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Computational aspects of argumentation are a central research topic of modern artificial
intelligence. A core formal model for argumentation, where the inner structure of arguments
is abstracted away, was provided by Dung in the form of abstract argumentation frameworks
(AFs). AFs are syntactically directed graphs with the nodes representing arguments and edges
representing attacks between them. Given the AF, sets of jointly acceptable arguments or
extensions are defined via different semantics. The computational complexity and algorithmic
solutions to so-called static problems, such as the enumeration of extensions, is a well-studied
topic.

Since argumentation is a dynamic process, understanding the dynamic aspects of AFs is
also important. However, computational aspects of dynamic problems have not been studied
thoroughly. This work concentrates on different forms of enforcement, which is a core dynamic
problem in the area of abstract argumentation. In this case, given an AF, one wants to
modify it by adding and removing attacks in a way that a given set of arguments becomes
an extension (extension enforcement) or that given arguments are credulously or skeptically
accepted (status enforcement).

In this thesis, the enforcement problem is viewed as a constrained optimization task
where the change to the attack structure is minimized. The computational complexity of the
extension and status enforcement problems is analyzed, showing that they are in the general
case NP-hard optimization problems. Motivated by this, algorithms are presented based on
the Boolean optimization paradigm of maximum satisfiability (MaxSAT) for the NP-complete
variants, and counterexample-guided abstraction refinement (CEGAR) procedures, where an
interplay between MaxSAT and Boolean satisfiability (SAT) solvers is utilized, for problems
beyond NP. The algorithms are implemented in the open source software system Pakota,
which is empirically evaluated on randomly generated enforcement instances.
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1 Introduction
Argumentation is intrinsically present in many aspects of human interaction
and communication. For instance, political debates and legal discussions
contain arguments presented by agents with different values and beliefs.
Thus it is essential to understand the mechanisms of argumentation in an
exact manner. Within recent years, the study of representational and com-
putational aspects of argumentation has become a core topic of artificial
intelligence research. There is also evidence of various applications of describ-
ing, analyzing, and implementing argumentation systems, including decision
support tools [3], legal reasoning [20] and multi-agent systems [72].

Several formal models of argumentation have been developed. These can
in general be divided into structured and abstract models. Structured argu-
mentation studies the construction of arguments, which are often regarded
as a pair of premises and a conclusion [24]. In this way conflicts, or attacks
between arguments can be defined precisely, and different kinds of attacks
can be distinguished, e.g., undercutting (attacking a premise) and rebutting
(attacking a conclusion) [24].

In this work, we focus on abstract models. Abstract argumentation does
not take into account the internal structure of arguments, but rather regards
them as atomic, abstract entities denoted by symbols. The main focus is
hence on the relation between the arguments, and the goal is to determine
from the relation which arguments can be jointly accepted. The central
formal model for abstract argumentation was provided in [49] in the form of
abstract argumentation frameworks (AFs). Syntactically, AFs are directed
graphs, with nodes representing the arguments and edges representing attacks
between arguments. Given an AF, one wants to define which arguments
can be accepted in a single point of view. This is achieved via different
kinds of AF semantics [12], which define extensions, i.e., jointly acceptable
subsets of arguments, of the given AF. Acceptance of an argument can then
be defined by the argument being contained in some (credulous acceptance)
or all (skeptical acceptance) extensions.

Computational problems in the field of abstract argumentation, such as
checking the acceptance of an argument or verifying whether a given set
is indeed an extension, are often computationally very hard, namely NP-
complete or even surpassing NP [53]. There are several algorithmic solutions
to computational problems over AFs, with multiple system implementations
available [34], and even a biannual competition for evaluating the implemen-
tations [87]. While some of the approaches are specialized algorithms for a
specific computational problem [19, 77, 78], most handle the computational
complexity via a declarative approach. This means that the original problem
instance is encoded using a constraint modeling language, such as Boolean
satisfiability (SAT) [32, 33, 56], answer set programming (ASP) [54, 59, 61],
or finite-domain constraint programming (CP) [29]. The problem instance
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is then solved as an instance of the corresponding constraint satisfaction
problem, and the solution is decoded back into a solution of the original
problem. These approaches tend to be today the most efficient in terms
of the empirical runtime [87], which is largely due to the combination of
improvements in solver technology and advances in modeling the compu-
tational problems in efficient ways. Some approaches to problems beyond
the complexity class NP utilize iterative approaches, where e.g. SAT solvers
are used as practical NP-oracles by calling them several times, refining the
solution each time [32, 33, 56].

The computational problems where we perform acceptance queries on a
given AF are in this work regarded as static, or non-dynamic, since we assume
that the AF does not change in time. However, this is not generally a realistic
assumption, since argumentation is a dynamic process—new arguments or
even new agents can enter a dialogue at any point, and original arguments
and attacks may lose their validity. It is therefore natural to study dynamic
aspects of argumentation frameworks, which has been an increasingly active
area of research in formal argumentation [15, 18, 28, 41, 42, 45, 46, 83]. On
the other hand, there has been little research on computational aspects of
dynamic problems in abstract argumentation. The aim of this work is to
bridge this gap by analyzing and providing algorithms for different forms
of the enforcement problem [16, 17, 28, 43, 75, 90], which is a fundamental
problem in dynamics of abstract argumentation.

In this context enforcing means in general changing the original argu-
mentation framework in light of new information, in such a way that given
properties are satisfied in the new framework. Often one seeks to also
minimize the amount of change, in which case enforcement can be seen as
a discrete optimization problem. We focus on two forms of enforcement,
namely, argument-fixed extension enforcement and status enforcement. In
extension enforcement, the given AF is modified by adding and removing
attacks in a way that the given set of arguments becomes an extension or a
part of it. In status enforcement, on the other hand, the property to satisfy
is the credulous or skeptical acceptance of a given set of arguments, also by
adding and removing attacks.

The main contributions of this thesis are the following.

• We establish the computational complexity of extension and status
enforcement under several central AF semantics, such as the admissi-
ble, complete, stable and preferred semantics, showing that there are
polynomial-time solvable, NP-complete and second-level ΣP

2 -complete
variants of the problems.

• We provide algorithms for the NP-hard variants of the problem based on
harnessing Boolean satisfiability and maximum satisfiability (MaxSAT)
solvers. For the NP-complete variants, we describe partial maximum
satisfiability encodings of the problem. For the ΣP

2 -complete ones, we
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provide a procedure based on a counterexample-guided abstraction
refinement (CEGAR) [37, 38] scheme instead of encoding the problem
in MaxSAT, since the direct encoding would presumably be exponential
in size.

• We implement the MaxSAT encodings and the CEGAR algorithms,
resulting in the software system Pakota. Pakota is the first system
in its generality for solving enforcement problems. To the best of
our knowledge, the single other solver for extension enforcement was
recently proposed in [43], but supports only the stable semantics. We
describe the Pakota system in detail, and evaluate it empirically on
randomly generated enforcement benchmark instances, using different
MaxSAT solvers, providing an overview to the scalability of the system
and the impact of the choice of the MaxSAT solver. In addition,
we provide benchmarks and benchmark generators for enforcement
instances.

This thesis is organized as follows. In Section 2 we define abstract ar-
gumentation frameworks, several kinds of AF semantics considered in this
work, and the notions of credulous and skeptical acceptance of an argument.
In Section 3 extension and status enforcement are introduced and precisely
defined as optimization problems. The computational complexity of the
corresponding decision problems is analyzed in Section 4 under different AF
semantics and other problem parameters, providing complexity proofs for
a large part of the NP-complete variants. Section 5 provides an overview
of Boolean satisfiability (SAT) and maximum satisfiability (MaxSAT)—the
generalization of SAT to an optimization problem. In Section 6 we propose
encodings of the NP-complete enforcement problems in MaxSAT, using it as
a declarative language. In addition, an approach based on counterexample-
guided abstraction refinement is deployed in order to solve the problems
beyond the complexity class NP, detailed in Section 7. The system imple-
menting these encodings and procedures—Pakota—is introduced in Section 8,
with details on the system architecture, features, algorithms, input format,
usage, and options. Pakota is empirically evaluated and the results are
presented in Section 9, also providing results on the impact of the choice of
the MaxSAT solver. Finally, we conclude the thesis in Section 10 by stating
the main contributions and future directions of this work.

Some of the results of this thesis have been published in international
conferences. In the 30th AAAI Conference on Artificial Intelligence (AAAI-
16) [90], the complexity of extension enforcement was analyzed and algorithms
for solving the problem provided. In the 25th International Joint Conference
on Artificial Intelligence (IJCAI-16) [75] we focused on the status enforcement
problem, also providing complexity analysis and algorithms. In the 15th
European Conference on Logics in Artificial Intelligence (JELIA-16) [74], a
detailed description of the Pakota system was provided.
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2 Abstract Argumentation
In this section we overview some of the central concepts of abstract argumen-
tation. We start by defining argumentation frameworks, the central formal
model for abstract argumentation as provided by [49], and the notion of
defense in an argumentation framework.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where
A is the (finite) set of arguments and R ⊆ A×A is the attack relation. The
pair (a, b) ∈ R means that argument a attacks argument b. An argument
a ∈ A is defended (in F ) by a set S ⊆ A if, for each b ∈ A such that (b, a) ∈ R,
there exists a c ∈ S such that (c, b) ∈ R.

Argumentation frameworks can be regarded quite intuitively as directed
graphs, where nodes represent the arguments and edges represent attacks
between individual arguments, as is shown by the following example.

Example 1. Figure 1 illustrates two argumentation frameworks F = (A,R)
and F ′ = (A,R′), where A = {a, b, c, d}, R = {(a, b), (b, c), (c, d), (d, c)} and
R′ = {(a, b), (b, c), (c, c), (c, d)}. In the AF F , the argument c is defended by
the set {a, c}, since for both attacks on c there exists a counterattack.

a b c d a b c d

Figure 1: Two simple argumentation frameworks F (left) and F ′ (right).

Given an AF, semantics define sets of jointly acceptable arguments, i.e.,
extensions, in different ways. Formally, a semantics is a function σ which
maps each AF F = (A,R) to a set σ(F ) ⊆ 2A of extensions. An extension
can be viewed as a particular justified point of view one can assume in a
discussion.

In this work semantics σ ∈ {adm, com, grd, prf , stb, sem, stg} are consid-
ered, which stand for the admissible, complete, grounded, preferred, stable,
semi-stable and stage semantics, respectively. The admissible, complete,
grounded, stable, and preferred semantics [49] are considered as the classical
AF semantics, also called Dung’s semantics (although [49] did not consider
admissible as a semantics). Later on, the semi-stable semantics was intro-
duced in [31] and the stage semantics in [89]. Other meaningful AF semantics
exist as well, e.g., the naive [30, 40], ideal [50], and cf2 [13, 14], but are not
considered in this work. The notion of the characteristic function and the
range allows us to define the considered semantics in a concise manner.

Definition 2. Given an AF F = (A,R), the characteristic function FF :
2A → 2A of F is FF (S) = {x ∈ A | x is defended by S}. Moreover, for a set
S ⊆ A, the range of S is S+

R = S ∪ {x | (y, x) ∈ R, y ∈ S}.
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In other words, in an AF F = (A,R), for a subset of arguments S ⊆ A,
the image of S under the characteristic function FF (S) yields exactly the set
of those arguments for which, if attacked, there exists a counterattack from
S. The range of S is simply the union of S and all arguments attacked by S.

Example 2. Consider the AF F in Figure 1 on page 4. Letting S = {a},
the image of S under the characteristic function is FF ({a}) = {a, c}. In
addition, the range of S is S+

R = {a, b}.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in
F ), if there are no a, b ∈ S, such that (a, b) ∈ R. We denote the collection of
conflict-free sets of F by cf (F ). For a conflict-free set S ∈ cf (F ), it holds
that

• S ∈ adm(F ) iff S ⊆ FF (S);

• S ∈ com(F ) iff S = FF (S);

• S ∈ grd(F ) iff S is the least fixed-point of FF ;

• S ∈ prf (F ) iff S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T ;

• S ∈ stb(F ) iff S+
R = A;

• S ∈ sem(F ) iff S ∈ adm(F ) and there is no T ∈ adm(F ) with S+
R ⊂ T

+
R ;

and

• S ∈ stg(F ) iff there is no T ∈ cf (F ) with S+
R ⊂ T

+
R .

Next we provide some intuition regarding the semantics considered,
following [12]. Since extensions are subsets of arguments that can be jointly
accepted, or describe a single coherent point of view on an issue, it is natural
to consider only such subsets which are conflict-free. The admissibility
criterion extends this notion by requiring that the extension must defend
itself against all attacks—that is, the inclusion of an argument in the extension
can be justified since all attacks on the argument are defended against from
within. Complete extensions again extend the notion of admissibility—if
an argument is defended by the extension, it must be included, and vice
versa. The grounded extension is guaranteed to be unique, and as the
subset-minimal complete extension, includes as few arguments as possible
and describes the most skeptical point of view one can take under the
complete semantics. Preferred extensions, on the other hand, are subset-
maximal admissible ones, that is, every argument that can be included in
the extension (without violating admissibility) must be included. Stable
semantics provide a black-and-white view—if an argument is not in the
extension, it must be attacked by some other argument in the extension.
This is captured theoretically by the notion of range. Since stable extensions
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Table 1: Extensions of the two AFs from Figure 1.
σ σ(F ) σ(F ′)

adm {∅, {a}, {a, c}, {a, d}, {d}} {∅, {a}}
com {{a}, {a, c}, {a, d}} {{a}}
grd {{a}} {{a}}
prf {{a, c}, {a, d}} {{a}}
stb {{a, c}, {a, d}} ∅

sem {{a, c}, {a, d}} {{a}}
stg {{a, c}, {a, d}} {{a, d}, {b, d}}

do not exist in every argumentation framework (i.e., there exists an AF
F such that stb(F ) = ∅), and are the only main semantics that have this
property, one is interested in an approximation of the stable extensions.
Such an approximation is provided via the semi-stable (and stage) semantics,
which maximize the range without breaking admissibility (conflict-freeness).
Indeed, semi-stable and stage extensions exist in all (finite) AFs, and if a
stable extension exists, stable, semi-stable and stage extensions coincide.

Example 3. Consider again the AFs F and F ′ in Figure 1 on page 4.
Table 1 captures all extensions under the semantics defined previously. Notice
that for the AF F , the preferred, stable, semi-stable and stage extensions
coincide. In addition, the AF F ′ has no stable extensions.

The following states a well-known theorem on relationships between
semantics. We provide a proof for completeness.

Theorem 4. For an AF F , the following inclusions hold.

cf (F ) ⊇ adm(F ) ⊇ com(F ) ⊇ prf (F ) ⊇ sem(F ) ⊇ stb(F ).

Proof. We show that the inclusions hold from left to right. The first inclusion
is trivial by definition.

For the second, let S ∈ com(F ). Now S = FF (S), so S ⊆ FF (S) and
therefore S ∈ adm(F ).

Now let S ∈ prf (F ), that is, S ∈ adm(F ) and there is no T ∈ adm(F )
with S ⊂ T . To show that S ∈ com(F ), suppose on the contrary that this
does not hold. Then we have S 6= FF (S), but since S ∈ adm(F ), S ⊂ FF (S).
This yields a contradiction, since FF (S) ∈ adm(F ) because S ∈ adm(F ), so
the third inclusion is proven.

Let S ∈ sem(F ). Now S ∈ adm(F ) and there is no T ∈ adm(F ) such
that S+

R ⊂ T
+
R . Suppose again on the contrary that S 6∈ prf (F ). Therefore

there exists T ∈ adm(F ) such that S ⊂ T . We yield a contradiction by
showing that in this case S+

R ⊂ T
+
R . Suppose that this does not hold, which

implies S+
R = T+

R . Since now T \ S 6= ∅, take x ∈ T \ S, so x ∈ T+
R = S+

R .
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But x 6∈ S, and therefore x ∈ S+
R \ S, so there must exist y ∈ S such that

(y, x) ∈ R. This yields a contradiction, since x ∈ T and y ∈ S ⊂ T , which
cannot hold, since T ∈ adm(F ) ⊆ cf (F ). Therefore S+

R ⊂ T
+
R , which is the

desired contradiction for the proof of the fourth inclusion.
For the last inclusion, note that if S ∈ stb(F ), then S+

R = A, so S ∈
adm(F ) and there cannot be a T ∈ adm(F ) such that S+

R ⊂ T
+
R .

The inclusions of Theorem 4 can also be strict. As shown in Table 1, the
AFs in Figure 1 on page 4 provide an example of such strict inclusions.

Semantics also provide a way to define the acceptance of a given argument.
Two ways are considered—an argument is credulously accepted if it is in some
extension, and skeptically accepted if it is in all extensions. These acceptance
criteria correspond to an argument being accepted in some possible worlds,
or all of them. Therefore credulous acceptance provides a considerably more
relaxed notion of acceptance than skeptical acceptance.

Definition 5. Let F = (A,R) be an AF, and σ a semantics. Under the
semantics σ, an argument a ∈ A is

• credulously accepted iff a ∈
⋃
σ(F ), and

• skeptically accepted iff a ∈
⋂
σ(F ).

Example 4. Consider again the AF F in Figure 1 on page 4. Since

com(F ) = {{a}, {a, c}, {a, d}},

we know that argument a is skeptically accepted under the complete semantics
(and the only such argument), since the intersection of the complete extensions
is the singleton of a, i.e., a is contained in every extension. In addition,
arguments a, c, and d are credulously accepted, but argument b is not, since
the union of the extensions is {a, c, d}.

Finally, we note that in addition to the extension-based view on semantics
considered in this work, some work instead focuses on the labeling-based
view in abstract argumentation [12]. The main difference is that instead
of the binary set-inclusion-based classification (an argument is either in
an extension or out), three labels—in, out, and undecided—are used. All
semantics considered in this work can also be defined using the labeling
idea in an equivalent way, where all sets of arguments that can be labeled
in form the set of extensions under a semantics. Furthermore, the central
contributions of this thesis could be similarly rephrased in terms of labelings.

3 Enforcement in Abstract Argumentation
In general, enforcement means adjusting a given AF in light of new in-
formation in a way that certain properties hold for the modified AF, for
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instance, a set being an extension or arguments being accepted. Enforcing
can be viewed as an optimization problem, where the task is to minimize
the amount of change to the framework. In this section, we describe two
variants of the problem—extension and status enforcement—regarded as
discrete optimization problems.

3.1 Extension Enforcement

In the extension enforcement problem, the aim is to modify the given argu-
mentation framework or change the semantics in light of new, more reliable
information in such a way that a given set becomes an extension [17]. The ex-
tension enforcement problem in abstract argumentation was proposed in [17],
where the (im)possibilities of enforcing a set of arguments was studied under
different conditions, namely, addition of new arguments and attacks from
and to them (normal, strong and weak expansions). In [16], the problem
was generalized to enforcing a set of arguments under minimal change1,
that is, the question is not only whether the set can be enforced (a decision
problem), but how many changes to the original framework are required
at minimum in order to achieve the desired enforcement (an optimization
problem) under a certain distance measure (a pseudometric in the space
of all AFs). The removal of arguments and attacks associated with them
was studied in [28], also generalizing the extension enforcement problem to
arbitrary goals expressible in propositional logic. All of these approaches
have supposed that the initial attacks of the AF are fixed, and instead
new arguments can arrive or old ones can leave. However, the dual where
arguments are fixed and the attack relation is dynamic also makes sense,
proposed in [43] as argument-fixed extension enforcement, proving that a
solution always exists and providing an algorithmic solution to the problem
by encoding it as integer programming. In this work, we extend the approach
by providing a nearly full complexity analysis and an implementation for
multiple AF semantics utilizing maximum satisfiability as the optimization
engine.

Extension enforcement as defined in [16, 17] is based on expansions of AFs,
which are additions of new arguments and attacks to the original AF. This
approach makes sense in a dialogue-based setting, where the question is how
to make (enforce) a certain point of view (extension) acceptable by drawing
new information into the discussion. Three expansions are considered:

• normal expansion, where new arguments are added and such new
attacks that either the attacker or the attacked is a new argument;

• strong expansion, where new arguments are added and such new attacks
that the new arguments are not attacked by the original ones; and

1Note that in [16], the word ’minimal’ is used as a synonym for ’minimum’.

8



• weak expansion, where new arguments are added and such new attacks
that the original arguments are not attacked by the new ones.

However, as noted in [17, 43], enforcement under these expansions is
impossible in the general case. Motivated by this, the argument-fixed ex-
tension enforcement problem was proposed in [43], where instead of adding
new arguments and attacks, the arguments are fixed, and the original attack
structure may be subject to any change, viewed as an optimization problem
by minimizing the number of changes necessary. This approach is viable
e.g. in a setting where an agent has observed that the given set is actually
an extension, and the agent’s AF needs to be adjusted in light of this in-
formation to be consistent. The authors also define in [43] the enforcement
problem with an additional parameter, (non-)strictness. It has been shown
that argument-fixed extension enforcement is always possible [43].

Formally, the task of extension enforcement is to modify the attack
structure R of an AF F = (A,R) in a way that a given set T becomes
(a subset of) an extension under a given semantics σ. Strict enforcement
requires that the given set of arguments has to be a σ-extension, while in
non-strict enforcement it is required to be a subset of a σ-extension. We
denote strict by s and non-strict by ns.

Denote by

enf (F, T, s, σ) = {R′ | F ′ = (A,R′), T ∈ σ(F ′)},

the set of attack structures that strictly enforce T under σ for an AF F , and
by

enf (F, T, ns, σ) = {R′ | F ′ = (A,R′), ∃T ′ ∈ σ(F ′) : T ′ ⊇ T}

for non-strict enforcement.
Define the Hamming distance between two attack structures by

|R∆R′| = |R \R′|+ |R′ \R|,

which is the cardinality of the symmetric difference, or the number of changes
(additions or removals of attacks) of an enforcement. Extension enforcement
is considered as an optimization problem, where the number of changes is
minimized. Formally, the problem can be stated as follows.

Optimal Extension Enforcement (M ∈ {s, ns})
Input: AF F = (A,R), T ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈enf (F,T,M,σ)

|R∆R′|.
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Example 5. Let F ′ be the AF in Figure 1 on page 4. Consider enforcing
T = {a} non-strictly under the stable semantics. First we note that the AF
F ′ does not have any stable extensions, and therefore we need to modify the
attack structure in some way, that is, at least one attack has to be added
or removed. One way of doing this optimally is adding the attack (a, c) to
the AF, so that {a, d} is a stable extension in the solution AF. Another way
would be to remove the existing attack (c, c) from the attack structure, in
which case {a, c} becomes a stable extension. The resulting AFs F ∗ and F ∗∗
are shown in Figure 2.

a b c d a b c d

Figure 2: The argumentation frameworks F ∗ and F ∗∗ of Example 5.

For non-strict extension enforcement, the problems of enforcing an exten-
sion under the admissible, complete and preferred semantics coincide.

Theorem 6. Let F = (A,R) be an AF, T ⊆ A. Now

enf (F, T, ns, adm) = enf (F, T, ns, com) = enf (F, T, ns, prf ).

Proof. First, suppose R′ ∈ enf (F, T, ns, prf ), and let F ′ = (A,R′). Since
now there exists a superset T ′ ⊇ T such that T ′ ∈ prf (F ′), and in addi-
tion prf (F ′) ⊆ com(F ′), it also holds that T ′ ∈ com(F ′). Therefore R′ ∈
enf (F, T, ns, com), which shows that enf (F, T, ns, prf ) ⊆ enf (F, T, ns, com)
holds. The inclusion enf (F, T, ns, com) ⊆ enf (F, T, ns, adm) is handled sim-
ilarly by noting that complete extensions of the new AF are a subset of the
admissible extensions.

Now, suppose R′ ∈ enf (F, T, ns, adm), and let again F ′ = (A,R′). From
the definition we know that there exists T ′ ⊇ T such that T ′ ∈ adm(F ′). Let
now T ′′ ∈ adm(F ′) be a maximal element with respect to set inclusion such
that T ′ ⊆ T ′′. It follows that T ′′ ∈ prf (F ′), and since T ⊆ T ′′, we know that
R′ ∈ enf (F, T, ns, prf ). Therefore the final inclusion enf (F, T, ns, adm) ⊆
enf (F, T, ns, prf ) also holds, establishing equality between the three sets.

The fact that the optimal solutions are also the same for non-strict ex-
tension enforcement under the admissible, complete, and preferred semantics
follows trivially from the previous theorem.

3.2 Status Enforcement

Status enforcement is a variant of extension enforcement, where instead
of enforcing a single point of view, the goal is to enforce given arguments’
statuses either positively —as to accept them—or negatively—to reject (i.e.,
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not accept) them, either following credulous or skeptical acceptance [75]. In
credulous status enforcement, the solution AF will have positively enforced
arguments justified by some point of view, and negatively enforced arguments
not justified by any means. In the dual, skeptical status enforcement, posi-
tively enforced arguments will be justified without any conflicting viewpoints,
and negatively enforced arguments have some conflicting point of view.

Formally, the goal is to modify the attack structure R of a given AF
F = (A,R) such that for given disjoint sets of arguments P and N , P∩N = ∅,
the following holds: all arguments in P are credulously/skeptically accepted
and all arguments in N are not credulously/skeptically accepted. It is said
that the set P of arguments is then positively enforced, and the set N
negatively enforced.

For the credulous status enforcement problem, denote by cred(F, P,N, σ)
the set

{R′ | F ′ = (A,R′), P ⊆
⋃
σ(F ′), N ∩

⋃
σ(F ′) = ∅},

that is, the set of attack structures where all arguments in P are credulously
accepted, i.e., each argument in P is contained in some σ-extension, and
each argument in N is not credulously accepted (not contained in any
σ-extension).

For skeptical status enforcement, denote by skept(F, P,N, σ) the set

{R′ | F ′ = (A,R′), P ⊆
⋂
σ(F ′), N ∩

⋂
σ(F ′) = ∅},

that is, the set of attack structures where all arguments in P are skeptically
accepted, i.e. each argument in P is contained in all σ-extensions, and
each argument in N is not skeptically accepted (not contained in some
σ-extension).

Note that by definition A ⊆
⋂
σ(F ′) if σ(F ′) = ∅. From the semantics

considered in this work, only the stable semantics may admit no extensions
for a given AF. This implies that if N = ∅, under the stable semantics any
set of arguments P ⊆ A can be skeptically enforced by an AF that has no
stable extensions. Due to this, for skeptical enforcement under the stable
semantics we additionally require that the solution AF has at least one stable
extension, i.e., σ(F ′) 6= ∅, where F ′ is the solution AF.

Here status enforcement is also considered as an optimization problem,
where the number of changes to the attack structure is minimized. Formally,
we distinguish between credulous and skeptical status enforcement as follows.

Optimal Credulous Status Enforcement
Input: AF F = (A,R), P,N ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈cred(F,P,N,σ)

|R∆R′|.

11



Optimal Skeptical Status Enforcement
Input: AF F = (A,R), P,N ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈skept(F,P,N,σ)

|R∆R′|.

Example 6. Let F be the AF in Figure 1 on page 4. Consider enforcing
P = {c} skeptically under the stable semantics. By adding the attack (a, d),
we make the current stable extension {a, d} conflicting, in which case {a, c}
is the only stable extension in the new AF, so c is skeptically accepted. The
resulting AF F ∗ is shown in Figure 3.

a b c d

Figure 3: The argumentation framework F ∗ of Example 6.

The problems of credulous status enforcement under the admissible,
complete, and preferred semantics coincide. Therefore the optimal solutions
to the problems are also the same.

Theorem 7. Let F = (A,R) be an AF and P,N ⊆ A two disjoint subsets
of arguments. Now

cred(F, P,N, adm) = cred(F, P,N, com) = cred(F, P,N, prf ).

Proof. From the definitions of the three sets, it suffices to show that⋃
adm(F ′) =

⋃
com(F ′) =

⋃
prf (F ′)

for any AF F ′. Since prf (F ′) ⊆ com(F ′) ⊆ adm(F ′), the inclusions⋃
adm(F ′) ⊇

⋃
com(F ′) ⊇

⋃
prf (F ′)

follow straightforwardly. Let now a ∈
⋃

adm(F ′), that is, there exists
E ∈ adm(F ′) such that a ∈ E. Let E′ ∈ adm(F ′) be a maximal element
with respect to the set inclusion. It follows that E′ ∈ prf (F ′), and since
a ∈ E′, we know that a ∈

⋃
prf (F ′), with shows that the inclusion⋃
adm(F ′) ⊆

⋃
prf (F ′)

also holds, establishing equality between the three sets.
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Table 2: Complexity of extension enforcement.
σ strict non-strict

Conflict-free in P in P
Admissible in P NP-c

Stable in P NP-c
Complete NP-c NP-c
Grounded NP-c NP-c
Preferred ΣP

2 -c NP-c
Semi-stable ΣP

2 -c ΣP
2 -c

Stage coNP-hard and in ΣP
2 ΣP

2 -c

Table 3: Complexity of status enforcement.
N = ∅ general case

σ credulous skeptical credulous skeptical
Conflict-free in P trivial in P trivial
Admissible NP-c trivial ΣP

2 -c trivial
Stable NP-c ΣP

2 -c ΣP
2 -c ΣP

2 -c
Complete NP-c NP-c ΣP

2 -c NP-c
Grounded NP-c NP-c NP-c NP-c
Preferred NP-c in ΣP

3 ΣP
2 -c in ΣP

3

4 Computational Complexity of Enforcement
We recall the definitions of computational complexity classes [79] to the
extent relevant to this work. A decision problem is a computational problem
where the output is either YES or NO. The fundamental class P consists of
all decision problems that can be decided by a deterministic Turing machine
in polynomial time, that is, for which there exists a deterministic polynomial-
time algorithm. The complexity class NP, on the other hand, contains all
decision problems that can be decided by a nondeterministic Turing machine
in polynomial time, that is, verifying whether a (nondeterministic) guess is
indeed a solution can be computed in polynomial time. The complementary
class of NP is denoted by coNP, and contains those decision problems for
which the YES instances are exactly the NO instances of a corresponding
problem in NP.

For a complexity class C, a C-oracle is a procedure that solves each
problem in C using a constant amount of time. Using this definition, we can
define the complexity class ΣP

2 = NPNP as all decision problems solvable in
nondeterministic polynomial time using an NP-oracle, and the complexity
class ΣP

3 as all decision problems solvable in nondeterministic polynomial
time using a ΣP

2 -oracle. The complexity classes ΣP
2 and ΣP

3 are second-level
and third-level classes in the polynomial hierarchy [86], respectively. A
problem P is C-hard if every problem P ′ in C is polynomial-time reducible
to P , i.e., there is a polynomial-time algorithm that transforms an instance
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I ′ of P ′ to an instance I of P such that I ′ is a YES instance of P ′ if and
only if I is a YES instance of P . A problem P is complete for a complexity
class C, denoted by C-c, if P is in C and P is C-hard.

The overview of the computational complexity of enforcement is given in
Table 2 and Table 3, for extension and status enforcement, respectively. The
decision variant of each optimization problem is considered, i.e., in addition
we are given an integer k ≥ 0 and asked whether the optimization problem has
a solution with cost (the number of changes to the attack structure required)
less than or equal to k. In this section we overview some of the main
complexity proofs. For the complexity of extension enforcement, the rest of
the proofs can be found in [90], and for the complexity of status enforcement,
in [75]. We start off by showing that strict extension enforcement is solvable
in polynomial time under the conflict-free, admissible and stable semantics.

Theorem 8. Strict extension enforcement for the conflict-free, admissible,
and stable semantics is in P.

Proof. Let F = (A,R) be an AF, T ⊆ A the set to be enforced, and
σ ∈ {cf , adm, stb}. Suppose T 6= ∅, since otherwise the problem is trivial.
Let t ∈ T be an arbitrary argument in the set.

1. σ = cf : Let R∗ = R \ (T × T ), that is, R∗ is formed by deleting all
attacks where both arguments are in T .

2. σ = adm: Let

R∗ = (R \ (T × T ))
∪ {(t, a) | a ∈ A \ T, ∃(a, b) ∈ R : b ∈ T, @(c, a) ∈ R : c ∈ T},

that is, remove all attacks inside T and add attacks to ensure admissi-
bility by defending from all attacks outside T .

3. σ = stb: Let

R∗ = (R \ (T × T ))
∪ {(t, a) | a ∈ A \ T, @b ∈ T : (b, a) ∈ R},

removing all attacks inside T and extending the range to arguments
not attacked by T .

Now for all semantics σ, F ∗ = (A,R∗) is a solution AF where clearly
T ∈ σ(F ∗). These solutions are also optimal, since in each case no less
modifications can be made to the original attack structure.

The following example illustrates how to construct the solution in poly-
nomial time.
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Example 7. Consider the AF F = (A,R) in Figure 1 from page 4. Suppose
we want to enforce T = {c, d} strictly.

1. Under σ = cf , it suffices to remove the attacks (c, d) and (d, c), yielding
the AF F cf = (A,Rcf ) illustrated in Figure 4.

2. Under σ = adm, in addition to removing the attacks inside T , we
need a counterattack on the argument b, since it attacks T . This
is accomplished via adding the attack (c, b), forming the AF F adm

illustrated in Figure 4.

3. Under σ = stb, T must be conflict-free and the range of T must be the
whole set of arguments A. Therefore we must delete attacks (c, d) and
(d, c), and add attacks from T to A \ T = {a, b}, e.g., (c, a) and (c, b).
The resulting AF F stb is shown in Figure 4.

a b c d

F cf

a b c d

F adm

a b c d

F stb

Figure 4: Optimal solutions to strict extension enforcement in Example 7.

For non-strict extension enforcement, on the other hand, only instances
of conflict-free semantics are polynomial time solvable.

Theorem 9. Non-strict extension enforcement for the conflict-free semantics
is in P.

Proof. Similarly to Theorem 8, let F = (A,R) be an AF and T ⊆ A the
set to be non-strictly enforced. Now letting R∗ = R \ (T × T ) we have an
optimal solution AF F ∗ = (A,R∗), since clearly T ∈ cf (F ∗) and all attacks
inside T have to be removed for it to be a conflict-free set.

The NP-hardness proofs for non-strict extension enforcement are based on
a reduction from the credulous acceptance problem under the same semantics.
Recall that an argument is credulously accepted under semantics σ if and
only if it is contained in some σ-extension of the given AF. The problem
was first proven to be NP-complete in the context of graph theory [47],
where semikernels correspond to admissible extensions and kernels to stable
extensions. We provide a full proof directly on argumentation frameworks,
utilizing a part of the same structure as in the original proof. The structure
also provides insight to the kinds of reductions typically used in analyzing
the complexity of computational problems in abstract argumentation.

Theorem 10. Credulous acceptance of an argument under the admissible
and stable semantics is NP-complete.
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Proof. Let F = (A,R) be an AF, a ∈ A an argument, and σ ∈ {adm, stb}.
Nondeterministically guess a subset E ⊆ A. It is now polynomial-time
verifiable whether E ∈ σ(F ) and a ∈ E, which implies that a ∈

⋃
σ(F ), that

is, a is credulously accepted under σ. Therefore credulous acceptance under
these semantics is in NP.

For NP-hardness, we reduce CNF-SAT (see Section 5.1) to the problem
of credulous acceptance. Let ϕ = C1 ∧ · · · ∧Cn be a formula in CNF over the
Boolean variables X. Denote by X the set of negative literals {¬x | x ∈ X},
and by C the set of symbols corresponding to clauses {ci | i = 1, . . . , n}.
Construct an AF F = (A,R) with the arguments

A = X ∪X ∪ C ∪ {a}

and the attack structure

R = {(x,¬x) | x ∈ X} ∪ {(¬x, x) | x ∈ X}
∪ {(x, ci) | x ∈ Ci} ∪ {(ci, a) | i = 1, . . . , n},

i.e., attacks exist between each pair of a positive and negative literal, from
each literal to a clause containing it, and from each clause to the additional
argument a. An illustration of the AF F is shown in Figure 5. Note that the
reduction AF F can be constructed in polynomial time. The claim is that ϕ
is satisfiable if and only if a is credulously accepted under σ ∈ {adm, stb}.

x ¬x y ¬y z ¬z

c1 c2 c3

a

Figure 5: Illustration of the reduction used in the NP-hardness proof, given
the CNF formula ϕ = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z).

For the direction from left to right, suppose ϕ is satisfiable. Then there
exists a truth assignment τ : X → {0, 1} such that for each clause there
exists a literal l for which τ(l) = 1. Let now

E = {a} ∪ {x ∈ X | τ(x) = 1} ∪ {¬x ∈ X | τ(x) = 0} ⊆ A,

i.e., the union of the singleton of a and each literal that evaluates to true
under τ . First note that E ∈ cf (F ), since there are no attacks between {a}
and any of the literals, and since τ is a function, it cannot map a variable x
to both 0 and 1, hence no positive and negative literal of the same variable
is included in E.
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1. σ = adm: We claim that the set E is an admissible extension. To see
this, note that positive literals in E attack negative ones, and negative
literals attack positive ones. Each clause argument ci attacks a, but
for each clause, there exists a literal which is evaluated to true, and
that literal is included in E. This shows that E defends each of its
members, and therefore E ∈ adm(F ).

2. σ = stb: We claim that the set E is a stable extension. To see this,
note that the only arguments in A \ E are the literals that evaluate to
false under τ , and each clause argument ci. But for each literal that
evaluates to false, there exists an attacker that evaluates to true, and
for each clause argument, there exists a literal which is evaluated to
true, and these literals are included in E. Therefore the range of E is
A, that is, E ∈ stb(F ).

In both cases E ∈ σ(F ), which implies that a is credulously accepted under
σ, since a ∈ E.

For the converse, suppose a is credulously accepted. Then there exists
an extension E ∈ σ(F ) such that a ∈ E. Construct the following truth
assignment τ : X → {0, 1},

τ(x) =
{

1 if x ∈ E,
0 otherwise.

We claim that τ is a satisfying truth assignment for ϕ. First note that τ is a
well-defined function, since E ∈ cf (F ), so no positive and negative literal for
the same variable can occur in E.

1. σ = adm: Now for each attack (ci, a) ∈ R there must be an attack to
ci from E. By construction the only argument attacking ci is a literal
contained in the corresponding clause.

2. σ = stb: Since E is conflict-free and contains a, no clause argument ci
can be can be contained in E. Since now the range of E is A, for each
ci, there must be an attack on ci from E. Again, by construction the
only argument attacking ci is a literal contained in the corresponding
clause.

Now for each clause there must be a literal included in E, which is then
evaluated true under τ . This shows that ϕ is satisfiable, since each clause of
the formula is satisfied.

We have now shown that the credulous acceptance problem under σ is
in NP and NP-hard. Thus credulous acceptance under the admissible and
stable semantics is NP-complete.

We move on to NP-completeness proofs for non-strict extension enforce-
ment. Under the admissible, complete, stable, and preferred semantics the
problem is NP-complete.
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Theorem 11. Non-strict enforcement for the admissible, complete, stable,
and preferred semantics is NP-complete.

Proof. Recall that non-strict extension enforcement under the admissible,
complete and preferred semantics coincides (Theorem 6). Therefore it is
enough to consider one of these, for instance the admissible semantics. Let
F = (A,R) be an AF, T ⊆ A the set to be enforced, σ ∈ {adm, stb}, and
k ≥ 0 an integer. Let R′ be a nondeterministic guess for the attack structure
of the proposed solution AF F ′ = (A,R′), and T ′ the guess for the superset of
T that is a σ-extension. Since the necessary checks |R∆R′| ≤ k, T ⊆ T ′ and
T ′ ∈ σ(F ′) can be computed in polynomial time, it is clear that non-strict
extension enforcement under these semantics is in NP.

NP-hardness follows from a reduction from the NP-complete credulous
acceptance problem under semantics σ. This problem is reduced to non-
strict extension enforcement as follows. Let F = (A,R) be an AF, and
a ∈ A an argument whose credulous acceptance is to be checked. Define
a non-strict extension enforcement instance with the same AF F and the
singleton set T = {a} to be enforced. The reduction can clearly be computed
in polynomial time. Suppose T can be enforced with 0 changes to the attack
structure. This implies that a is credulously accepted, since there exists
T ′ ⊇ T such that T ′ ∈ σ(F ). On the other hand, if a is credulously accepted,
there exists some T ′ ∈ σ(F ) such that T ⊆ T ′, that is, T is non-strictly
enforced with 0 changes.

The computational complexity of the union of non-strict and strict
extension enforcement under the stable semantics was established to be
NP-hard in [43]. Therefore Theorems 8 and 11 provide a more fine-grained
analysis of the computational complexity, showing that under the stable
semantics, strict extension enforcement is in fact in P, and non-strict extension
enforcement is NP-complete.

For the ΣP
2 -completeness proof for non-strict extension enforcement under

the semi-stable and stage semantics, we show ΣP
2 -hardness via a reduction

from the ΣP
2 -complete credulous acceptance problem under the same seman-

tics [51, 55]. Membership is shown also via a similar guess-and-check, but
this time verifying whether a subset of arguments is a semi-stable or stage
extension is in fact in coNP [31, 47].

Theorem 12. Non-strict enforcement for the semi-stable and stage semantics
is ΣP

2 -complete.

Proof. Let F = (A,R) be an AF, T ⊆ A the set to be enforced, σ ∈ {sem, stg},
and k ≥ 0 an integer. Let R′ be a nondeterministic guess for the attack
structure of the proposed solution AF F ′ = (A,R′), and T ′ the guess for the
superset of T that is a σ-extension. Since the checks |R∆R′| ≤ k, T ⊆ T ′

can be computed in polynomial time, and T ′ ∈ σ(F ′) via a single call to
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an NP-oracle, it is clear that non-strict extension enforcement under these
semantics is in ΣP

2 .
ΣP

2 -hardness follows from a reduction from the ΣP
2 -complete credulous

acceptance problem under semantics σ. Let F = (A,R) be an AF, and a ∈ A
an argument whose credulous acceptance is to be checked. Define a non-strict
extension enforcement instance with the same AF F and the set T = {a}
to be enforced. The reduction can clearly be computed in polynomial time.
Now T can be enforced with 0 changes to the attack structure if and only if
a is credulously accepted.

Moving on to results for status enforcement, skeptical status enforcement
under the conflict-free and admissible semantics is trivial, since the empty set
is always a conflict-free and an admissible set, and therefore the intersection
of all conflict-free and admissible sets is always the empty set, i.e.,

⋂
σ(F ) = ∅

since ∅ ∈ σ(F ). In addition, under the conflict-free semantics credulous status
enforcement is polynomial-time solvable, which is stated in the following
theorem.

Theorem 13. Credulous status enforcement under the conflict-free semantics
is in P.

Proof. Let F = (A,R) be an AF, and P,N ⊆ A, P ∩ N = ∅ two disjoint
subsets of arguments. An optimal solution is given by F ∗ = (A,R∗), where

R∗ = (R \ {(a, a) | a ∈ P}) ∪ {(a, a) | a ∈ N},

i.e., removing all self-attacks on arguments in P and adding self-attacks on
arguments in N . Since for all p ∈ P the singleton {p} must be a conflict-free
set, and for all n ∈ N the singleton {n} must not be conflict-free, the solution
is optimal, since not removing or adding any self-attack would not satisfy
these properties.

On the other hand, credulous status enforcement for the admissible,
complete, stable and preferred semantics is NP-complete when N = ∅.

Theorem 14. Even when N = ∅, credulous status enforcement for the
admissible, complete, stable, and preferred semantics is NP-complete.

Proof. Recall that credulous status enforcement under the admissible, com-
plete, and preferred semantics coincides. We consider the admissible seman-
tics. Let F = (A,R) be an AF, and P ⊆ A the set of arguments to be
positively enforced under σ ∈ {adm, stb}, and k ≥ 0 an integer. Nondeter-
ministically guess the attack structure R′ of the solution AF F ′ = (A,R′),
and for each p ∈ P , a subset of arguments Ep such that p ∈ Ep. Now the
cardinality check |R∆R′| ≤ k and the extension check Ep ∈ σ(F ′) can be
computed in polynomial time for the semantics σ considered. Therefore
credulous status enforcement under σ is in NP.
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NP-hardness follows by a reduction from the NP-complete credulous
acceptance problem. We reduce it to credulous status enforcement as follows.
Let F = (A,R) be an AF, and a ∈ A an argument whose credulous acceptance
is to be checked. Construct an instance of credulous status enforcement with
the AF F , and the singleton P = {a} the set to be positively enforced. The
reduction can be clearly computed in polynomial time. It is now clear that
a is credulously accepted if and only if P is credulously enforced with k = 0
changes to the attack structure.

5 Maximum Satisfiability
Recall that our goal is to develop algorithms for the extension and status
enforcement problems, the decision variants of which are NP-hard. In abstract
argumentation, many static problems have been solved using declarative
approaches, where the instance of the problem is encoded into an instance of
a constraint language, such as answer set programming (ASP) [54, 59, 61]
or Boolean satisfiability (SAT) [32, 33, 56]. In this case, the problems can
be solved by calling the corresponding solver, and decoded back into the
solution of the original problem. Since these approaches have been the most
efficient ones in practice [87], we intend to provide algorithmic solutions to
the dynamic problems of enforcement in a similar manner—using maximum
satisfiability (MaxSAT) as the optimization engine for tackling the NP-hard
optimization problems.

5.1 SAT

We recall basic concepts related to Boolean satisfiability (SAT) [26] before
moving on to maximum satisfiability. The satisfiability problem was the
first problem shown to be NP-complete [39]. An instance of the satisfiability
problem consists of a propositional formula over a finite set of Boolean
variables. The question is whether there exists a truth assignment that
satisfies the formula, i.e., the formula is true under the assignment. If such a
satisfying truth assignment exists, we say that the formula is satisfiable.

It is a well-known fact that every propositional formula can be converted
to conjunctive normal form (CNF) [88, 91], and CNF provides a standard
way of representing SAT instances. The conversion of every propositional
formula to CNF can be done using a distinct new variable for each subformula,
yielding a formula in CNF that is linear in the size of the original formula,
with a linear number of new variables introduced. This procedure is called
the Tseitin encoding [88, 91], and is a standard approach in the field of
satisfiability solving.

In CNF, a propositional formula is given as a conjunction of clauses, or
disjunctions of literals. Literals are Boolean variables or their negations.
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Definition 15. A literal l is a Boolean variable x or its negation ¬x, which
are called positive and negative literals, respectively. A clause C is a dis-
junction of literals

∨m
i=1 li. A CNF-formula ϕ is a conjunction of clauses∧n

i=1Ci.

The semantics of CNF formulas is defined as follows.

Definition 16. Given a SAT instance in CNF ϕ, a truth assignment τ is
a function from the variables X of ϕ to {0, 1}. A positive literal x is true
if τ(x) = 1, and a negative literal ¬x is true if τ(x) = 0. If a literal l is
true, then we denote τ(l) = 1. A clause C =

∨m
i=1 li is satisfiable, if for some

i = 1, . . . ,m we have τ(li) = 1. In this case we denote τ(C) = 1. A formula
ϕ =

∧n
i=1Ci is satisfied by the truth assignment τ , if for every i = 1, . . . , n

it holds that τ(Ci) = 1. In this case we call τ a satisfying truth assignment,
and say that the formula is satisfiable (SAT). Otherwise it is unsatisfiable
(UNSAT).

We illustrate these concepts with the following example.

Example 8. Consider the following instance of satisfiability.

ϕ = ¬x1 ∧ (x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)

The variables of this instance are x1, x2, x3, and the clauses are ¬x1, x1 ∨ x2,
¬x2 ∨ x3 and x1 ∨ x2 ∨¬x3. To determine whether the formula is satisfiable,
first observe that ¬x1 has to be true under such an assignment τ , and
therefore τ(x1) = 0. From this we can derive that in the clause x1 ∨ x2 the
literal x1 is false, and in order to satisfy the clause, we must set τ(x2) = 1,
in which case the last clause is also satisfied. Using the same inference, from
the clause ¬x2 ∨ x3 we derive τ(x3) = 1, and we have found a satisfying
truth assignment. Therefore the formula is satisfiable. If, however, the last
clause would be of the form x1 ∨¬x2 ∨¬x3, i.e., the literal x2 is flipped from
positive to negative, we would notice that the formula is unsatisfiable.

A routine for solving instances of the satisfiability problem is called a SAT
solver, which have shown to be a success story in many aspects. Starting
from a maximum of a few hundred variables and clauses [84], in a couple of
decades SAT solvers have advanced to the point where instances with up to
millions of variables and clauses can be solved [68]. This is mostly due to
efficient procedures developed, such as conflict-driven clause learning [70],
which is the base algorithm of the most well-performing solvers [64, 68].
SAT solvers have been used in many practical applications, such as bounded
model checking [25], formal verification of hardware [27] and software [66],
and automated planning [69, 81].
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5.2 MaxSAT

Since not all propositional formulas are satisfiable, it is natural to consider the
problem where the task is to satisfy as many clauses as possible. This problem
is called maximum satisfiability (MaxSAT), and it is the optimization variant
of the satisfiability problem. MaxSAT can be generalized by considering that
a subset of the clauses called hard clauses must be satisfied, the remaining
part forming the soft clauses, where the task is to satisfy as many as possible.
This variant is called partial MaxSAT. In addition, each soft clause can
have a non-negative weight associated to it, in which case the goal is to
maximize the sum of the satisfied soft clauses. Many real-world optimization
problems can be expressed as instances of MaxSAT, including probabilistic
inference [80], hardware design debugging [35, 36], reasoning over biological
networks [62], correlation clustering [21], learning Bayesian networks [22],
static reasoning in AFs [60], and AF synthesis [76].

In maximum satisfiability, the task is to find a truth assignment to a
given propositional formula ϕ in CNF such that the maximum number of
clauses is satisfied. We define the cost of a truth assignment τ by

cost(ϕ, τ) =
∑
C∈ϕ

(1− τ(C)),

i.e., the number of unsatisfied clauses. A truth assignment τ is optimal if

cost(ϕ, τ) ≤ cost(ϕ, τ ′)

for all possible truth assignments τ ′. An optimal truth assignment is a
solution to the maximum satisfiability problem.

In partial maximum satisfiability, the instance is a pair ϕ = (ϕh, ϕs),
where ϕh and ϕs are CNF-formulas consisting of hard clauses and soft clauses,
respectively. The task is now to find a truth assignment such that all hard
clauses are satisfied and the maximum number of soft clauses are satisfied.
In this case, we define the cost of a truth assignment τ by

cost(ϕ, τ) =
∑
C∈ϕs

(1− τ(C)),

i.e., the number of unsatisfied soft clauses. Optimality is defined in a similar
way. An optimal truth assignment that satisfies all hard clauses is a solution
to the partial MaxSAT problem.

In weighted partial maximum satisfiability, the instance is a triple ϕ =
(ϕh, ϕs, w), where w : ϕs → Z+ is a function assigning to each soft clause a
non-negative weight. In this case, the cost of a truth assignment τ is defined
as

cost(ϕ, τ) =
∑
C∈ϕs

w(C) · (1− τ(C)),

i.e., the sum of unsatisfied soft clauses. Again, a solution is optimal if no
other solution has a lower cost.
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Example 9. Consider an instance of partial MaxSAT ϕ = (ϕh, ϕs), where
the hard clauses are

ϕh = (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3),

and the soft clauses are

ϕs = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

The hard clauses state that either x1 or x2 is false, and either x2 or x3 is
false, and are therefore satisfiable by simply setting τ(x2) = 0. In this case
also all of the soft clauses can be satisfied by τ(x1) = 1 = τ(x3), which
implies that the solution is optimal with cost(ϕ, τ) = 0.

Maximum satisfiability can be used for efficiently encoding various discrete
optimization problems. In the following we give a simple example illustrating
how problems can be encoded as MaxSAT.

Example 10. We recall the classical maximum independent set (MIS) prob-
lem. Given a directed graph G = (V,E), the task is to find a subset of the
nodes V ′ ⊆ V such that for all u, v ∈ V ′, there is no (u, v) ∈ E, and there
exists no other subset V ′′ ⊆ V such that V ′ ⊂ V ′′—that is, V ′ is subset-
maximal. The problem can be encoded as partial maximum satisfiability as
follows.

For each node v ∈ V , define Boolean variables xv with the interpretation
that xv is assigned to true (τ(xv) = 1) if and only if xv is in an independent
set. The hard clauses encode the fact that for each edge (u, v) ∈ E, it cannot
be that both endpoints xu and xv are assigned to true. This is expressed
compactly as

ϕh =
∧

(u,v)∈E
(¬xu ∨ ¬xv).

The soft clauses, on the other hand, take care of the optimization part. Since
we want to find an independent set of maximum size, we want to satisfy as
many variables as possible, expressed simply as

ϕs =
∧
v∈V

xv.

Now the optimal solution to the partial MaxSAT problem corresponds to a
maximum independent set V ′ = {v ∈ V | τ(xv) = 1}.

Example 11. Let G = (V,E) be a graph with V = {a, b, c, d} and E =
{(a, b), (b, c), (c, d), (d, b)}, illustrated in Figure 6. The corresponding hard
clauses for this instance are

ϕh = (¬xa ∨ ¬xb) ∧ (¬xb ∨ ¬xc) ∧ (¬xc ∨ ¬xd) ∧ (¬xd ∨ ¬xb),
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Figure 6: A directed graph G = (V,E).

and the soft clauses
ϕs = xa ∧ xb ∧ xc ∧ xd.

An optimal solution is given by setting τ(xa) = 1 = τ(xd) and τ(xb) = 0 =
τ(xc), which corresponds to a maximum independent set {a, d} in the graph.

5.3 Algorithms for Solving MaxSAT

Here we give a brief overview of the main classes of algorithms for solving
maximum satisfiability. Many solvers that solve the MaxSAT problem exactly
have been developed over the past few years [2, 5, 44, 71, 73, 82]. In addition,
the biannual MaxSAT evaluation [7] compares the efficiency of these solvers
in practice.

One approach for MaxSAT solving is based on the general branch-and-
bound scheme [1]. The idea is based on a search tree, the root of which
consists of all possible solutions, i.e., the whole search space. The algorithm
then keeps assigning variables, branching and dividing the search space
at each assignment. The formula may be simplified after the assignment,
after which the lower and upper bounds for the cost of any solution of the
simplified formula are computed and stored in the corresponding node. If
the lower bound is equal to the upper bound, no better solutions may be
found in the branch, and the algorithm backtracks in the tree, assigning the
next variable. These algorithms have shown to be very effective in random
instances [7].

Another viable option is to solve MaxSAT via translating it to integer
programming (IP) [6]. To each soft clause Ci, we add a relaxation variable bi,
forming the relaxed soft clause Ci ∨ bi. Now, if bi is true, the relaxed clause
is satisfied, and if bi is false, the original soft clause must be satisfied. Now
the optimization part may be expressed as minimizing the function

∑
iwibi,

where wi is the weight of the corresponding soft clause. Each hard clause Ci
may be encoded as a linear inequality of the form∑

j∈C+
i

xj +
∑
j∈C−i

(1− xj) ≥ 1,

where C+
i contains the indices of positive literals and C−i the indices of

negative ones. The constants may then be moved to the right hand side, in
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which case the right hand side is the sum of negative literals incremented
by one, and the left hand side is a sum of positive and negative variables.
Finally, each integer variable is restricted to the interval [0, 1].

A large family of modern MaxSAT algorithms are based on using a SAT
solver as a subroutine [4]. The algorithm begins by relaxing the soft clauses
by adding a new variable bi to each soft clause Ci ∈ ϕ. In this case k soft
clauses may be disabled by setting the corresponding relaxation variables
to true. The iterative approach then proceeds by initializing k to zero and
checking via a SAT solver whether ϕ ∧ (

∑
i bi ≤ k) is satisfiable, where the

cardinality constraint is encoded in CNF (many efficient approaches exist to
encode this general constraint—see e.g. [11, 58, 85]). If it is, we know that
k of the soft clauses can not be simultaneously satisfied, and we return the
truth assignment given by the SAT solver. If not, we increment k by one,
and continue by SAT checking, until a solution is found or until we reach the
point where k is equal to the number of soft clauses. This linear search can
be replaced straightforwardly by a binary search, improving the effectiveness
of the algorithm. Another variant first finds a satisfying assignment to the
hard clauses, and then checks whether the whole formula is satisfiable with
k equal to the number of soft clauses falsified decremented by one. If it is,
we have found a better assignment and can iterate by setting k equal to the
number of satisfied soft clauses minus one, and if not, the current assignment
is optimal.

As witnessed by results of recent MaxSAT evaluations [7], some of the
most successful MaxSAT solvers on real world instance classes are the core-
guided [2, 5, 71, 73] and SAT/IP hybrid approaches [44, 82]. Both of these rely
on the idea of using a SAT solver as a core extractor. An unsatisfiable core
of a MaxSAT instance is such a subset of the soft clauses that is unsatisfiable
together with the hard clauses. Many modern SAT solvers return a core
when reporting unsatisfiability. These can be used to guide the search
more effectively than by disabling k arbitrary soft clauses. The core-guided
algorithms iterate and relax each soft clause in the current unsatisfiable core,
adding a cardinality constraint over the relaxation variables to the instance.
This way the cardinality constraints are expressed only over those relaxation
variables the corresponding soft clauses of which are found in some core, and
not over the whole set of soft clauses. Additionally, disjoint cores can be
used to improve the efficiency. The algorithm may then search either via
linear or binary search, as in iterative approaches.

Finally, SAT/IP hybrid approaches, also called implicit hitting set al-
gorithms, are used for solving MaxSAT [44, 82]. The idea is based on the
insight that for any optimal hitting set H over the set of cores of the instance
ϕ, ϕ \ H is satisfiable, and any such satisfying assignment is an optimal
solution. Now, using a SAT solver, we iteratively accumulate unsatisfiable
cores of the MaxSAT instance, and using the IP solver, we find an optimal
implicit hitting set of the unsatisfiable cores, implicit meaning that we have
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not necessarily found all cores of the instance. Clauses in the hitting set are
removed for the next SAT solver call, and the procedure is repeated until the
SAT solver reports satisfiability, in which case the hitting set corresponds to
an optimal solution.

6 Enforcement via MaxSAT
Motivated by the NP-hardness of some variants of the extension and status
enforcement problems (recall Tables 2 and 3), we use a declarative approach,
harnessing the power of maximum satisfiability solvers, to provide algorithmic
solutions to the problem variants. In this section, we start by providing
(partial) MaxSAT encodings that can be used to directly solve each NP-
complete variant of the enforcement problem. These problems are strict
extension enforcement under the complete semantics, non-strict extension
enforcement under the admissible, complete, preferred and stable semantics,
and credulous status enforcement with N = ∅ under the admissible and
stable semantics. Here generally the hard clauses encode the structure of
the problem, and soft clauses contain the optimality criterion. We return to
the computationally harder problem variants in the next section.

6.1 Soft Clauses for Optimization

In MaxSAT, soft clauses are used to encode the objective function, i.e., the
function over which we are optimizing. Let F = (A,R) be an AF of an
enforcement instance. For each a, b ∈ A, define Boolean variables ra,b with
the interpretation τ(ra,b) = 1 iff the attack (a, b) is included in the attack
structure R′ of the solution AF F ′ = (A,R′). In both extension and status
enforcement, the objective function to be minimized is the number of changes
to the original attack structure. This can be expressed by the soft clauses

ϕs(F ) =
∧

a,b∈A
r′a,b,

where

r′a,b =
{
ra,b if (a, b) ∈ R,
¬ra,b if (a, b) 6∈ R.

The above soft clauses are satisfiable if and only if there are no changes to
the attack structure. By maximizing the number of clauses satisfied, we are
minimizing the Hamming distance between the original and solution AFs.

6.2 Hard Clauses for Extension Enforcement

In addition to the objective function, we need to encode the underlying
properties of the problem into the MaxSAT instance. This is accomplished
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via hard clauses. Let F = (A,R) be an AF and T ⊆ A the set to be enforced
under semantics σ. In addition to the attack variables, for each a ∈ A, define
Boolean variables xa with the intended meaning of τ(xa) = 1 iff a is included
in the extension of the new AF F ′.

For non-strict extension enforcement, define

ext(ns, F, T ) =
∧
a∈T

xa,

which states that T is a subset of a σ-extension.
For conflict-free sets, if an attack is present between two arguments, they

cannot occur in the same extension. This is stated as

ext(ns, F, T, cf ) = ext(ns, F, T ) ∧
∧

a,b∈A
(ra,b → (¬xa ∨ ¬xb)) .

For admissible semantics, if there is an attack on some argument in an
extension, there must be another argument in the same extension that
attacks the attacker, i.e., the attacked argument is defended by the extension,
encoded as

ext(ns, F, T, adm) = ext(ns, F, T, cf )∧
∧

a,b∈A

(
(xa ∧ rb,a)→

∨
c∈A

(xc ∧ rc,b)
)
.

For stable semantics, the range of the extension is the whole set of arguments.
Therefore, if an argument is not included in the extension, there must be an
attack on it from some argument in the extension. This fact is expressed by

ext(ns, F, T, stb) = ext(ns, F, T, cf ) ∧
∧
a∈A

¬xa → ∨
b∈A

(xb ∧ rb,a)

 .
We move on to strict enforcement. Since here the values of the xa

variables are fixed, there is no need to use them in the encoding at all. Now
conflict-free sets can be encoded as

ext(s, F, T, cf ) =
∧

a,b∈T
¬ra,b,

i.e., all attacks inside the set T are simply removed.
Admissible semantics are encoded by

ext(s, F, T, adm) = ext(s, F, T, cf ) ∧
∧
a∈T

∧
b∈A\T

(
rb,a →

∨
c∈T

rc,b

)
.

For complete semantics, in addition all defended arguments must be
included in the extension. Therefore, there must be an attack on all arguments
outside T that is not defended against by T , expressed by the formula

ext(s, F, T, com) = ext(s, F, T, adm) ∧
∧

a∈A\T

∨
b∈A

(
rb,a ∧

∧
c∈T
¬rc,b

)
.
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6.3 Hard Clauses for Status Enforcement

We continue by providing hard clauses for status enforcement. Let F = (A,R)
be an AF and P,N ⊆ A disjoint sets of arguments whose status is to be
enforced under a semantics σ. We use the same attack variables ra,b for each
a, b ∈ A to express the attack structure of the solution AF. Furthermore,
for each a ∈ A and p ∈ P , define variables xpa, with the interpretation that
τ(xpa) = 1 corresponds to a ∈ Ep, where Ep is any σ-extension containing
the enforced argument p.

For credulous status enforcement, we must make sure that each positively
enforced argument p ∈ P is included in some extension Ep, and all arguments
n ∈ N are not found in any extension Ep. This is achieved for credulous
status enforcement via

status(cred, F, P,N, σ) =
∧
p∈P

(
ϕpσ(F ) ∧ xpp ∧

∧
n∈N
¬xpn

)
,

where ϕpσ(F ) encodes the semantics σ such that the xpa variables correspond
to an extension Ep ∈ σ(F ′) with F ′ = (A,R′), where R′ is defined by the
attack variables ra,b. Like in non-strict extension enforcement, conflict-free
sets are now encoded as

ϕpcf (F ) =
∧

a,b∈A

(
ra,b → (¬xpa ∨ ¬x

p
b)
)
,

stating that if there is an attack, no arguments can be included in the
extension. We encode the admissible semantics via

ϕpadm(F ) = ϕpcf (F ) ∧
∧

a,b∈A

(
(xpa ∧ rb,a)→

∨
c∈A

(xpc ∧ rc,b)
)
,

that is, the admissible extension is conflict-free, and each argument contained
in the extension is defended by the extension. For stable semantics, our
encoding is

ϕpstb(F ) = ϕpcf (F ) ∧
∧
a∈A

¬xpa → ∨
b∈A

(xpb ∧ rb,a)

 ,
which states that the stable extension is conflict-free, and the range of the
extension is the whole set of arguments.

The credulous status enforcement problem for N 6= ∅ under the admissible
and stable semantics, and the skeptical status enforcement problem under
the stable semantics are ΣP

2 -complete. We describe our approach to tackle
the computational complexity in the next section.
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6.4 Capturing Further Variants

Extension enforcement and status enforcement as presented in this work
allow arbitrary changes to the attack structure, and do not allow additional
arguments. However, we note that by adjusting the MaxSAT encoding
of the problem in an appropriate way, further variants of these problems
can be solved via the same approach. First of all, the encoding allows for
introducing any bounded number of additional arguments A′ by considering
A∪A′ instead of the set A in the clauses of the encoding. In addition, fixing
a part of the attack structure of the solution AF is accomplished by making
the corresponding soft clauses hard. In other words, if we want the attacks
R+ ⊆ A×A to be present, and the attacks R− ⊆ A×A not to be present
in the solution AF, we can introduce the hard clauses∧

(a,b)∈R+

ra,b ∧
∧

(a,b)∈R−
¬ra,b

to the encoding, and modify the soft clauses by enumerating through the set
(A×A) \ (R+ ∪R−) instead of A×A. These changes allow for expressing
also the normal, strong, and weak expansions. However, as noted in [17, 43],
in this case the solution is not guaranteed to exist.

Weighted argument systems, as introduced in [52], are an extension of
Dung’s argumentation frameworks. In addition to the arguments and attacks,
a non-zero weight is assigned to each attack, corresponding to the relative
strength of the attack. Similarly to this approach, the enforcement problem
can be modified by introducing a non-zero weight to each (a, b) ∈ A×A via
the weight function w : A × A → Z+. Intuitively, if (a, b) ∈ R, the weight
w(a, b) corresponds to the strength of the existing attack, i.e., how reluctant
we are to remove it, and if (a, b) 6∈ R, the weight w(a, b) expresses how
reluctant we are to add the attack. Now, using weighted partial MaxSAT
instead of partial MaxSAT, this problem can be solved via the same approach
by assigning to each soft clause r′a,b the weight w(a, b).

7 Counterexample-guided Abstraction Refinement
In this section, we present algorithms for solving enforcement problems
beyond NP, i.e., the ΣP

2 -complete problems of strict extension enforcement
under the preferred, semi-stable, and stage semantics; non-strict extension en-
forcement under the semi-stable and (presumably) stage semantics; credulous
status enforcement with N 6= ∅ under the admissible and stable semantics;
and skeptical status enforcement under the stable semantics. Motivated by
completeness of these problem variants for the second level of the polyno-
mial hierarchy, we employ a general approach called counterexample-guided
abstraction refinement [37, 38] (CEGAR). The basic idea is to start with
an NP-abstraction, which is a problem in NP and an overapproximation of
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the original problem, to solve it, leading to a candidate solution. Then we
use an NP-oracle (such as a SAT solver) iteratively to check whether the
candidate is indeed a solution to the original, harder problem by asking it for
a counterexample. If there are none, we are essentially done and can exit the
loop, and if there is, we refine the abstraction by adding constraints which
rule out the counterexample given by the oracle, and continue by solving
the abstraction. We note that there are no guarantees on finding the actual
solution before an exponential blow-up of the encoding of the refinement,
but with efficient refinements this approach has been shown to be effective
in practice in different domains, see for examples [48, 67].

7.1 CEGAR Algorithm for Extension Enforcement

We start by providing CEGAR algorithms solving the strict extension en-
forcement problem under the preferred, semi-stable, and stage semantics,
and the non-strict extension enforcement problem under the semi-stable
and stage semantics, which have all either been shown or conjectured to
be ΣP

2 -complete [90]. In this case, the NP-abstractions used are the ad-
missible or complete semantics for the preferred and semi-stable semantics,
and conflict-free sets for stage, since these overapproximate the problem at
hand (recall Definition 3 and Theorem 4). The abstraction is solved using a
MaxSAT solver, leading to a candidate solution. The validity of the candidate
solution is checked using a SAT solver as an ’NP-oracle’, by constructing
a formula which is unsatisfiable if and only if T has been enforced in the
new AF. If the candidate is not a solution to the original problem, we obtain
a counterexample from the SAT solver, and add refinement clauses to the
MaxSAT solver in order to constrain the abstraction further. This procedure
is repeated until we have no counterexample and reach a solution to the
original problem.

Let F = (A,R) be an AF and T ⊆ A the set to be enforced under
semantics σ ∈ {prf , sem, stg}, and letM ∈ {ns, s} be the type of enforcement
(non-strict or strict). The CEGAR algorithm for solving these problems is

Algorithm 1 CEGAR-based extension enforcement for σ ∈ {prf , sem, stg}
with M = s, and for σ ∈ {sem, stg} with M = ns.

1: if σ ∈ {prf , sem} then χ← com else χ← cf
2: ϕh ← ext(M,F, T, σ)
3: if M = ns then ϕh ← ϕh ∧ range(A)
4: while true do
5: (c, τ)← MaxSAT(ϕh, ϕs(F ))
6: result ← SAT(check(M,A, τ, S, σ))
7: if result = unsatisfiable then return (c, τ)
8: else ϕh ← ϕh∧ refine(τ,M)
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presented as Algorithm 1, the details of which are as follows. The first step is
to choose the base semantics, denoted by χ, that acts as an overapproximation
of the original problem. We choose conflict-free sets for stage and the
admissible or complete semantics for semi-stable and preferred, since these
are solvable via a direct MaxSAT call (recall Section 6.2). Next, we construct
the MaxSAT clauses for solving the corresponding extension enforcement
problem under the semantics χ, and enter the main loop of the algorithm.
In the loop, we solve the problem via a MaxSAT solver call, extracting a
truth assignment τ . Then we use it to construct the candidate solution AF
F ′ = (A,R′), where

R′ = {(a, b) | a, b ∈ A, τ(ra,b) = 1}.

Now we can use a SAT solver to check whether F ′ is also a solution to
the enforcement problem under the semantics σ. Recall that for strict
enforcement, we need to check if T ∈ σ(F ′), and for non-strict enforcement,
we check if T ′ ∈ σ(F ′), where

T ′ = {a ∈ A | τ(xa) = 1}.

For this SAT solver call, we encode the base semantics as in [23], defining
variables xa for each a ∈ A with the interpretation a ∈ E ∈ σ(F ′). Now,
conflict-free sets are encoded as

extension(F ′, cf ) =
∧

(a,b)∈R′
(¬xa ∨ ¬xb),

stating that for all attacks in R′, either the attacker or the attacked argument
is not contained in the conflict-free set. Admissible semantics can be expressed
by the clauses

extension(F ′, adm) = extension(F ′, cf ) ∧
∧

(b,a)∈R′

xa →
 ∨

(c,b)∈R
xc

 ,
that is, an admissible extension is conflict-free, and if there is an attack on
an argument in the extension, there must be a defending argument in the
extension. Finally, we encode complete semantics by

extension(F ′, com) = extension(F ′, adm)

∧
∧
a∈A

 ∧
(b,a)∈R′

 ∨
(c,b)∈R′

xc

→ xa

 ,
i.e., complete extensions are admissible, and each argument that is defended
is also included in the extension. For preferred semantics, we check whether
there is a strict superset of T , which we express via

superset(F ′, T, prf ) =
∧
a∈T

xa ∧
∨

a∈A\T
xa.
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In the case of semi-stable and stage semantics, we need to likewise search
for a superset with respect to the range of T (for strict enforcement) or T ′
(for non-strict enforcement), which we denote by S. To accomplish this, we
define for each a ∈ A new Boolean variables x+

a which encode the range of
each argument as a conjunction of equivalences

range(F ′) =
∧
a∈A

x+
a ↔

xa ∨ ∨
(b,a)∈R′

xb

 .
Now, under σ ∈ {sem, stg}, checking whether there is a superset of S with
respect to the range is encoded as

superset(F ′, S, σ) =
∧

a∈S+
R′

x+
a ∧

∨
a∈A\S+

R′

x+
a ∧ range(F ′).

If such a superset that is a χ-extension exists, the formula

check(M,A, τ, S, σ) = extension(F ′, σ) ∧ superset(F ′, S, σ)

is satisfiable, providing a counterexample that F ′ is not an actual solution,
that is, T or T ′ is not a σ-extension in F ′.

For the refinement step, we define the shorthand that encodes the attack
structure R′ of F ′ via

attack(τ) =
∧

(a,b)∈R′
ra,b ∧

∧
{a,b}⊆A,(a,b)/∈R′

¬ra,b.

The current abstraction ψ is in the strict case refined by

refine(τ, s) = ¬attack(τ),

which rules out the attack structure of the candidate solution. In the non-
strict case, however, it may be that the attack structure of our candidate
solution is indeed correct, but the superset T ′ of T is not. In other words,
there might be a χ-extension T ′′ that is also a σ-extension in F ′. If this is
the case, then the range of the set T ′′ is not a subset of the range of T ′. This
is ruled out by

refine(τ, ns) = ¬attack(τ) ∨
∨

a∈A\T ′+
R′

x+
a ,

where we have defined range variables (Line 3) via

range(A) =
∧
a∈A

x+
a ↔

xa ∨ ∨
b∈A

(rb,a ∧ xb)

 .
Algorithm 1 solves strict enforcement for {prf , sem, stg} and non-strict

enforcement for {sem, stg} optimally, as at each iteration the current ab-
straction is solved optimally.

32



Example 12. Consider the AF F in Figure 1 on page 4, and enforcing
T = {b} strictly under the preferred semantics. We go through a hypothetical
run of the CEGAR algorithm, proceeding as follows. Start by defining Boolean
variables

ra,a, ra,b, ra,c, ra,d, rb,a, rb,b, rb,c, rb,d, rc,a, rc,b, rc,c, rc,d, rd,a, rd,b, rd,c, rd,d.

Using complete as the semantics for the abstraction, we form the hard clauses
ϕh = ext(s, F, T, com) along with the soft clauses ϕs(F ), and enter the
CEGAR loop of Algorithm 1. Suppose the MaxSAT solver returns a truth
assignment that corresponds to an AF F ′ = (A,R′), where

R′ = {(a, b), (b, a), (c, d), (d, c)},

i.e., the attack (b, a) has been added and the attack (b, c) removed, illustrated
in Figure 7.

Now, we form an instance of SAT with the variables xa, xb, xc and xd,
and the clauses

check(s,A, τ, T, prf ) = extension(F ′, adm) ∧ superset(F ′, T, prf )
= (¬xa ∨ ¬xb) ∧ (¬xc ∨ ¬xd)
∧ (xb → xb) ∧ (xa → xa)
∧ (xd → xd) ∧ (xc → xc)
∧ xb ∧ (xa ∨ xc ∨ xd).

This instance is satisfiable via the truth assignment τ(xa) = 0, τ(xb) = 1,
τ(xc) = 1, τ(xd) = 0, corresponding to the admissible extension {b, c}.
Therefore we get a counterexample, and we refine the solution via adding the
hard clause

refine(τ, s) = ¬attack(τ)
and continue in the CEGAR loop. Now suppose the MaxSAT solver suggests
the attack structure

R′′ = {(a, b), (b, a), (b, c), (b, d), (c, d), (d, c)},

i.e., the attacks (b, a) and (b, d) have been added into the framework, illustrated
in Figure 7. Again, we form an instance of SAT with the variables xa, xb,
xc and xd, and the clauses

check(s,A, τ, T, prf ) = extension(F ′, adm) ∧ superset(F ′, T, prf )
= (¬xa ∨ ¬xb) ∧ (¬xb ∨ ¬xc)
∧ (¬xb ∨ ¬xd) ∧ (¬xc ∨ ¬xd)
∧ (xb → xb) ∧ (xa → xa)
∧ (xc → xd) ∧ (xd → (xb ∨ xc))
∧ (xc → (xb ∨ xc))
∧ xb ∧ (xa ∨ xc ∨ xd)
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Since we must set τ(xb) = 1 due to the unit clause xb, we know that we
must set τ(xa) = 0, τ(xc) = 0 and τ(xd) = 0 due to the clauses encoding
conflict-freeness. Therefore the instance is unsatisfiable, since the clause
xa ∨ xc ∨ xd is not satisfied. Now we know that the AF F ′ = (A,R′) is an
optimal solution to the enforcement problem.

a b c d a b c d

Figure 7: The argumentation frameworks F ′ (left) and F ′′ (right) in Exam-
ple 12.

7.2 CEGAR Algorithm for Status Enforcement

We continue by describing the CEGAR procedures for solving the credulous
status enforcement problem with negatively enforced arguments under the
admissible and stable semantics, and the skeptical status enforcement problem
under the stable semantics, which are complete for the second level of
polynomial hierarchy (recall Section 4). We start with credulous status
enforcement. Since for N = ∅ the corresponding problems are solvable via a
direct MaxSAT solver call, we can use those as the NP-abstractions of the
general credulous status enforcement problem to generate a candidate solution.
Next we check with a SAT solver whether there exists a counterexample,
i.e., whether there exists an extension in the candidate AF containing some
negatively enforced argument. Then we repeat the procedure until no
counterexample is found, in which case the candidate solution is a solution
to the original problem.

Let F = (A,R) be an AF, and P,N ⊆ A, P ∩N = ∅, sets of arguments
whose status is to be enforced positively and negatively, respectively, under
semantics σ ∈ {adm, stb}. The details of the CEGAR algorithm (Algo-
rithm 2) are as follows. First, we construct the MaxSAT clauses for the
credulous status enforcement problem via status(cred, F, P,N, σ), and enter
the CEGAR loop. The problem is solved by a MaxSAT solver, generating

Algorithm 2 CEGAR-based status enforcement for AF F = (A,R), P,N ⊆
A, σ ∈ {adm, stb}, M ∈ {cred, skept}

1: ϕ← status(M,F, P,N, σ)
2: while true do
3: (c, τ)← MaxSAT(ϕh, ϕs(F ))
4: result ← SAT(check(M,A, τ, P,N, σ))
5: if result = unsatisfiable then return (c, τ)
6: else ϕh ← ϕh∧refine(τ)
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a candidate solution (Line 3) F ′ = (A,R′), where each p ∈ P is enforced
positively and each n ∈ N is not contained in the witness extensions via

R′ = {(a, b) | a, b ∈ A, τ(ra,b) = 1}.

Then we still need to check that each n ∈ N is not contained in any σ-
extension of the AF F ′, which is achieved via a SAT solver call on Line 4.
For the SAT check, we encode the base semantics as in [23]. The encodings
were defined in Section 7.1, and we denote them by extension(F ′, σ) for
σ ∈ {adm, stb}. Now the clauses of the SAT check are

check(cred, A, τ, P,N, σ) = extension(F ′, σ) ∧
∨
n∈N

xn,

which states that some argument in N is credulously accepted, or in some
σ-extension. If it is satisfiable, we have a counterexample, and proceed to the
refinement step, where we exclude the attack structure R′ of the candidate
solution by adding the clauses

refine(τ) = ¬attack(τ)

to the initial MaxSAT encoding. Algorithm 2 describes this procedure, which
solves the optimal status enforcement problem, since in each iteration step
the current abstraction is solved optimally.

We proceed to skeptical status enforcement under stable semantics, which
is in the restricted (N = ∅) and general case ΣP

2 -complete. The CEGAR
procedure now acts in a dual way by first computing a candidate solution
where all negatively enforced arguments are not skeptically accepted under
stable, i.e., not contained in some witness extension. This is encoded by

status(skept, F, P,N, σ) =
∧
n∈N

(
ϕnσ(F ) ∧ ¬xnn ∧

∧
p∈P

xnp

)
.

Again, we extract an AF F ′ = (A,R′) using the truth assignment extracted
from the MaxSAT solver call, but we still need to check whether all positively
enforced arguments are contained in every stable extension. The clauses of
the SAT check are

check(skept, A, τ, P,N, stb) = extension(F ′, σ) ∧
∨
p∈P
¬xp,

and if this formula is satisfiable, there is a stable extension not containing
a positively enforced argument, i.e., a positively enforced argument is not
skeptically accepted. In this case we have a counterexample, so we can rule
out the current attack structure via the same refinement clause. In the
restricted case N = ∅, we initially enforce a stable extension containing P
via status, and proceed similarly.
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Figure 8: System architecture of Pakota.

8 Implementation
We have implemented the encodings and algorithms described in Sections 6
and 7, resulting in the software system dubbed Pakota.2 The Pakota system
is implemented in the C++programming language. The source code is
available at

http://www.cs.helsinki.fi/group/coreo/pakota/

under the MIT license. In what follows, we describe the main components
and system architecture of the system (Section 8.1) and main features of
Pakota (Section 8.2), detail the implemented algorithms (Section 8.3), input
and output specifications (Section 8.4), and usage (Section 8.5).

8.1 System Architecture

The system architecture of Pakota is shown in Figure 8. Pakota accepts input
for the extension enforcement problem and for the credulous and skeptical
status enforcement problem in the so-called APX format (see Section 8.4),
which is parsed into an enforcement instance. The algorithms implemented in
Pakota that solve the given enforcement instance form the main component
of the system and are described in Section 8.3, employing a MaxSAT solver,
or, for problem variants beyond NP, interacting MaxSAT and SAT solvers.
Pakota offers a generic MaxSAT interface for plugging in the MaxSAT solver

2’Pakota’ is the imperative form of ’to enforce’ in Finnish language.
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of choice and already includes MaxSAT solvers Open-WBO [71] (version
1.3.1) and LMHS [82] (version 2015.11), and the SAT solvers MiniSAT [57]
(version 2.2.0, included with LMHS) and Glucose [8, 9, 10] (version 3.0,
included with Open-WBO). We detail usage of the MaxSAT interface in
Section 8.2.

The implemented algorithms for the enforcement problems can be classi-
fied according to whether they solve an NP problem or a second-level problem.
For the former, the enforcement instance is encoded in a MaxSAT instance
and the solution given by a MaxSAT solver is decoded to construct a solution
AF to the enforcement problem, again in the APX format. In the case
that the given task is a second-level problem, the algorithms implement a
counterexample-guided abstraction refinement procedure, thereby iteratively
querying the MaxSAT solver to construct candidate solutions and checking
whether the candidate is indeed a solution to the enforcement problem via a
SAT solver. In case the candidate is a solution, the decoded AF is returned
in the APX format. Otherwise, i.e., in case the candidate is a non-solution,
the current MaxSAT encoding is iteratively refined until an actual optimal
solution is found.

8.2 Features

We overview the general features of the Pakota system, including supported
AF semantics, problem variants, and solver interfaces.

8.2.1 Supported Semantics and Reasoning Modes

Pakota currently supports optimally enforcing an extension both strictly and
non-strictly under the admissible, complete, preferred, stable, semi-stable,
and stage semantics. Further, Pakota implements optimal credulous status
enforcement under the admissible, complete, preferred, and stable semantics,
and optimal skeptical status enforcement under the stable semantics. An
overview of the supported semantics and reasoning modes is given in Table 4
with further implementation details for certain parameter choices discussed
in more detail in Section 8.3.

8.2.2 MaxSAT and SAT Solver Interfaces

Essentially any MaxSAT solver whose source code is available can be plugged
into the system. This is enabled in Pakota by offering two interfaces,
MaxSATSolver.h and SATSolver.h. By creating new classes that imple-
ment these interfaces and defining the pure virtual functions declared in
them, one can compile and link these to the Pakota system, which will then
use the corresponding MaxSAT and SAT solvers for solving the enforcement
problems. As an implementation-level detail, note that, if the MaxSAT solver
uses a SAT solver internally, which is usually the case, an easy solution to
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Table 4: Extension and status enforcement problems supported by Pakota.
Enforcement parameters semantics Encoding/Algorithm
extension ns adm, com, prf ext(ns, F, T, adm)
extension ns stb ext(ns, F, T, stb)
extension ns sem,stg Algorithm 1
extension s com ext(s, F, T, com)
extension s prf ,sem,stg Algorithm 1
status cred, N = ∅ adm, com, prf status(cred, A, P, ∅, adm)
status cred, N = ∅ stb status(cred, A, P, ∅, stb)
status cred adm, com, prf Algorithm 2
status cred stb Algorithm 2
status skept stb Algorithm 2

potential naming conflicts is to use the same SAT solver as the SAT solver
in CEGAR procedures within Pakota. The source code of Pakota already
includes implementations of these interfaces for two different MaxSAT solvers,
Open-WBO [71] and LMHS [82], allowing the use of these solvers simply
by editing the MAXSAT_SOLVER parameter in the included Makefile before
compiling.

8.2.3 MaxSAT and IP Encodings

In addition to directly solving extension and status enforcement instances,
Pakota can for the NP variants of the problems output the internal MaxSAT
encodings both in the standard WCNF MaxSAT input format as well as
integer programs (IPs) in the standard LP format (applying the standard
textbook encoding of MaxSAT as IP [6]). The latter option allows for
calling state-of-the-art IP solvers, such as CPLEX [65] or Gurobi [63], on the
encodings.

8.3 Algorithms

Depending on the inherent complexity of the problems, Pakota solves the
extension or status enforcement problem at hand by either encoding the
problem in MaxSAT (NP-complete problems), or within a counterexample-
guided abstraction refinement (CEGAR) scheme utilizing a MaxSAT solver
in an iterative or incremental fashion (problems complete for the second level
of polynomial hierarchy). Table 4 provides details, depending on the chosen
parameters and semantics, for each problem variant, whether it is solved
via direct encoding to MaxSAT or via a MaxSAT-based CEGAR algorithm
(detailed as Algorithms 1 and 2).
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8.4 Input Format

For extension enforcement, the input AF and enforcement request are speci-
fied using the following predicates, extending the APX format for AFs.

arg(X). X is an argument
att(X,Y). there is an attack from X to Y

enf(X). enforce argument X

As in extension enforcement, for status enforcement the AF is represented
using the arg and att predicates. The arguments to be positively and nega-
tively enforced are represented via the pos and neg predicates, respectively.
For example, pos(a). enforces argument a positively. The reasoning mode
between credulous and skeptical is chosen from the command line.

Example 13. The enforcement of argument a for the AF in Fig. 9(a) is
specified in the Pakota input format as shown in Fig. 9(b). On this input,
Pakota may return the output shown in Fig. 9(c), i.e., the AF in Fig. 9(d).

a

b c

d

arg(a).
arg(b).
arg(c).
arg(d).
att(b,a).
att(b,c).
att(c,a).
att(c,d).
att(d,b).

enf(a).

arg(a).
arg(b).
arg(c).
arg(d).
att(a,b).
att(b,a).
att(b,c).
att(c,a).
att(c,d).
att(d,b).

a

b c

d

(a) (b) (c) (d)

Figure 9: Pakota input and output formats by example.

8.5 Usage and Options

After compilation, the Pakota system is used from the command line as
follows.

./pakota <file> <mode> <sem> [options]

The command line arguments enabling the choice of AF semantics and
reasoning mode are the following.

<file> : Input filename for enforcement instance in apx format.
<mode> : Enforcement variant: mode={strict|non-strict|cred|skept}

strict : strict extension enforcement
non-strict : non-strict extension enforcement

39



cred : credulous status enforcement
skept : skeptical status enforcement

<sem> : Argumentation semantics. sem={adm|com|stb|prf|sem|stg}
adm : admissible
com : complete
stb : stable
prf : preferred
sem : semi-stable (only for extension enforcement)
stg : stage (only for extension enforcement)

Furthermore, command line options -h (for help message), -v (for version
number), -o (for specifying output to file) and -t (for outputting NP-
encodings in WCNF and LP formats) are available.

8.6 Benchmarks and Generators

The Pakota webpage also offers sets of benchmarks for both extension
enforcement and status enforcement in the Pakota input format. Furthermore,
we provide via the webpage our benchmark generator software, AfGen and
EnfGen, which we used to generate the benchmark sets. The AF generator
AfGen forms argumentation frameworks in APX format implementing the
Erdős-Rényi random digraph model. The generator is called as

./afgen <args> <prob>

where parameters <args> and <prob> specify the number of arguments and
the probability of an attack in the output AF. The generator forms an
argumentation framework with arguments 1, . . . , <args>, including an attack
between each pair of arguments independently with probability <prob>.

The enforcement instance generator EnfGen takes as input an AF in
APX format, and produces an enforcement instance. It is called as

./enfgen <file> <mode> <enfs>

where <file> is the input AF and <mode> is either ext or status, cor-
responding to extension and status enforcement, respectively. In case of
extension enforcement, <enfs> is an integer stating the number of arguments
to be enforced, and for status enforcement, <enfs> is a pair of integers,
corresponding to the number of positively and negatively enforced arguments.
The generator reads the arguments from the AF and samples the enforced
arguments uniformly at random, without replacement.
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9 Empirical Evaluation
We present results from an empirical evaluation of the Pakota system by
providing scalability experiments under different problem variants for exten-
sion and status enforcement, both for the NP- and ΣP

2 -complete problems.
In addition we evaluate the impact of the choice of the underlying MaxSAT
solver. For the NP-complete problem variants, we used the state-of-the-art
MaxSAT solvers MaxHS [44], Maxino [2], MSCG [73], Open-WBO [71],
and WPM [5], using the MaxSAT Evaluation 2015 versions, as well as the
commercial IBM CPLEX integer programming solver (version 12.6), by
directly solving the CNF encoding as produced by Pakota. For CEGAR, we
compare the performance of Open-WBO and LMHS [82] as the underlying
MaxSAT solvers, as supported by Pakota. Out of the solvers considered,
Maxino, MSCG, Open-WBO, and WPM are core-guided MaxSAT solvers,
and MaxHS and LMHS are SAT-IP hybrids.

For extension enforcement, we also compare the performance of Pakota
and the only other solver for extension enforcement we are aware of, described
in [43], and obtained from the author and developer of the solver Jean-Guy
Mailly. We refer to it as the IJCAI’15 solver. We note that the obtained
version of the IJCAI’15 solver does not support any other AF semantics than
stable, and therefore no results for other semantics on this solver can be
presented.

The experiments were run on 2.83-GHz Intel Xeon E5440 quad-core
machines with 32-GB RAM and Debian GNU/Linux 8 using a timeout of
900 seconds per instance. We generated the benchmarks using our AfGen
and EnfGen generators. The generated instances are available at

http://www.cs.helsinki.fi/group/coreo/pakota/

9.1 Results for Extension Enforcement

To obtain benchmarks for extension enforcement, for each number of argu-
ments |A| ∈ {25, 50, . . . } and each edge probability p ∈ {0.05, 0.1, 0.2, 0.3},
we generated five AFs. For each AF, we generated five enforcement instances
with |T | enforced arguments, for each |T |/|A| ∈ {0.05, 0.1, 0.2, 0.3}. We thus
obtained 400 instances for each |A|.

For the NP-complete extension enforcement problems, we consider the
tasks of enforcing an extension non-strictly under the admissible and stable
semantics, and strictly under the complete semantics. In Figure 10 (left)
we show the median runtimes for Open-WBO and CPLEX on non-strict
admissible, strict complete, and non-strict stable extension enforcement,
along with the IJCAI’15 solver [43] on non-strict stable, with respect to the
number of arguments in the problem instance. The median runtimes for
Open-WBO are clearly lower than for the rest of the solvers, which indicates
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that using core-guided MaxSAT solvers is a promising approach for solving
the extension enforcement problem, with most of the instances even with
|A| = 350 solved under one second. The performance of the IJCAI’15 solver
is almost the same as that of CPLEX, which comes as no surprise, since it
also encodes the problem instance as an instance of IP, using CPLEX as the
underlying solver.

Turning to the ΣP
2 -complete problem of enforcing an extension strictly

under the preferred semantics, we show the median runtimes for the CEGAR
algorithm in Figure 10 (right) w.r.t. the number of arguments in the instance.
The runtime for each instance is included as a point in the plot, visualizing
the distribution of the runtimes. We used Open-WBO as the MaxSAT
solver, and the complete semantics as the base abstraction. Even with
175 arguments, most of the instances are solved within one second, which
demonstrates the practical applicability of the CEGAR approach on this
particular problem.

Similarly, for the ΣP
2 -complete problem of extension enforcement under

the semi-stable semantics, Figure 11 includes plots for the strict (left) and non-
strict (right) variants of the problem, again using Open-WBO as the MaxSAT
solver and the complete semantics as the base abstraction. Comparing to
the plot in Figure 10 (right), we can see similar scalability as in the case
of preferred semantics. For the strict version (left), we can see unusually
high median runtimes at around 50 arguments, the cause of which is unclear.
This could be related to how the algorithms of the MaxSAT and SAT solvers
behave on the encodings used in this problem.
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Figure 10: Left: NP-complete extension enforcement (non-strict under
admissible and stable, strict under complete); right: ΣP

2 -complete strict
extension enforcement under the preferred semantics.

42



number of arguments

C
P

U
 ti

m
e 

(s
ec

on
ds

)

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●●●

●

●●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●●

●●

●

●●●

●

●

●●

●

● ●●●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●
●

● ●

●

●●●●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●●

●

●●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

● ●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●● ●●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

● ●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●●

●

●

●

● ●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●●●●●● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●
●

●●

●

●

●

●● ●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●
●

●

● ●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

● ● ●●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●●

●

●●

●

●

● ●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●
●

●● ●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●

●●

● ●

●

●
●

●

●●

●

●●

● ●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●

● ● ●

●

● ●

●

●

●

●●

●

●

●
●

● ●

●

●

●● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●●

●●
●

●

●●

●

● ●

●

●

●● ●●●

●

●●

●

●

●

● ●

●

●

●

●●

●

●●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●●●

●

●●

●

●

●

●

●

●

● ●●●

●●

● ●●

●

●●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●●

●

●●

●

●

●●● ●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

25 50 75 100 125 150 175 200

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

median

number of arguments

C
P

U
 ti

m
e 

(s
ec

on
ds

)

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25 50 75 100 125 150 175 200
0.

00
1

0.
01

0.
1

1
10

10
0

10
00

median

Figure 11: ΣP
2 -complete extension enforcement under the semi-stable se-

mantics. Left: strict extension enforcement; right: non-strict extension
enforcement.
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Figure 12: MaxSAT solver comparison for NP-complete non-strict extension
enforcement under the admissible semantics.
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Figure 13: MaxSAT solver comparison for NP-complete strict extension
enforcement under the complete semantics.
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Figure 14: MaxSAT solver comparison for NP-complete non-strict extension
enforcement under the stable semantics.
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Figure 15: MaxSAT solver comparison for ΣP
2 -complete strict extension

enforcement under preferred semantics.

In Figures 12 (right), 13 (right) and 14 (right) we demonstrate the median
runtimes for Open-WBO, WPM, Maxino, MSCG, MaxHS, and CPLEX,
with respect to the number of arguments. These plots also indicate that
Open-WBO performs better than the rest of the solvers in terms of median
runtimes—all in all, the core-guided MaxSAT solvers Open-WBO, WPM,
Maxino and MSCG perform the best. On non-strict extension enforcement
under admissible (Figure 12, right) and stable (Figure 14), the median
runtimes for MaxHS are surprisingly high between 100 and 150 arguments,
which is not the case for strict enforcement under complete (Figure 13).
Since MaxHS is the only SAT-IP hybrid MaxSAT solver in this comparison,
a possible cause is that the algorithm of the solver on the encoding of the
problem behaves differently on smaller instances. However, the reason for this
is unclear, and would need further investigation beyond this work. Another
interesting fact is that the cactus plots in Figures 12 (left), 13 (left) and 14
(left) reveal that CPLEX performs considerably better in terms of solving
more instances than the rest of the solvers, although for non-strict admissible
(Figure 12 (left)) and non-strict stable (Figure 14 (left)), it runs slower than
most of the other solvers. In addition, as seen from Figure 13, on strict
complete CPLEX and Maxino are the only solvers which solve all of the
instances generated within the timeout limit. We can also see from the plots
that for strict enforcement under complete semantics, all of the MaxSAT
solvers solve more instances compared to non-strict admissible and non-strict
stable, indicating that strict complete is empirically easier on these instances.

In Figure 15 we illustrate the performance of the MaxSAT solvers Open-
WBO and LMHS on the CEGAR approach for strict enforcement under the
preferred semantics, by including the runtime of each instance as a point in
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the plot. We can see that most of the points in the plot are on the upper-left
side, indicating that the core-guided solver Open-WBO solves most of the
generated instances faster than the SAT-IP hybrid LMHS, and therefore
provides the better option for the MaxSAT solver in the CEGAR algorithm.

The results of the empirical evaluation for stage semantics are not shown
here, since most of the instances timeout even at 25 arguments. This is due to
using the conflict-free semantics as the base abstraction, which basically just
tells the MaxSAT solver to remove all attacks inside the enforced set. This
results in the solver guessing truth assignments, i.e., the attack structure,
without any further constraints. Therefore in practice the algorithm has too
many iterations in the CEGAR loop, resulting in high runtimes. To improve
the approach, we hypothesize that a more restricting base abstraction, or
better refinement clauses, are needed. This would be an interesting idea for
future work beyond this thesis. It would also be interesting to investigate
whether the encodings for other semantics could be optimized further.

In summary, we have shown that using MaxSAT solvers and a CEGAR-
based approach for extension enforcement is practically viable, solving in-
stances with 200 arguments and beyond. In general, core-guided MaxSAT
solvers provide the best alternative in terms of the median runtimes.

9.2 Results for Status Enforcement

To generate benchmark instances for status enforcement, for each |A| ∈
{20, 40, . . . , 200} and edge probability p ∈ {0.05, 0.1, . . . , 0.35}, we generated
10 AFs. For each AF, we generated an enforcement instance containing

(|P |, |N |) ∈ {(1, 0), (2, 0) . . . , (5, 0), (5, 1), (2, 2), (1, 5)}

positively and negatively enforced arguments. This gave a total of 560 status
enforcement instances for each |A|.

The mean runtimes for the NP-complete problem of credulous status
enforcement under the admissible semantics for N = ∅ (left), and for the
ΣP

2 -complete problem of credulous and skeptical status enforcement under
the stable semantics (right) are shown in Figure 16, using Open-WBO as the
MaxSAT solver. Timeouts are included when calculating the mean as 900
seconds. The number of positively enforced arguments significantly affects
the empirical hardness of the problem, as seen from the left plot. After 100
arguments in the instance, for |P | > 2, the mean runtime starts approaching
the timeout limit, indicating that most of the instances are not solved.
From the right plot, we can clearly see that under the stable semantics,
credulous status enforcement is easier than skeptical status enforcement. In
the credulous case, again the number of positive arguments seems to be the
most significant factor for the hardness of the problem. In the skeptical case,
however, the numbers of positively and negatively enforced arguments do
not seem to significantly affect the runtimes.
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Figure 16: Left: NP-complete credulous status enforcement under the ad-
missible semantics (N = ∅); right: ΣP

2 -complete status enforcement under
the stable semantics.
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Figure 17: MaxSAT solver comparison for NP-complete credulous status
enforcement (N = ∅) under the admissible (left) and stable (right) semantics.
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Figure 18: MaxSAT solver comparison for ΣP
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skeptical (right) status enforcement under the stable semantics with N 6= ∅.
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The MaxSAT solver comparison for NP-complete credulous status en-
forcement with N = ∅ under the admissible (left) and stable (right) semantics
is shown in Figure 17. Again, out of all the solvers considered, core-guided
MaxSAT solvers Open-WBO, Maxino, MSCG and WPM perform better than
other solvers. Open-WBO is clearly the best option, solving more instances
than the rest of the solvers, and doing it faster than the rest of the solvers.
It is interesting, however, that for the credulous status enforcement problem
CPLEX solves less instances than any other solver, but in extension enforce-
ment it solved more instances than any other solver. Figure 18 provides the
mean runtimes for the ΣP

2 -complete tasks of credulous and skeptical status
enforcement under the stable semantics with N 6= ∅, using Open-WBO and
LMHS as the MaxSAT solvers in the CEGAR algorithm. The core-guided
solver Open-WBO clearly outperforms the SAT-IP hybrid LMHS in terms
of the mean runtimes.

Summarizing the results for status enforcement, similarly to extension
enforcement, core-guided MaxSAT solvers provide the best alternative out
of the solvers considered, both for directly encoding the problem, and for
the CEGAR-based approach. However, status enforcement is clearly much
harder to solve in practice. For the NP-complete variants, this can be seen
from Figure 17 by noting that under 2500 instances are solved within the
timeout limit by the best solver, out of the total 5600 instances. Perhaps
better encodings could be developed in order to solve the problem efficiently.
These would also be useful in the CEGAR algorithm for status enforcement.
The CEGAR algorithm could be improved further by using more restrict-
ing refinement clauses, as in the current approach only the current attack
structure is forbidden.

Finally, beyond this work, an interesting question to investigate is why
core-guided solvers seem to be the best alternative for both extension and
status enforcement. This problem could be tackled via theoretical analysis
of the MaxSAT algorithms and how the encodings of the problems affect
their performance.

10 Conclusions
The dynamic aspects of argumentation frameworks is a recent and currently
active research direction. The computational aspects of dynamics, how-
ever, have not been studied on a large scale. This thesis contributes by
providing complexity results and algorithms for two fundamental dynamic
computational problems in abstract argumentation—extension and status
enforcement. We defined the problems as discrete optimization problems.
We analyzed the computational complexity of the problem under different
problem parameters, proving that the general problem is NP-hard, with the
complexity ranging from polynomial-time solvable to the completeness on the
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second level of the polynomial hierarchy. We described algorithmic solutions
to the problem, utilizing a declarative approach where maximum satisfiabil-
ity is used as the constraint optimization language. For the NP-complete
variants of the problem, we provided direct encodings in MaxSAT, and for
the ΣP

2 -complete variants, an iterative CEGAR-based procedure where in
addition SAT solvers are used as practical NP-oracles. We implemented these
algorithms, resulting in the software system Pakota, which we described in
high detail and evaluated on random benchmarks with different parameters.

There are various potential ways to extend this work in the future. The
computational complexity map is not yet full—there are no completeness re-
sults for strict extension enforcement under the stage semantics and skeptical
status enforcement under the preferred semantics. Filling these blanks is a
natural way of continuing the research on these problems. In addition, no al-
gorithms have been developed for extension enforcement under the grounded
semantics and skeptical status enforcement under the complete, grounded and
preferred semantics. These procedures could be described and implemented,
extending the existing system. The current implementation could also be
optimized further by using more efficient encodings, or abstractions and
refinements during the CEGAR procedure. Finally, the enforcement problem
could be studied in other argumentation formalisms, and the suitability of
similar approaches to computation to the ones developed in this thesis could
be studied.
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