blogging and social networking sites would possess the characteristics together. This
combination may form a valid solution for managing ephemeral knowledge in a different organization.
Finally, we are not aware of any current single tool that would have all the five characteristics.
In this paper, we have presented the first more articulated definition for ephemeral knowledge,
presented two requirements with which it challenges the existing knowledge sharing mechanisms and
KM strategies, presented an empirical case study on the management of ephemeral knowledge,
suggested five characteristics for ICT tools that may meet the two conceptually derived requirements,
and finally proposed a new KM strategy of mediated sharing. More verification and conceptual work
is required before the strategy of mediated sharing can be fully conceptualized and ultimately
confirmed to be theoretically useful. This offers many opportunities and a new research direction for
future Information Systems and KM research.

7 Acknowledgments
The authors wish to thank Academy of Finland for funding through the Creative use of ICT project
and Aleksandre Asatiani for helpful comments.

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 14

References
Ackerman, M. S., J. Dachtera, V. Pipek and V. Wulf (2013). “Sharing knowledge and expertise: The

CSCW view of knowledge management.” Computer Supported Cooperative Work 22 (4–6), 531–
573.

Alavi, M. and D. E. Leidner (2001). “Knowledge management and knowledge management systems:
Conceptual foundations and research issues.” MIS Quarterly 25 (1), 107–136.

Berends, H., H. van der Bij, K. Debackere and M. Weggeman (2006). “Knowledge sharing
mechanisms in industrial research.” R&D Management 36 (1), 85–95.

Bhatt, G. D. (2011). “Knowledge management in organizations: Examining the interaction between
technologies, techniques, and people.” Journal of Knowledge Management 5 (1), 68–75.

Boh, W. F. (2007). “Mechanisms for sharing knowledge in project-based organizations.” Information
and Organization 17 (1), 27–58.

Boh, W. F. and S. S. Wong (2013). “Organizational climate and perceived manager effectiveness:
influencing perceived usefulness of knowledge sharing mechanisms.” Journal of the Association
for Information Systems 14 (3), 122–152.

Cassiman, B. and R. Veugelers (2006). “In search of complementarity in innovation strategy: Internal
RandD and external knowledge acquisition.” Management Science 52 (1), 68–82.

Davenport, T. H. and L. Prusak (1998). Working Knowledge: How Organizations Manage What They
Know. Cambridge, MA: Harvard Business School Press.

Earl, M. (2001). “Knowledge management strategies: Toward a taxonomy.” Journal of Management
Information Systems 18 (1), 215–233.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Boston, MA: Addison-Wesley.

Gutwin, C., R. Penner and K. Schneider (2004). “Group awareness in distributed software
development.” In: Proceedings of the 2004 ACM Conference on Computer Supported Cooperative
Work (CSCW 2004). Ed. by J. Herbsleb and G. Olson. New York, NY: ACM Press, pp. 72–81.

Hansen, M. T., N. Nohria and T. Tierney (1999). “What's your strategy for managing knowledge?”
Harvard Business Review 77 (2), 106–116.

Herbsleb, J. D., D. L. Atkins, D. G. Bayer, M. Handel and T. A. Finholt (2002). “Introducing instant
messaging and chat in the workplace.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI 2002). Ed. by D. Wixon. New York, NY: ACM Press, pp.
171–178.

Kruchten, P. (2008). “The biological half-life of software engineering ideas.” IEEE Software 25 (5),
10–11.

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press.
Leseure, M. J. and N. J. Brookes (2004). “Knowledge management benchmarks for project

management.” Journal of Knowledge Management 8 (1), 103–116.
Linde, C. (2001). “Narrative and social tacit knowledge.” Journal of Knowledge Management 5 (2),

160–170.
Markus, M. L., A. Majchrzak, and L. Gasser (2002). “A Design Theory for Systems that Support

Emergent Knowledge Processes.” MIS Quarterly 26 (3), 179–212.
Machlup, F. (1962). The Production and Distribution of Knowledge in the United States. Princeton,

NJ: Princeton University Press.
Menon, T. and J. Pfeffer (2003). “Valuing internal vs. external knowledge: Explaining the preference

for outsiders.” Management Science 49 (4), 497–513.
New York Times (1991). “Engineer supply affects America.”
Nonaka, I. and H. Takeuchi (1995). The Knowledge-Creating Company: How Japanese Companies

Create the Dynamics of Innovation. New York, NY: Oxford University Press.
Polanyi, M. (1967). The Tacit Dimension. London, UK: Routledge & K. Paul.

Salovaara & Tuunainen / Mediated sharing and ephemeral knowledge

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 15

Salovaara, A. and V. K. Tuunainen (2013). “Software developers' online chat as an intra-firm
mechanism for sharing ephemeral knowledge.” In: Proceedings of the Thirty Fourth International
Conference on Information Systems (ICIS 2013). Ed. By F. Pennarola, J. Becker, R. Baskerville,
and M. Chau.

Siemieniuch, C. E. and M. A. Sinclair (1999). “Organizational aspects of knowledge lifecycle
management in manufacturing.” International Journal of Human–Computer Studies 51 (3), 517–
547.

Stenmark, D. and R. Lindgren (2004). “Integrating Knowledge Management Systems with Everyday
Work: Design Principles Leveraging User Practice.” In: Proceedings of the Hawaii International
Conference on System Sciences (HICSS 2004). New York, NY: IEEE Computer Society, pp. 1–9.

Strauss, A. L. and J. Corbin (1990). Basics of Qualitative Research: Grounded Theory Procedures and
Techniques. Thousand Oaks, CA: Sage Publications.

Whelan, E. and R. Teigland (2013). “Transactive memory systems as a collective filter for mitigating
information overload in digitally enabled organizational groups.” Information and Organization 23
(3), 177–197.

Zack, M. H. (1999). “Managing codified knowledge.” Sloan Management Review 40 (4), 45–58.

