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Abstract

Abstract argumentation frameworks (AFs), originally proposed by Dung, constitute a central formal model for the
study of computational aspects of argumentation in AI. Credulous and skeptical acceptance of arguments in a given
AF are well-studied problems both in terms of theoretical analysis—especially computational complexity—and the
development of practical decision procedures for the problems. However, AFs make the assumption that all attacks
between arguments are certain (i.e., present attacks are known to exist, and missing attacks are known to not exist),
which can in various settings be a restrictive assumption. A generalization of AFs to incomplete AFs was recently pro-
posed as a formalism that allows the representation of both uncertain attacks and uncertain arguments in AFs. In this
article, we explore the impact of allowing for modeling such uncertainties in AFs on the computational complexity of
natural generalizations of acceptance problems to incomplete AFs under various central AF semantics. Complement-
ing the complexity-theoretic analysis, we also develop the first practical decision procedures for all of the NP-hard
variants of acceptance in incomplete AFs. In terms of complexity analysis, we establish a full complexity landscape,
showing that depending on the variant of acceptance and property/semantics, the complexity of acceptance in incom-
plete AFs ranges from polynomial-time decidable to completeness for Σ

p
3 . In terms of algorithms, we show through an

extensive empirical evaluation that an implementation of the proposed decision procedures, based on boolean satisfi-
ability (SAT) solving, is effective in deciding variants of acceptance under uncertainties. We also establish conditions
for what type of atomic changes are guaranteed to be redundant from the perspective of preserving extensions of
completions of incomplete AFs, and show that the results allow for considerably improving the empirical efficiency
of the proposed SAT-based counterexample-guided abstraction refinement algorithms for acceptance in incomplete
AFs for problem variants with complexity beyond NP.

Keywords: Abstract argumentation, incomplete knowledge, incomplete argumentation frameworks, computational
complexity, decision procedures, empirical evaluation

1. Introduction

The study of computational aspects of argumentation is a topical area of artificial intelligence research. With
strong connections to other forms of nonmonotonic reasoning, abstract argumentation frameworks [41] (AFs) provide
a central formal model for the study of argumentation in AI. Argumentation frameworks take the form of directed
graphs, where the nodes represent abstract arguments, and directed edges form an attack relation between arguments.5

While originally AFs make the assumption that all attacks between arguments are certain, in various settings
such an assumption turns out to be restrictive. In an answer to bypass this restriction, a generalization of AFs to
incomplete argumentation frameworks (IAFs) was recently proposed [16, 17], bringing together earlier-proposed
ideas of a generalization of AFs to partial argumentation frameworks [33, 14] (integrating uncertainty about the
existence of attacks into AFs) and the integration of uncertainty about the existence of arguments into AFs [18]. This10

article contributes to the study of incomplete argumentation frameworks from different computational perspectives. In
particular, we establish the computational complexity of central reasoning problems and their variants in the context
of IAFs under various argumentation semantics, and develop practical decision procedures for NP-hard reasoning
tasks in IAFs.

A key motivation behind incomplete argumentation frameworks is that they allow for representing unquantified15

structural uncertainty, i.e., uncertainty about the existence of particular attacks or arguments without any specified
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probability of existence. Uncertainty is inherently present in argumentative scenarios. In particular, real arguments
as presented by people in dialogues are usually enthymemes [56, 3], which represent explicitly only a part of the
underlying knowledge (i.e., the premises and the claim of the argument). In discussions one can typically assume a
common knowledge base which one can use to construct arguments in a partially implicit manner. However, assump-20

tions on the common knowledge base can be different for different agents, which means that the AFs constructed by
the agents may have different arguments and attacks [63]. The ASPIC+ framework [66] and the encoding proposed by
Wyner et al. [84] are two examples of specific instantiation methods that could translate uncertainty in an underlying
knowledge base to structural uncertainty represented by an incomplete argumentation framework (see Section 8 on
related work for more details).25

Additionally, incomplete argumentation frameworks allow for modeling different types of real-world application
scenarios. As an example, consider several agents, each with their own AF representing their subjective view, and
the problem of merging these AFs [33] (again, see Section 8 for more examples on interesting application scenarios).
While the AFs may coincide in terms of the presence of some arguments and attacks (which can be considered
definite), it is likely that agents partially disagree on the existence of specific arguments or attacks, or that specific30

arguments or attacks are simply not represented in the AFs of some agents. Such arguments and attacks may be
considered uncertain. By merging the agents’ AFs into a single incomplete argumentation framework by taking the
union of all arguments and attacks and specifying elements as definite if they occur in each AF, and otherwise as
uncertain, the resulting single incomplete AF allows for reasoning about, e.g., whether some or all agents find an
argument acceptable. For more details about various approaches to collective acceptability and specific methods for35

structural aggregation of AFs, we refer to the forthcoming handbook chapter by Baumeister et al. [13].
An incomplete argumentation framework can be seen as a representation of a set of possible worlds, called com-

pletions, each of which is a standard argumentation framework that shares all definite elements of the incomplete
framework and where each of its uncertain elements is either included or excluded. Existing criteria for argumen-
tation frameworks can then be generalized to incomplete argumentation frameworks by either asking whether they40

are satisfied possibly (in at least one completion) or necessarily (in all completions), i.e., whether the uncertainty
either can or must be resolved in a way that satisfies the conditions of the given criterion. The answer may help
with decisions in strategic scenarios, where the uncertainty represents possible moves. In scenarios where uncertainty
represents missing information, the preliminary answer may be sufficient for the task at hand, removing the need to
actually resolve the uncertainty.45

In this article, we focus on the central reasoning problems of credulous and skeptical acceptance for incomplete ar-
gumentation frameworks. Credulous and skeptical acceptance are today well-understood when it comes to (standard)
argumentation frameworks (i.e., AFs without any uncertainties on the existence of arguments and attacks). In terms of
standard AFs, acceptance consists of asking—parameterized by a semantics and for a given argumentation framework
and an argument in that framework—either whether that argument is in at least one extension (for credulous accep-50

tance) or in all extensions (for skeptical acceptance) of the framework with respect to the semantics. Generalizing
acceptance in a natural way to IAFs, we focus on variants of the following four problem combinations.

• Possible Credulous Acceptance (PCA):
Is there any way to accept the given argument?

• Necessary Credulous Acceptance (NCA):55

Is the given argument in at least one extension, regardless of how the uncertainty is resolved?

• Possible Skeptical Acceptance (PSA):
Can the uncertainty be resolved in such a way that the given argument is in all extensions?

• Necessary Skeptical Acceptance (NSA):
Is the given argument absolutely guaranteed to be accepted?60

A “no” answer to PCA indicates that the target argument is a hopeless case and will never be accepted, while a “yes”
answer to NSA guarantees that it will be accepted under all circumstances. If the goal is to have the target argument
credulously accepted, then a “yes” answer to NCA ensures that this goal is satisfied, whatever completion or extension
is chosen. If the goal is to have the target skeptically accepted, then the answer to PSA indicates whether that goal can
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be achieved by choosing the right completion. All of these answers provide information that is valuable even when65

the uncertainty cannot be resolved.
Note that in these forms, however, the acceptance problems may show undesired behavior if sets of acceptable

arguments (extensions) are empty, or if no extension exists for a particular semantics: The skeptical acceptance (SA)
problem is trivial for all semantics that always accept the empty set, since then no argument can ever be in all exten-
sions. Further, all semantics that do not guarantee the existence of an extension allow for cases where no argument70

is credulously accepted, but simultaneously, all arguments are skeptically accepted, which may be counterintuitive.
These issues suggest further variants of acceptance for AFs, namely, restricting the semantics to nonempty extensions
and further requiring the existence of at least one extension in order to give a “yes” answer for this variant of skeptical
acceptance. While SA alone indicates whether the target argument is among the “best-accepted” arguments in the AF
with respect to a given semantics, the refined variant EXSA—formally defined as SA with the additional condition75

that an extension exists—indicates whether the target argument is actually and ultimately accepted in the AF with
respect to the semantics. We incorporate these refinements by defining the nonempty restrictions CF, /0 and AD, /0 of
conflict-freeness (CF) and admissibility (AD) (to be formally defined in Section 2) and by generalizing the EXSA
problem to PEXSA and NEXSA for IAFs.

In terms of complexity analysis, we establish a full complexity landscape of all of the mentioned variants of accep-80

tance problems in incomplete argumentation frameworks, considering a range of central argumentation properties and
semantics: standard and nonempty conflict-freeness and admissibility; and stable, complete, grounded, and preferred
semantics. Naturally, as IAFs generalize standard AFs, the complexity of acceptance problems in IAFs is always
at least as high as that of corresponding problems in AFs. It turns out that, depending on the acceptance problem
and the property or semantics used, the complexity of acceptance in IAFs ranges from polynomial-time decidable85

to completeness for Σ
p
3 , a complexity class in the third level of the polynomial hierarchy [65, 80]. In contrast, the

computational complexity of acceptance problems in standard AFs [38, 43] under the same semantics ranges from
polynomial-time decidability to completeness for Π

p
2 , i.e., for certain problem variants we have a one-level jump in

complexity in terms of the polynomial hierarchy when moving from AFs to IAFs. Intuitively, this complexity jump
arises from alternating quantifiers in the respective problem definitions.90

While we establish polynomial-time decidability—directly implying practical specialized algorithms—for specific
problem variants and semantics, most of the variants of acceptance in incomplete argumentations turn out to be hard
for NP, coNP, or even a class higher in the polynomial hierarchy. Motivated by the success of practical boolean
satisfiability (SAT) [21] based decision procedures developed for acceptance in standard AFs [46, 29], we present
the first SAT-based approach to reasoning about acceptance in incomplete AFs. Complementing the complexity95

results, our SAT-based algorithms cover all of the considered variants of acceptance in incomplete AFs and semantics
considered in our complexity analysis. In particular, for the problem variants that turn out to be complete for the
first level of the polynomial hierarchy, generalizing SAT encodings of AF semantics [20] to cover acceptance in
incomplete AFs, we present direct SAT encodings which allow for deciding acceptance with a single call to a SAT
solver. For those problem variants that turn out to be complete for the second or third level of the polynomial hierarchy,100

we develop SAT-based counterexample-guided abstraction refinement procedures, making incremental use of a SAT
solver to decide acceptance in an iterative manner. We also present results from an extensive empirical study of our
implementation of all of the SAT-based algorithms presented, showing the effectiveness of the approach.

Bridging theory and practice, extending on earlier results on the persistence of extensions under atomic changes to
AFs [77], we also establish conditions for what type of atomic changes are guaranteed to be redundant from the per-105

spective of preserving extensions of completions of IAFs. While of interest on their own, this analysis proves central
as a basis of SAT-based counterexample-guided abstraction refinement (CEGAR) algorithms for IAFs. In particular,
we show empirically that the more in-depth analysis of atomic changes to the uncertain part under which an exten-
sion persists gives noticeably stronger refinements for the SAT-based CEGAR algorithms for deciding acceptance in
incomplete AFs, evidenced in practice by noticeably improved runtimes.110

The rest of this article is organized as follows. In Section 2, we give the required formal background regarding
abstract argumentation frameworks, incomplete argumentation frameworks, computational complexity theory, and
SAT solvers. We give a full study of the computational complexity of acceptance problems for incomplete argumen-
tation frameworks in Section 3. In Section 4, we provide results on which atomic changes to the uncertain part of an
incomplete argumentation framework are redundant concerning the acceptability of a given set of arguments. For all115

possible and necessary acceptance problem variants that are complete for complexity classes in the first, second, or
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third level of the polynomial hierarchy, we propose SAT encodings in Section 5 and SAT-based algorithms in Sec-
tion 6. Section 7 reports on an extensive empirical evaluation of our implementation of the algorithms. Section 8
contains a detailed comparison of the model of incomplete argumentation framework to other models that represent
uncertainty in abstract argumentation, and Section 9 summarizes our contribution and suggests future work directions.120

Some of the results presented in this article have been preliminarily presented at AAAI 2020 [71] and COMMA
2018 [15]. This article considerably expands and extends these preliminary conference versions by including all for-
mal proofs in full (omitted from the preliminary versions); by presenting further non-trivial SAT-based algorithms—
in particular, SAT encodings for complete and grounded semantics, and detailed SAT-based algorithms for necessary
credulous acceptance under admissible and stable semantics, and for both necessary and possible skeptical acceptance125

under preferred semantics; by reporting results from a considerably extended empirical evaluation; and by additional
discussion and illustrative examples for self-containment.

2. Preliminaries

In this section, we first provide the needed notions from standard abstract argumentation (where we have no
uncertainty about the existence of arguments or attacks), define the semantics we will consider, and formally define130

the notions and associated decision problems of credulous and skeptical acceptance for them as well as a certain
natural restriction of skeptical acceptance that is due to Dunne and Wooldridge [44]. Then we will formally describe
the incomplete argumentation frameworks due to Baumeister et al. [16, 17] and will define variants of credulous and
skeptical acceptance (and of the above-mentioned restriction of the latter as well) that model whether a given argument
is accepted possibly or necessarily for a given semantics.135

2.1. Argumentation Frameworks

An argumentation framework AF = 〈A ,R〉 consists of a finite set A of arguments and a binary attack relation
R ⊆A ×A on the arguments, where (a,b) ∈R indicates that a attacks b.

Example 1. An AF 〈A ,R〉 can be represented as a directed graph by identifying A with the set of nodes and R
with the set of directed edges of this graph. Figure 1 displays an argumentation framework with arguments A =140

{a,b,c,d,e, f ,g} and attacks R = {(a,b),(b,c),(c,b),(c,e),(d,c),(d, f ), (e,d),( f ,d),(g,e),(g,g)}.

A set A ⊆ A is conflict-free (CF) if (a,b) <R for all a,b ∈ A. An argument a ∈ A is defended by a set A ⊆ A
of arguments in AF if, for each attacker b ∈A of a with (b,a) ∈R, there is a defender d ∈ A of a with (d,b) ∈R.
The characteristic function of AF, FAF : 2A → 2A , outputs all arguments defended by a given set, i.e., FAF(A) = {a ∈
A | a is defended by A in AF}. Fk

AF denotes the k-fold composition of FAF , and F∗AF denotes its infinite composition.145

A conflict-free set A ⊆ A is admissible (AD) if A ⊆ FAF(A), i.e., if every argument in A is defended by A in AF.
These notions allow the definition of the following semantics for argumentation frameworks (see Baroni et al. [5] for
a detailed introduction) that each provide an individual criterion to determine acceptable sets of arguments.

Definition 2. Let AF = 〈A ,R〉 be an argumentation framework and let A⊆A be a conflict-free set of arguments.

• A is complete (CP) if it is a fixed point of the characteristic function of AF, i.e., if A = FAF(A).150

• A is grounded (GR) if it is the unique least fixed point of the characteristic function of AF, i.e., if A = F∗AF( /0).
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Figure 1: Graph representation of the argumentation framework in Example 1.
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(a) Grounded extension.
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(b) Preferred extension.

Figure 2: Visualization of both complete extensions in the AF from Example 1, where arguments are labeled IN if they are in the extension, labeled
OUT if they are attacked by IN arguments, and labeled UNDEC otherwise.

• A is preferred (PR) if A is a set-maximal admissible set.

• A is stable (ST) if for every b ∈A \A, there is an a ∈ A with (a,b) ∈R.

A set of arguments that satisfies the conditions of a semantics is called an extension of the argumentation frame-
work with respect to that semantics. Every stable extension is preferred, every preferred extension is complete, every155

complete extension is admissible, and every admissible set is conflict-free. Further, the unique grounded extension is
complete, and coincides with the intersection of all complete extensions. There are argumentation frameworks that
have no stable extension, while the other semantics defined above guarantee the existence of at least one extension.

Example 3. We determine all extensions of the argumentation framework in Figure 1 from Example 1. Its conflict-
free sets of arguments are {a,c, f}, {a,d}, {a, f ,e}, {b,d}, {b, f ,e}, and all their subsets. Of these, only /0, {a}, { f},160

{a, f}, {c, f}, and {a,c, f} defend all their members (and are therefore admissible), since argument a is unattacked,
argument f defends itself against its only attacker d, and argument c defends itself against b and is defended by f
against d. To determine the complete extensions, we can check which of the admissible sets are fixed points of FAF .
We have FAF( /0) = {a}, FAF({a}) = {a}, FAF({ f}) = {a, f}, FAF({a, f}) = {a,c, f}, FAF({c, f}) = {a,c, f}, and
FAF({a,c, f}) = {a,c, f}. Thus {a} and {a,c, f} are the only complete extensions of AF. Since FAF( /0) = {a} and165

FAF({a}) = {a}, we also know that {a} is the grounded extension of AF. The only set-maximal admissible set is
{a,c, f}, which thus is the only preferred extension of AF. AF has no stable extension, because no conflict-free set
has a chance to attack the self-attacking argument g.

Both complete extensions of this example are displayed in Figure 2 using the labeling representation by Cam-
inada [26], where arguments are labeled IN if they are in the extension, labeled OUT if they are attacked by IN170

arguments, and labeled UNDEC otherwise.

We investigate problems concerning the acceptability of individual arguments in an argumentation framework. The
most established notion of acceptability for single arguments proposed by Dunne and Bench-Capon [43] is derived
from their membership in extensions. For a given s ∈ {CF,AD,CP,GR, PR, ST}, an argument a can only be considered
acceptable if a is contained in at least one s extension (called credulous acceptance), and a is ultimately accepted175

if it is contained in all s extensions (called skeptical acceptance). The following decision problems formalize these
notions.

s-CREDULOUS-ACCEPTANCE (s-CA)

Given: An argumentation framework 〈A ,R〉 and an argument a ∈A .
Question: Is there an s extension E of 〈A ,R〉 with a ∈ E ?

s-SKEPTICAL-ACCEPTANCE (s-SA)

Given: An argumentation framework 〈A ,R〉 and an argument a ∈A .
Question: For all s extensions E of 〈A ,R〉, does a ∈ E hold?
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The question of the s-SKEPTICAL-ACCEPTANCE problem is equivalent to asking whether each set of arguments180

that does not include a is not s in 〈A ,R〉. This alternative formulation moves the verification part of the problem
(which checks whether a set of arguments is an extension) from the scope of the quantifier to the predicate after the
quantifier, which will allow us to directly derive upper complexity bounds later.

The SKEPTICAL-ACCEPTANCE problem exhibits two types of special behavior that we need to address. Firstly,
the answer to s-SKEPTICAL-ACCEPTANCE is trivially “no” if the empty set always satisfies s—this is the case for185

s ∈ {CF,AD} among the properties/semantics that we use in this article. More meaningful results can be obtained by
excluding the empty set for acceptance problems. Therefore, we restrict our investigation to nonempty conflict-free
sets (denoted CF, /0) and nonempty admissible sets (denoted AD, /0), for which the SKEPTICAL-ACCEPTANCE problem
is nontrivial, while the CREDULOUS-ACCEPTANCE problem remains unaffected by this change.

Secondly, if an argumentation framework AF has no s extension, then no argument is credulously accepted in AF190

with respect to s, but at the same time each argument is skeptically accepted. This behavior is due to the convention that
a universal quantifier over an empty set (here, the set of s extensions) defaults to true, but it might be counterintuitive
to call an argument skeptically accepted when it is in fact never accepted. This situation can occur for any semantics
s that does not guarantee the existence of an extension—in our work, this is the case for the CF, /0, AD, /0, and ST
semantics. Dunne and Wooldridge [44] propose a refined version of s-SA for semantics s that do not guarantee the195

existence of an extension. The refined problem additionally requires the existence of at least one s extension in order
to give a “yes” answer. We call this problem s-EXISTENCE-AND-SKEPTICAL-ACCEPTANCE (s-EXSA), since it is
the intersection of s-EXISTENCE (asking whether there exist an s extension of the given argumentation framework)
and s-SKEPTICAL-ACCEPTANCE.

s-EXISTENCE-AND-SKEPTICAL-ACCEPTANCE (s-EXSA)

Given: An argumentation framework 〈A ,R〉 and an argument a ∈A .
Question: Is there at least one s extension in 〈A ,R〉 and is a in all s extensions of 〈A ,R〉?

200

The EXSA problem can equivalently be represented as the intersection of credulous and skeptical acceptance.
For any semantics s that guarantees the existence of at least one extension in every argumentation framework, it is
apparent that s-EXSA and s-SA are equivalent. We will therefore investigate s-EXSA for s ∈ {CF, /0,AD, /0, ST} only.

Example 4. Recall our running example argumentation framework AF from Figure 1. It holds that (AF,a) ∈ CP-SA,
since a is a member of every complete extension of AF. Further, we have (AF,c) ∈ CP-CA, but (AF,c) < CP-SA,205

since argument c occurs in one, but not all complete extensions of AF. For argument b, we have (AF,b) < CP-CA
(and thus (AF,b) < CP-SA), since b is not a member of any complete extension.

Since AF has no stable extension, it holds that (AF,arg) ∈ ST-SA for all arguments arg ∈ A , but on the other
hand, (AF,arg) < ST-EXSA for any argument arg ∈A .

The following relations hold between the CA and SA problems.210

Observation 5. AD-CA = AD, /0-CA = CP-CA = PR-CA, since for every argumentation framework, the union of all
its (nonempty) admissible sets, the union of all its complete extensions, and the union of all its preferred extensions is
the same.

Observation 6. GR-CA = GR-SA, since every argumentation framework has a single unique grounded extension.

Observation 7. GR-SA = CP-SA, since the intersection of all complete extensions in an argumentation framework is215

its grounded extension.

We obtain GR-CA = GR-SA = CP-SA from the combination of Observations 6 and 7.

2.2. Incomplete Argumentation Frameworks
An incomplete argumentation framework 〈A ,A ?,R,R?〉 splits both the set of arguments and the set of attacks

into two disjoint parts, the definite part (A and R) and the uncertain part (A ? and R?), where both R and R? are220

subsets of (A ∪A ?)×(A ∪A ?). For uncertain elements (members of A ? or R?), it is not known whether they
are part of the argumentation—they might be added or removed in the future, or the uncertainty may just represent
the limited knowledge of some agent about those elements. Definite arguments (elements of A ) are known to exist,

6



a

b

c

d

e

f

g

Figure 3: Graph representation of the incomplete argumentation framework in Example 8.
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(f) Excludes a and ( f ,d).
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(g) Excludes a and g.
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(h) Excludes a, g, and ( f ,d).

Figure 4: All completions of the incomplete argumentation framework displayed in Figure 3.

while definite attacks (elements of R) exist if and only if both incident arguments exist, too. To account for this, we
call attacks in R that are incident to at least one uncertain argument conditionally definite, since these attacks may225

vanish alongside an incident uncertain argument. On the other hand, attacks in R that are incident to only definite
arguments are called definite. If A ? = /0, we have a (purely) attack-incomplete argumentation framework [33]; for
R? = /0, a (purely) argument-incomplete argumentation framework; and A ? = R? = /0 yields standard argumentation
frameworks without uncertainty. An attack-incomplete argumentation framework may be abbreviated as 〈A ,R,R?〉
and an argument-incomplete argumentation framework as 〈A ,A ?,R〉.230

Example 8. Figure 3 shows a graph representation of an incomplete argumentation framework 〈A ,A ?,R,R?〉 with
A = {b,c,d,e, f}, A ? = {a,g}, R = {(a,b),(b,c),(c,b),(c,e),(d,c),(d, f ),(e,d),(g,e),(g,g)}, and R? = {( f ,d)},
where definite elements are solid (circles for arguments, and arrows for attacks) and uncertain elements are dashed.
Note that some of the solid attacks are in fact conditionally definite. Unlike Baumeister et al. [17], who represent
conditionally definite attacks by dotted arcs, we will display them here by solid arcs so as to not overload the figures235

with too much information. However, do keep in mind that all arcs incident to uncertain (dashed) nodes will vanish if,
and only if, these nodes vanish in a completion (to be defined below). In this example, this refers to the conditionally
definite attacks (a,b), (g,e), and (g,g).

A completion of an incomplete argumentation framework IAF = 〈A ,A ?,R,R?〉 is any argumentation framework
AF∗ = 〈A ∗,R∗〉 that satisfies A ⊆A ∗ ⊆A ∪A ? and R|A ∗ ⊆R∗ ⊆

(
R ∪R?

)
|A ∗ . Here, the restriction R|A ∗ of240

an attack relation R to A ∗ is defined as R|A ∗ = {(a,b) ∈R |a,b ∈A ∗}. It represents the fact that attacks can only
be part of a completion which includes both incident arguments. However, a conditionally definite attack must be
present in all completions containing both incident arguments, while an uncertain attack may vanish in a completion
that contains both of its incident arguments.

If at least one completion of an incomplete argumentation framework IAF satisfies some property, this property245

is said to hold possibly for IAF. On the other hand, if all completions of IAF satisfy a property, it is said to hold
necessarily for IAF. Accordingly, we define both a possible and a necessary variant of the s-CA, s-SA, and s-EXSA
problems for incomplete argumentation frameworks, for each semantics s considered here. The formal definitions of
the s-NCA, s-PSA, and s-PEXSA problems are as follows.
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s-POSSIBLE-CREDULOUS-ACCEPTANCE (s-PCA)

Given: An incomplete argumentation framework 〈A ,A ?,R,R?〉 and an argument a ∈A .
Question: Does there exist a completion AF∗ = 〈A ∗,R∗〉 of 〈A ,A ?,R,R?〉 and an s extension E of

AF∗ such that a ∈ E ?

250

s-POSSIBLE-SKEPTICAL-ACCEPTANCE (s-PSA)

Given: An incomplete argumentation framework 〈A ,A ?,R,R?〉 and an argument a ∈A .
Question: Does there exist a completion AF∗ = 〈A ∗,R∗〉 of 〈A ,A ?,R,R?〉 such that for each s exten-

sion E of AF∗, we have a ∈ E ?

s-POSSIBLE-EXISTENCE-AND-SKEPTICAL-ACCEPTANCE(s-PEXSA)

Given: An incomplete argumentation framework 〈A ,A ?,R,R?〉 and an argument a ∈A .
Question: Does there exist a completion AF∗ = 〈A ∗,R∗〉 of 〈A ,A ?,R,R?〉 such that AF∗ has an s

extension and for each s extension E of AF∗, we have a ∈ E ?

We define s-NECESSARY-CREDULOUS-ACCEPTANCE (s-NCA), s-NECESSARY-SKEPTICAL-ACCEPTANCE (s-
NSA), and s-NECESSARY-EXISTENCE-AND-SKEPTICAL-ACCEPTANCE (s-NEXSA) analogously to s-PCA, s-PSA,
and s-PEXSA, respectively, except that we now quantify universally over all completions AF∗.255

The scope of the target argument a is restricted to a ∈A instead of allowing a ∈A ∪A ? in all our problem def-
initions, since allowing uncertain arguments as target does not produce any additional interesting cases. Specifically,
for the necessary problem variants, all instances with a ∈A ? are trivial “no” instances. On the other hand, for each
possible problem variant s-P ∈ {s-PCA,s-PSA,s-PEXSA}) and any instance (〈A ,A ?,R,R?〉,a) with a∈A ?, we
have that (〈A ,A ?,R,R?〉,a) ∈ s-P if and only if (〈A ∪{a},A ? \{a},R,R?〉,a) ∈ s-P , so the problem instance260

can be reduced to an equivalent formulation where a ∈A .

Observation 9. Due to Observations 5, 6, and 7, we immediately have the following equalities:
• GR-PCA = GR-PSA = CP-PSA,
• GR-NCA = GR-NSA = CP-NSA,
• AD-PCA = AD, /0-PCA = CP-PCA = PR-PCA, and265

• AD-NCA = AD, /0-NCA = CP-NCA = PR-NCA.

Example 10. All completions of the incomplete argumentation framework from Figure 3 are displayed in Figure 4.
We summarize the preferred and stable extensions of all completions (completions are identified by the label of the
respective subfigure):

semantics 4a 4b 4c 4d 4e 4f 4g 4h
preferred {a,c, f} {a} {a,c, f} {a} {c, f}, {b, f} {b} {b,e, f}, {c, f} {b,e, f}
stable – – {a,c, f} – – – {b,e, f}, {c, f} {b,e, f}

270

We make a few observations:

• (IAF,d) < PR-PCA, since no completion has d in any of its preferred extensions.

• (IAF,b) ∈ PR-PSA, because there are completions that have b in all of their preferred extensions. But on
the other hand, (IAF,b) < PR-NCA, since there are also completions that have b in none of their preferred
extensions.275

• (IAF, f )∈ ST-NSA, because every completion either has no stable extension (resulting in a trivial “yes” answer
for every ST-SA query) or has f in all of its stable extensions. On the other hand, (IAF, f ) < ST-NEXSA, since
not every completion has a stable extension.
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Table 1: Overview of previously known and new complexity results for credulous and skeptical acceptance problems, where previously known
results are ascribed to the respective source (references are numbers in brackets), and new results are labeled with the respective theorem number.
Results marked with an asterisk (∗) are straight-forward. Results for EXSA problem variants (in parentheses) are given only when they differ from
the corresponding result for SA. For any complexity class C , C -c. stands as a shorthand for “C -complete.” Furthermore, “trivial” means that the
answer is always “no,” while “∈ P” implies the existence of a linear-time or constant-time algorithm.

s s-CA s-PCA s-NCA s-SA (s-EXSA) s-PSA (s-PEXSA) s-NSA (s-NEXSA)
CF ∈ P 11 ∈ P 11 ∈ P 11 trivial ∗ trivial ∗ trivial ∗

CF, /0 ∈ P 11 ∈ P 11 ∈ P 11
AD NP-c. [38] NP-c. 13 Π

p
2 -c. 24 trivial ∗ trivial ∗ trivial ∗

AD, /0 coNP-c. (DP-c.) 33 (40) Σ
p
2 -c. 33 coNP-c. (Πp

2 -c.) 13 (36)
ST NP-c. [38] NP-c. 13 Π

p
2 -c. 24 coNP-c. (DP-c.) [38] ([44]) Σ

p
2 -c. 25 coNP-c. (Πp

2 -c.) 13 (36)
CP NP-c. [34] NP-c. 13 Π

p
2 -c. 24 P-c. [34, 49] NP-c. 21 coNP-c. 23

GR P-c. [49] NP-c. 20 coNP-c. 22 P-c. [49] NP-c. 21 coNP-c. 23
PR NP-c. [38] NP-c. 13 Π

p
2 -c. 24 Π

p
2 -c. [43] Σ

p
3 -c. 29 Π

p
2 -c. 13

3. Complexity Results

In this section, we will fully characterize the computational complexity of all variants of the CA and SA problems280

defined above for incomplete argumentation frameworks. Our results (together with previously known results) are
summarized in Table 1.

We assume the reader to be familiar with the needed notions from computational complexity theory, such as the
concepts of hardness and completeness based on polynomial-time many-one reducibility as well as the classes of the
polynomial hierarchy due to Meyer and Stockmeyer [65, 80] and of the boolean hierarchy studied early on by Cai285

et al. [25] and Köbler et al. [57]. In particular, we will consider the well-known classes capturing deterministic and
nondeterministic polynomial time, P and NP, the class DP due to Papadimitriou and Yannakakis [76] (which belongs
to the second level of the boolean hierarchy and has the canonical complete problem 3-SAT-UNSAT, defined as
the intersection of 3-SAT and 3-UNSAT; for the latter two problems, see Table 2 on page 12), and the classes Σ

p
2 ,

Π
p
2 , and Σ

p
3 from the second and third levels of the polynomial hierarchy with their canonical complete problems290

Σ2SAT, Π2SAT, and Σ3SAT (again, see Table 2 on page 12 for their definitions). More background on computational
complexity can be found, for instance, in the textbooks by Papadimitriou [75] and Rothe [78].

The computational complexity of the original CA and SA problems for conflict-freeness, admissibility, and the
stable, complete, grounded, and preferred semantics ranges from P membership to Π

p
2 -completeness and was inves-

tigated by Dimopoulos and Torres [38], Dunne and Bench-Capon [43], Coste-Marquis et al. [34], and Dunne and295

Wooldridge [44] (again, see Table 1). In the remainder of this section, we will present the proofs for our complexity
results.

3.1. Upper Bounds

We start with P membership results for all problem variants that use the CF, /0 semantics.

Proposition 11. The following problems are all in P.300

• CF, /0-CA, CF, /0-SA, CF, /0-EXSA,

• CF, /0-PCA, CF, /0-PSA, CF, /0-PEXSA,

• CF, /0-NCA, CF, /0-NSA, CF, /0-NEXSA.

Proof. Whenever (a,a) ∈ R, any set containing a cannot be conflict-free, and whenever (a,a) < R, {a} is a
nonempty conflict-free set that contains a. We can infer that (〈A ,R〉,a) ∈ CF, /0-CA if and only if (a,a) < R;305

that (〈A ,R〉,a) ∈ CF, /0-SA if and only if (b,b) ∈ R for each b ∈ A \ {a}; and that (〈A ,R〉,a) ∈ CF, /0-EXSA if
and only if both of the above conditions hold simultaneously. All these criteria can be verified in polynomial time, so
CF, /0-CA, CF, /0-SA, and CF, /0-EXSA are in P.

For an instance (IAF,a) with IAF = 〈A ,A ?,R,R?〉 of CF, /0-PCA, CF, /0-PSA, or CF, /0-PEXSA, we construct a
single completion AFpos = 〈A pos,Rpos〉 with A pos = A and Rpos =

(
R ∪{(b,b) ∈R? | b , a}

)
|A pos . An example310
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a b

c

(a) IAF

a b

(b) AFpos

a b

c

(c) AFnec

Figure 5: Example for the completions AFpos and AFnec used in the proof of Proposition 11. Argument a is credulously and skeptically accepted
in AFpos, and therefore possibly credulously and possibly skeptically accepted in IAF. Argument a is not credulously and not skeptically accepted
in AFnec, and therefore not necessarily credulously and not necessarily skeptically accepted in IAF.

is given in Figure 5. AFpos can be constructed in polynomial time and we have that (IAF,a) is a “yes” instance of CF, /0-
PCA, CF, /0-PSA, and CF, /0-PEXSA, respectively, if and only if (AFpos,a) is a “yes” instance of the corresponding
base problem CF, /0-CA, CF, /0-SA, and CF, /0-EXSA, respectively. The implication from the base problem to its
possible generalization is trivial. For the other direction of the equivalence, we cover the problems CF, /0-CA, CF, /0-
SA, and CF, /0-EXSA individually.315

• If (AFpos,a) < CF, /0-CA, then there is no conflict-free set in AFpos that contains a. This can only be the case
if (a,a) ∈Rpos, which by construction of Rpos means that (a,a) ∈R is a definite attack. This implies that a
cannot be in a conflict-free set in any completion, so (IAF,a) < CF, /0-PCA.

• If (AFpos,a) < CF, /0-SA, then there is a nonempty conflict-free set E ⊆A pos that does not contain a. This can
only be the case if (b,b) <Rpos for some b , a in A pos. Since all possible self-attacks of arguments other than320

a are included in Rpos and since b ∈A pos = A is a definite argument, this means that b ∈A ∗ and (b,b) <R∗

for any completion 〈A ∗,R∗〉. Therefore, {b} is a conflict-free set not containing a in every completion, so
(IAF,a) < CF, /0-PSA.

• If (AFpos,a) < CF, /0-EXSA, then there is no conflict-free set in AFpos that contains a, or there is a nonempty
conflict-free set E ⊆ A pos that does not contain a. The previous proofs provide that (IAF,a) < CF, /0-PCA or325

that (IAF,a) < CF, /0-PSA, and therefore (IAF,a) cannot be in the intersection CF, /0-PEXSA of these problems.

Analogously, for an instance (IAF,a) with IAF = 〈A ,A ?,R,R?〉 of CF, /0-NCA, CF, /0-NSA, or CF, /0-NEXSA,
we construct a single completion AFnec = 〈A nec,Rnec〉with A nec =A ∪A ? and Rnec =R∪

(
{(a,a)}∩R?

)
. Again,

an example is given in Figure 5. AFnec can be constructed in polynomial time and we have that (IAF,a) is a “yes”
instance of CF, /0-NCA, CF, /0-NSA, and CF, /0-NEXSA, respectively, if and only if (AFnec,a) is a “yes” instance of330

the corresponding base problem CF, /0-CA, CF, /0-SA, and CF, /0-EXSA, respectively. Here, the implication from the
necessary generalization to the base problem is trivial. For the other direction of the equivalence, we again cover the
problems CF, /0-CA, CF, /0-SA, and CF, /0-EXSA individually.

• If (AFnec,a) ∈ CF, /0-CA, then there is a nonempty conflict-free set E ⊆ A nec with a ∈ E . This can only
be the case if (a,a) < Rnec. Due to the construction of AFnec, we know that (a,a) < R∗ for any completion335

〈A ∗,R∗〉, and since a is definite, this means that {a} is a nonempty conflict-free set in every completion, so
(IAF,a) ∈ CF, /0-NCA.

• If (AFnec,a) ∈ CF, /0-SA, then there is no nonempty conflict-free set E ⊆A nec with a < E . This can only be the
case if (b,b) ∈Rnec for all arguments b ∈A nec with b , a. Due to the fact that A nec = A ∪A ? contains all
possible arguments, and because Rnec contains only definite self-attacks for arguments b , a, we can conclude340

that (b,b) ∈R∗ for all arguments b ∈A ∗ with b , a holds for every completion 〈A ∗,R∗〉. Thus there can be
no nonempty conflict-free set without a in any completion, and therefore (IAF,a) ∈ CF, /0-NSA.

• If (AFnec,a)∈ CF, /0-EXSA, then (AFnec,a)∈ (CF, /0-CA∩ CF, /0-SA), and by the previous arguments, (IAF,a)∈
CF, /0-NCA and (IAF,a) ∈ CF, /0-NSA, so (IAF,a) ∈ CF, /0-NEXSA.

This concludes the proof. q345

In Proposition 12, we derive upper bounds for all remaining acceptance problem variants from their respective
quantifier representations. In Section 3.2, we will prove matching lower bounds.

10



Proposition 12. The following complexity upper bounds hold.

1. For s ∈ {AD, /0, ST,CP,GR, PR}, s-PCA is in NP, and for s′ ∈ {CP,GR}, s′-PSA is in NP.

2. AD, /0-SA, GR-NCA, and s-NSA for s ∈ {AD, /0, ST,CP,GR} are in coNP.350

3. AD, /0-EXSA is in DP.

4. PR-NSA is in Π
p
2 , s-NCA is in Π

p
2 for s ∈ {AD, /0, ST,CP, PR}, and s’-NEXSA is in Π

p
2 for s′ ∈ {AD, /0, ST}.

5. For s ∈ {AD, /0, ST}, s-PSA and s-PEXSA are in Σ
p
2 .

6. PR-PSA is in Σ
p
3 .

Proof. All acceptance problem variants can be represented using a sequence of polynomially length-bounded ex-355

istential or universal quantifiers (which we will simply call “existential quantifiers” or “universal quantifiers” further
on) followed by a predicate that corresponds to the s-VERIFICATION (s-VER) problem for the respective semantics.
An instance (AF,E ) of s-VER—where AF = 〈A ,R〉 is an argumentation framework and E ⊆A is a set of arguments
in AF—is a “yes” instance if and only if E is an s extension of AF. It is known [41] that PR-VER is coNP-complete
and s-VER is in P for all other semantics used in the current article (clearly, the complexity of CF, /0-VER and CF-VER360

is the same, as is that of AD, /0-VER and AD-VER).
The quantifier representations for s-CA and s-SA are as follows:

(〈A ,R〉,a) ∈ s-CA ⇔ (∃E ⊆A \{a}) [(〈A ,R〉,E ∪{a}) ∈ s-VER] ;
(〈A ,R〉,a) ∈ s-SA ⇔ (∀E ⊆A \{a}) [(〈A ,R〉,E ) < s-VER] .

For all semantics s for which s-VER is in P, this representation immediately provides an NP upper bound for s-CA
and a coNP upper bound for s-SA. In particular, we have AD, /0-SA ∈ coNP. The s-EXSA problem is the intersection
of s-CA and s-SA and thus has a DP upper bound. In particular, AD, /0-EXSA is in DP.

The possible (respectively, necessary) generalization of the acceptance problems for incomplete argumentation
frameworks adds an existential (respectively, universal) quantifier over completions to the representation:

(〈A ,A ?,R,R?〉,a) ∈ s-PCA ⇔(
∃ completion 〈A ∗,R∗〉 of 〈A ,A ?,R,R?〉

)
[(〈A ∗,R∗〉,a) ∈ s-CA] ;

(〈A ,A ?,R,R?〉,a) ∈ s-NCA ⇔(
∀ completion 〈A ∗,R∗〉 of 〈A ,A ?,R,R?〉

)
[(〈A ∗,R∗〉,a) ∈ s-CA] .

The representations of s-PSA, s-NSA, s-PEXSA, and s-NEXSA only differ in that they use s-SA and s-EXSA,365

respectively, instead of s-CA in the inner predicate.
For semantics s with s-VER ∈ P, these representations allow to infer the following bounds. For s-PSA and s-

PEXSA, we get a Σ
p
2 upper bound, since their quantifier representation has an existential quantifier followed by a,

respectively, coNP and DP predicate. Similarly, we obtain a Π
p
2 upper bound for s-NCA and s-NEXSA, since their

quantifier representation has a universal quantifier followed by, respectively, an NP and a DP predicate. Since two370

subsequent existential or two subsequent universal quantifiers can be collapsed into one such quantifier, we get an NP
upper bound for s-PCA and a coNP upper bound for s-NSA. For the preferred semantics, where the inner predicate
is a coNP instead of a P predicate, we obtain a Σ

p
2 upper bound for PR-PCA, a Π

p
2 upper bound for PR-NSA, a Σ

p
3

upper bound for PR-PSA, and a Π
p
3 upper bound for PR-NCA.

Of these upper bounds, not all will turn out to be tight. We utilize the NP membership of AD, /0-PCA, ST-PCA, CP-375

PCA, and GR-PCA; the coNP membership of AD, /0-NSA, ST-NSA, CP-NSA, and GR-NSA; the Σ
p
2 membership

of AD, /0-PSA, ST-PSA, AD, /0-PEXSA, and ST-PEXSA; the Π
p
2 membership of AD, /0-NCA, ST-NCA, CP-NCA,

AD, /0-NEXSA, ST-NEXSA, and PR-NSA; and the Σ
p
3 membership of PR-PSA.

Further, PR-PCA inherits the NP upper bound of AD, /0-PCA and PR-NCA inherits the Π
p
2 upper bound of AD, /0-

NCA via Observation 5; GR-PSA inherits the NP upper bound of GR-PCA and GR-NCA inherits the coNP upper380

bound of GR-NSA via Observation 6; and CP-PSA inherits the NP upper bound of GR-PSA via Observation 7.
This completes the proof. q
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Table 2: Overview of different QSAT problems and their complexities.

Problem Instance Question Complexity
3-SAT (ϕ,X) (∃τX ) [ϕ[τX ] = true]? NP-complete
3-UNSAT (ϕ,X) (∀τX ) [ϕ[τX ] = false]? coNP-complete
Σ2SAT (ϕ,X ,Y ) (∃τX )(∀τY ) [ϕ[τX ,τY ] = false]? Σ

p
2 -complete

Π2SAT (ϕ,X ,Y ) (∀τX )(∃τY ) [ϕ[τX ,τY ] = true]? Π
p
2 -complete

Σ3SAT (ϕ,X ,Y,Z) (∃τX )(∀τY )(∃τZ) [ϕ[τX ,τY ,τZ ] = true]? Σ
p
3 -complete

3.2. Lower Bounds
The possible and necessary variants of acceptance problems are true generalizations of their base problem. When-

ever the uncertain elements in an instance are empty (i.e., A ? = /0 and R? = /0), both variants collapse to their base385

problem. Therefore, the possible and necessary variants inherit all lower complexity bounds from their base problems.
In some cases, these bounds match the corresponding upper bounds from Section 3.1 and provide tight characteriza-
tions. We collect these cases in Corollary 13.

Corollary 13. 1. For s ∈ {AD, /0, ST,CP, PR}, s-PCA is NP-hard.

2. For s ∈ {AD, /0, ST}, s-NSA is coNP-hard.390

3. PR-NSA is Π
p
2 -hard.

For all remaining cases, we obtain tight lower bounds by reducing from different quantified satisfiability (QSAT)
problems. The QSAT problems that we require are defined in Table 2. We use X , Y , and Z to denote pairwise disjoint
sets of propositional variables, and ϕ to represent a boolean formula in conjunctive normal form—i.e., a conjunction
of disjunctive clauses of literals—with at most three literals per clause (3-CNF). τX with τX : X → {true,false}395

denotes a truth assignment on a set X of propositional variables, and for a formula ϕ over X , ϕ[τX ] denotes the truth
value that ϕ evaluates to when applying assignment τX to ϕ .

Each QSAT problem variant is complete for a different class in the polynomial hierarchy (last column of Ta-
ble 2). We use a translation from QSAT instances to instances of acceptance problems for incomplete argumentation
frameworks that is based on the standard translation by Dimopoulos and Torres [38], which we extend to incorpo-400

rate uncertainty about arguments or attacks. Our translation is given in Definition 14. It allows to create either a
purely argument-incomplete argumentation framework (where R? = /0) or a purely attack-incomplete argumentation
framework (where A ? = /0), which allows the hardness results obtained to hold even in these special cases.

Definition 14. Let (ϕ,X ,Y ) be an instance of Σ2SAT or Π2SAT, and let (ϕ,X) (with Y = /0) be an instance of 3-SAT
or 3-UNSAT. Let ϕ =

∧
i ci and ci =

∨
j α j for each clause ci in ϕ , where the α j are the literals over X ∪Y that occur

in clause ci. We define a set of arguments A and a set of attacks R as follows:

A ={xi, x̄i | xi ∈ X}∪{yi, ȳi | yi ∈ Y}∪{c̄i | ci in ϕ}∪{ϕ, ϕ̄};
R ={(x̄i,xi) | xi ∈ X}∪{(yi, ȳi),(ȳi,yi) | yi ∈ Y}

∪{(xk, c̄i) | xk in ci}∪{(x̄k, c̄i) | ¬xk in ci}
∪{(yk, c̄i) | yk in ci}∪{(ȳk, c̄i) | ¬yk in ci}
∪{(c̄i,ϕ) | ci ∈ ϕ}∪{(ϕ, ϕ̄)}.

An attack-incomplete argumentation framework representation of the given QSAT instance is given by 〈A ∪{gi |
xi ∈ X}, /0,R,R?〉 with R? = {(gi, x̄i) | xi ∈ X}. Alternatively, an argument-incomplete argumentation framework405

representation of the given QSAT instance is given by 〈A ,A ?,R ∪{(gi, x̄i) | xi ∈ X}, /0〉 with A ? = {gi | xi ∈ X}.
We call arguments xi, yi, x̄i, and ȳi literal arguments and arguments c̄i clause arguments. We call two arguments

ā and a counterparts of each other. The unattacked arguments gi are the grounded arguments which enforce the
acceptability of either xi or x̄i via the completion. Arguments ϕ and ϕ̄ will be used as the target arguments in
acceptance problems and are called target arguments.410
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Figure 6: Visualization of either the argument-incomplete argumentation framework (not including the bottom framed part) or attack-incomplete
argumentation framework (not including the top framed part) created by Definition 14 for the clauses c1 = x1 ∨¬y1 and c2 = y1 ∨¬y2 given in
Example 15.

Example 15. Let (ϕ,X ,Y ) be a QSAT instance with X = {x1}, Y = {y1,y2}, ϕ = c1∧c2, c1 = x1∨¬y1, and c2 = y1∨
¬y2. Both the argument-incomplete argumentation framework and the attack-incomplete argumentation framework
created for (ϕ,X ,Y ) by the translation of Definition 14 are displayed in Figure 6.

For an incomplete argumentation framework IAF created according to Definition 14, we associate a given truth as-
signment τX on X with a completion AFτX = 〈A τX ,RτX 〉 of IAF. For an attack-incomplete argumentation framework415

〈A ,R,R?〉, that completion has A τX =A and (gi, x̄i)∈RτX ⇐⇒ τX (xi) = true. For an argument-incomplete argu-
mentation framework 〈A ,A ?,R〉, that completion has gi ∈A τX ⇐⇒ τX (xi) = true and RτX =R|A τX . Further, we
identify an assignment τS on a set S = {s1, . . . ,s|S|} ⊆ (X ∪Y ) of variables with a set A τX [τS] of arguments in the com-
pletion, namely, A τX [τS] = {si |τS(si) = true}∪{s̄i |τS(si) = false}∪G[τS], where G[τS] = {gi |xi ∈ X and τS(xi) =
true} for the argument-incomplete encoding, and G[τS] = {gi | xi ∈ X} for the attack-incomplete encoding.420

In Lemma 16, we prove that both constructions behave similarly and can, in effect, be used interchangeably.

Lemma 16. Let (ϕ,X ,Y ) be a QSAT instance, let 〈A ,R,R?〉 or 〈A ,A ?,R〉 be an incomplete argumentation
framework created for it according to Definition 14, and let τX be an assignment on X. In the completion AFτX ,
A τX [τX ] is a subset of the grounded extension and therefore a subset of all complete extensions.

Proof. Each argument gi is always unattacked and therefore clearly in the grounded extension of every completion425

that contains gi. Each argument x̄i with τX (xi) = true is attacked by the corresponding argument gi, which thus
defends the counterpart xi of x̄i, so these xi are included in the grounded extension. All arguments x̄ j for which
τX (x j) = false remain unattacked, since either gi < A τX (argument-incomplete variant) or (gi, x̄i) < RτX (attack-
incomplete variant), and are thus included in the grounded extension. q

Example 17. Recall the QSAT instance from Example 15. The set X = {x1} allows two assignments, τ1
X with430

τ1
X (x1) = true and τ2

X with τ2
X (x1) = false. The completion AFτ1

X of IAF includes the uncertain argument g1 (in
case of the argument-incomplete version) or the uncertain attack (g1, x̄1) (in case of the attack-incomplete version),
while the completion AFτ2

X excludes g1 or (g1, x̄1), respectively. In both incarnations of AFτ1
X , the grounded extension

is {g1,x1}=A τ1
X [τ1

X ], while in AFτ2
X , the grounded extension is {g1, x̄1}=A τ2

X [τ2
X ] for the attack-incomplete version

or {x̄1}= A τ2
X [τ2

X ] for the argument-incomplete version.435

Lemma 18 shows a crucial correspondence between assignments in a QSAT instance and sets of arguments in the
respective incomplete argumentation framework.

Lemma 18. Given a QSAT instance (ϕ,X ,Y ) and full assignments τX and τY (τY only if applicable). Let IAF be an
incomplete AF created for (ϕ,X ,Y ) following Definition 14, let AFτX be its completion corresponding to τX , and let
A τX [τX ,τY ] be the set of literal arguments and grounded arguments corresponding to the total assignment.440
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(a) Completion AFτ1
X , where the set A τ1

X [τ1
X ,τY ]∪ {ϕ} (high-

lighted) is admissible, complete, preferred, and stable.

ȳ1 y1 ȳ2 y2
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x̄1 x1

g1

(b) Completion AFτ2
X , where the set A τ2

X [τ2
X ,τY ]∪{ϕ̄, c̄1} (high-

lighted) is admissible, complete, preferred, and stable.

Figure 7: Visualization of the correspondence between truth assignments and completions plus extensions for the formula ϕ = (x1 ∨¬y1)∧ (y1 ∨
¬y2) and the assignments τ1

X , τ2
X , and τY given in Example 15.

1. If ϕ[τX ,τY ] = true, then A τX [τX ,τY ]∪{ϕ} is admissible, complete, preferred, and stable in AFτX , and for
Y = /0 also grounded.

2. If ϕ[τX ,τY ] = false, then A τX [τX ,τY ]∪{ϕ̄}∪{c̄i |@d ∈A τX [τX ,τY ] : (d, c̄i) ∈RτX } is admissible, complete,
preferred, and stable in AFτX , and for Y = /0 also grounded.

Proof. Assume that ϕ[τX ,τY ] = true (Part 1). We know that A τX [τX ] is a subset of the grounded extension of445

AFτX . We show that E = A τX [τX ,τY ]∪{ϕ} is stable in AFτX . It is easy to see from Definition 14 that E is conflict-
free, since there are no attacks between literal arguments for distinct variables, ϕ , or the gi. Further, E attacks each
argument in A τX \E . Argument ϕ̄ is attacked by ϕ ∈ E . Each literal argument from X that does not occur in E is
either excluded from the completion, attacked by its counterpart, or attacked by some gi in E . Each literal argument
from Y that is not in E is attacked by its counterpart in E . For each clause argument c̄i, we know by assumption that450

the corresponding clause ci in ϕ is satisfied by the total assignment, since ϕ[τX ,τY ] = true. Since ci is satisfied, at
least one literal in ci must be satisfied. By construction of E we know that at least one literal argument corresponding
to a literal in ci is in E , and by construction of IAF, this argument attacks the clause argument c̄i. In total, this means
that all clause arguments are attacked by E , and we proved that E is stable in AFτX . Since E is stable, it is also
preferred, complete, and admissible. For Y = /0, the set A τX [τX ], which is a subset of the grounded extension by455

Lemma 16, already attacks all clause arguments and thus defends ϕ , so A τX [τX ]∪{ϕ} is the grounded extension of
AFτX .

Now assume that ϕ[τX ,τY ] = false (Part 2). Let E ′ =A τX [τX ,τY ]∪{ϕ̄}∪{c̄i |@d ∈A τX [τX ,τY ] : (d, c̄i)∈RτX }.
First, let us show that the subset C = {c̄i | @d ∈ A τX [τX ,τY ] : (d, c̄i) ∈ RτX } of E ′ is nonempty. Since ϕ[τX ,τY ] =
false, there is at least one clause c′i in ϕ that is not satisfied by the total assignment, so none of the literals in c′i is460

satisfied. These literals correspond to literal arguments in IAF, which are the only arguments in IAF that attack the
clause argument c̄′i. By construction of E ′, we know that none of these arguments are in E ′, so E ′ does not attack
c̄′i and thus c̄′i ∈ C. We now show that E ′ is stable in AFτX . Again, E ′ is clearly conflict-free. All literal arguments
from X that do not occur in E ′ are again either excluded from the completion, attacked by some gi, or attacked by
their counterpart in E ′. Each literal argument from Y that is not in E ′ is attacked by its counterpart in E ′. Each clause465

argument that is not in C is attacked by some d ∈ A τX [τX ,τY ] due to the definition of C. Finally, argument ϕ is
attacked by all arguments in C ⊆ E ′, of which there is at least one since C , /0. Since E ′ is stable, it is also preferred,
complete, and admissible. For Y = /0, the set A τX [τX ], which is a subset of the grounded extension due to Lemma 16,
already attacks all clause arguments in A τX \C and thus defends all arguments in C, which in turn defend ϕ̄ , so E ′ is
the grounded extension of AFτX . q470
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Example 19. Recall the QSAT instance from Examples 15 and 17. Consider τ1
X with τ1

X (x1) = true and τY with
τY (y1) = true and τY (y2) = false. It holds that ϕ[τ1

X ,τY ] = true. In the completion AFτ1
X , the set of arguments

A τ1
X [τ1

X ,τY ] corresponding to these assignments is {x1,y1, ȳ2,g1}. By Lemma 18, we know that A τ1
X [τ1

X ,τY ]∪{ϕ}
is admissible, complete, preferred, and stable in AFτ1

X . The completion and this set of arguments are displayed in
Figure 7a.475

If we use τ2
X with τ2

X (x1) = false instead, we get ϕ[τ2
X ,τY ] = false, since clause c1 is no longer satisfied. In the

completion AFτ2
X , the set of arguments A τ2

X [τ2
X ,τY ] corresponding to the assignments τ2

X and τY is {x̄1,y1, ȳ2,g1} for
the attack-incomplete encoding and {x̄1,y1, ȳ2} for the argument-incomplete encoding. By Lemma 18, we know that
A τ2

X [τ2
X ,τY ]∪{ϕ̄, c̄1} is admissible, complete, preferred, and stable in AFτ2

X . The completion and this set of arguments
are displayed in Figure 7b.480

We have now completed our preparations for the hardness proofs of the remaining problems.

Theorem 20. GR-PCA is NP-hard.

Proof. We reduce from 3-SAT. Let (ϕ,X) be a 3-SAT instance.
If (ϕ,X) ∈ 3-SAT, we have that (∃τX )[ϕ[τX ] = true], so by Lemma 18 there exists a completion of the corre-

sponding incomplete argumentation framework IAF where ϕ is in the grounded extension, and we have (IAF,ϕ) ∈485

GR-PCA.
If (ϕ,X) < 3-SAT, we have that (∀τX )[ϕ[τX ] = false], so ϕ̄ is in the grounded extension of all completions

of the corresponding incomplete argumentation framework IAF, so ϕ cannot be in the grounded extension of any
completion, and we have (IAF,ϕ) < GR-PCA. q

Together with Observation 9, the following corollary follows immediately.490

Corollary 21. GR-PSA and CP-PSA are NP-hard.

Theorem 22. GR-NCA is coNP-hard.

Proof. We reduce from 3-UNSAT. Let (ϕ,X) be a 3-UNSAT instance.
If (ϕ,X) ∈ 3-UNSAT, we have that (∀τX )[ϕ[τX ] = false], so by Lemma 18, ϕ̄ is in the grounded extension of

all completions of the corresponding incomplete argumentation framework IAF and we have (IAF, ϕ̄) ∈ GR-NCA.495

If (ϕ,X) < 3-UNSAT, we have that (∃τX )[ϕ[τX ] = true], so there exists a completion of the corresponding
incomplete argumentation framework IAF where ϕ is in the grounded extension, so ϕ̄ cannot be in the grounded
extensions of all completions, and we have (IAF, ϕ̄) < GR-NCA. q

Again, Observation 9 immediately gives the following corollary.

Corollary 23. GR-NSA and CP-NSA are coNP-hard.500

Theorem 24. For s ∈ {AD, /0,CP, ST, PR}, s-NCA is Π
p
2 -hard.

Proof. We reduce from Π2SAT. Let (ϕ,X ,Y ) be a Π2SAT instance.
If (ϕ,X ,Y ) ∈ Π2SAT, we have that (∀τX )(∃τY )[ϕ[τX ,τY ] = true], so by Lemma 18, for all completions of

the corresponding incomplete argumentation framework IAF, there is a τY such that the set A τX [τX ,τY ]∪ {ϕ} is
admissible, complete, preferred, and stable, so (IAF,ϕ) ∈ s-NCA for s ∈ {AD, /0,CP, ST, PR}.505

If (ϕ,X ,Y ) < Π2SAT, we have that (∃τX )(∀τY )[ϕ[τX ,τY ] = false], so there is a completion AFτX of the corre-
sponding incomplete argumentation framework IAF where A τX [τX ,τY ]∪{ϕ̄}∪{ci |@d ∈A τX [τX ,τY ] : (d,ci)∈RτX }
is stable for any choice of τY . This means that ϕ cannot be a member of any admissible set in that completion—and
therefore neither in a complete, stable, or preferred set—so (IAF,ϕ) < s-NCA for s ∈ {AD, /0,CP, ST, PR}. q

Theorem 25. ST-PSA and ST-PEXSA are Σ
p
2 -hard.510
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Figure 8: PR-PSA instance created from clauses c1 = x1 ∨¬y1 ∨¬z1 and c2 = y1 ∨¬y2 ∨ z1 using the construction of Definition 26. A slight
modification that uses c′2 = y1 ∨¬y2 instead of c2 can be obtained by excluding the dotted attack (z1, c̄2).

Proof. We reduce from Σ2SAT. Let (ϕ,X ,Y ) be a Σ2SAT instance.
If (ϕ,X ,Y ) ∈ Σ2SAT, we have that (∃τX )(∀τY )[ϕ[τX ,τY ] = false], so by Lemma 18, there is a completion AFτX

of the corresponding incomplete argumentation framework IAF where A τX [τX ,τY ]∪{ϕ̄}∪ {ci |@d ∈ A τX [τX ,τY ] :
(d,ci) ∈RτX } is stable for any choice of τY . There clearly can be no stable extension other than these, so (IAF, ϕ̄) ∈
ST-PSA and (IAF, ϕ̄) ∈ ST-PEXSA.515

If (ϕ,X ,Y ) < Σ2SAT, we have that (∀τX )(∃τY )[ϕ[τX ,τY ] = true], so for all completions of the corresponding
incomplete argumentation framework IAF, there is some τY such that the set A τX [τX ,τY ]∪{ϕ} is stable. Therefore,
(IAF, ϕ̄) < ST-PSA. and (IAF, ϕ̄) < ST-PEXSA. q

To prove Σ
p
3 -hardness of PR-PSA, we extend the translation of Definition 14 to incorporate the third set Z of

variables that occurs in a Σ3SAT instance (ϕ,X ,Y,Z). This translation follows the same idea as that used by Dunne520

and Bench-Capon [43] to show Π
p
2 -hardness of PR-SA.

Definition 26. Let (ϕ,X ,Y,Z) be an instance of Σ3SAT. Let IAF′ = 〈A ′,A ′?,R ′,R ′?〉 be an incomplete argumenta-
tion framework created for ϕ , X , and Y according to Definition 14. We extend IAF′ to IAF by adding literal arguments
and corresponding attacks against clause arguments for all literals in Z, and by letting ϕ̄ attack itself and every literal
argument from Z. Formally, IAF = 〈A ,A ?,R,R?〉 with A ? = A ′?, R? = R ′?,

A =A ′∪{zi, z̄i | zi ∈ Z}, and
R =R ′∪{(zi, z̄i),(z̄i,zi) | zi ∈ Z}

∪{(zk, c̄i) | zk in ci}∪{(z̄k, c̄i) | ¬zk in ci}
∪{(ϕ̄, ϕ̄)}∪{(ϕ̄,zi),(ϕ̄, z̄i) | zi ∈ Z}.

Example 27. We extend the QSAT instance from Example 15 to a Σ3SAT instance (ϕ,{x1},{y1,y2},{z1}), where
ϕ = c1∧c2 with c1 = x1∨¬y1∨¬z1 and c2 = y1∨¬y2∨z1. Figure 8 displays a graph representation of the incomplete
argumentation framework created for this instance of Σ3SAT: For τX (x1) = true, any assignment τY on {y1,y2}, and
τZ(z1) = true, we have ϕ[τX ,τY ,τZ ] = true. Accordingly, in the completion AFτX all preferred extensions are of the525

form {g1,x1,ϕ}∪A [τY ,τZ ] for some τY and a corresponding τZ , so ϕ is skeptically preferred.
When changing c2 to c′2 = y1 ∨¬y2 and ϕ ′ = c1 ∧ c′2, we obtain a “no” instance. For τY with τY (y1) = false

and τY (y2) = true, along with any assignments τX and τZ , we have ϕ ′[τX ,τY ,τZ ] = false. In the corresponding
argumentation framework, in both completions either {g1,x1, ȳ1,y2, c̄′2} or {g1, x̄1, ȳ1,y2, c̄′2} is a preferred extension
that does not include ϕ , so ϕ is not skeptically preferred.530

Lemma 28. Given a Σ3SAT instance (ϕ,X ,Y,Z) and an assignment τX on X, let IAF be an incomplete argumentation
framework created for (ϕ,X ,Y,Z) following Definition 26, and let AFτX be its completion corresponding to τX . AFτX

has a preferred extension that does not contain ϕ if and only if (∃τY )(∀τZ)[ϕ[τX ,τY ,τZ ] = false].
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Proof. Assume that (∃τY )(∀τZ)[ϕ[τX ,τY ,τZ ] = false]. Let τY be an assignment on Y satisfying (∀τZ)[ϕ[τX ,τY ,τZ ] =
false] and let τZ be any assignment on Z. Since ϕ[τX ,τY ,τZ ] = false, there is a clause ck in ϕ that is not satis-535

fied by the total assignment given by τX , τY , and τZ , which means that argument ϕ is not defended against the
respective clause argument c̄k by A τX [τX ,τY ,τZ ]. However, the subset A τX [τX ,τY ] of the literal arguments is ad-
missible. This admissible set can only be enlarged by adding appropriate clause arguments, namely to the set
A τX [τX ,τY ]∪ {c̄i | @d ∈ (A τX [τX ,τY ]∪{zk, z̄k | zk ∈ Z}) : (d, c̄i) ∈ RτX }. This set is a preferred set that does not
contain ϕ , which proves the claim.540

For the other direction, assume that (∀τY )(∃τZ)[ϕ[τX ,τY ,τZ ] = true]. Let τY be any assignment on Y and let τZ
be an assignment on Z that satisfies ϕ[τX ,τY ,τZ ] = true. We prove that every preferred extension of AFτX contains
ϕ . For the sake of contradiction, assume that there is a preferred extension E of AFτX with ϕ < E . Then, there must be
an argument in E that attacks ϕ , or there must be a clause argument c̄k against which ϕ is not defended by E . Since
the only arguments that attack ϕ are the clause arguments, and since E must be conflict-free, the first condition is a545

special case of the second and we may assume that there is a clause argument c̄k that is unattacked by E . We know
the following about E :

• We can again apply Lemma 16 and know that A τX [τX ] is a subset of the grounded extension and therefore
contained in every preferred extension, in particular, A τX [τX ]⊆ E .

• It is clear that every preferred extension of AFτX contains exactly one of the arguments yi or ȳi for each variable550

yi ∈ Y . This means that there is some assignment τY on Y such that A τX [τY ]⊆ E .

• We know that E cannot contain any arguments representing Z variables, since these would require ϕ ∈ E to
defend them against ϕ̄ .

We can summarize that E must consist of A τX [τX ,τY ] (for some τY ) and at least one clause argument that is unattacked
by A τX [τX ,τY ]. However, we know by our original assumption that (∀τY )(∃τZ)[ϕ[τX ,τY ,τZ ] = true], which means555

that, for the fixed given assignment τX on X and for every assignment τY on Y , we can find an assignment τZ on Z
such that A τX [τX ,τY ,τZ ] attacks all clause arguments. E cannot defend clause arguments against the attacks by Z ar-
guments, so E cannot contain any clause arguments. But since A τX [τX ,τY ,τZ ] attacks all clause arguments, it defends
ϕ , which makes A τX [τX ,τY ,τZ ]∪{ϕ} a stable extension, contradicting the assumption that E was preferred. q

We are now ready to prove Σ
p
3 -hardness of PR-PSA.560

Theorem 29. PR-PSA is Σ
p
3 -hard.

Proof. We reduce Σ3SAT to PR-PSA. Let (ϕ,X ,Y,Z) be a Σ3SAT instance. If (ϕ,X ,Y,Z) ∈ Σ3SAT, then it holds
that (∃τX )(∀τY )(∃τZ)[ϕ[τX ,τY ,τZ ] = true]. Let IAF be the incomplete argumentation framework corresponding to
(ϕ,X ,Y,Z), let τX be any assignment that satisfies (∀τY )(∃τZ)[ϕ[τX ,τY ,τZ ] = true], and let AFτX be the completion
of IAF representing τX . By Lemma 28, we know that every preferred set in AFτX contains ϕ , so (IAF,ϕ) ∈ PR-PSA.565

If (ϕ,X ,Y,Z) < Σ3SAT, we have that (∀τX )(∃τY )(∀τZ)[ϕ[τX ,τY ,τZ ] = false]. Let IAF be the incomplete argu-
mentation framework corresponding to (ϕ,X ,Y,Z), let τX be any assignment on X , and let AFτX be the completion
of IAF representing τX . By Lemma 28, we know that AFτX has a preferred extension that does not contain ϕ , so
(IAF,ϕ) < PR-PSA. q

We turn now to the problems AD, /0-SA, AD, /0-PSA, and AD, /0-PEXSA, for which the generic translation of570

Definition 14 must be adapted, too. All completions of the incomplete argumentation frameworks generated by the
translation of Definition 14 have admissible sets consisting of only grounded arguments gi and certain literal argu-
ments, so the target arguments ϕ and ϕ̄ will never be skeptically accepted with respect to the AD, /0 semantics. Thus,
for the problems AD, /0-SA, AD, /0-PSA, and AD, /0-PEXSA, we use the adapted translation given in Definition 30,
in which ϕ̄ additionally attacks all literal arguments and grounded arguments. This does not impair admissible sets575

that contain ϕ , but has the effect that argument ϕ̄ is a member of all nonempty admissible sets unless formula ϕ is
satisfiable.
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Figure 9: Visualization of either the argument-incomplete argumentation framework (not including the bottom framed part) or attack-incomplete
argumentation framework (not including the top framed part) created by Definition 30 for the clauses c1 = x1 ∨¬y1 and c2 = y1 ∨¬y2 given in
Example 31.

Definition 30. Let (ϕ,X ,Y ) be an instance of Σ2SAT. Let IAF′ = 〈A ′,A ′?,R ′,R ′?〉 be an incomplete argumentation
framework created for it according to Definition 14. We extend IAF′ to IAF by letting ϕ̄ attack every literal argument
and every grounded argument gi. Formally, define IAF = 〈A ,A ?,R,R?〉 by A = A ′, A ? = A ′?, R? = R ′?, and

R = R ′∪{(ϕ̄,a) | a ∈ {gi,xi, x̄i,y j, ȳ j}}.

Example 31. For formula ϕ in Example 15, the modified translation of Definition 30 produces the argument-
incomplete or attack-incomplete argumentation framework displayed in Figure 9. The modifications leave the ex-
tension containing argument ϕ (Figure 7a) unaffected. Extensions that contain ϕ̄ together with literal arguments580

(Figure 7b), however, are no longer possible due to the added attacks. Instead, {ϕ̄,c1}, {ϕ̄,c2}, and {ϕ̄,c1,c2} are
(nonempty) admissible sets in every completion.

Lemma 32 is a variant of Lemma 18 for the adapted translation of Definition 30.

Lemma 32. Given a QSAT instance (ϕ,X ,Y ) and an assignment τX on X. Let IAF be an incomplete argumentation
framework created for (ϕ,X ,Y ) following Definition 30, and let AFτX be its completion corresponding to τX .585

1. For any assignment τY on Y , let A τX [τX ,τY ] be the set of literal arguments and grounded arguments corre-
sponding to the total assignment. If ϕ[τX ,τY ] = true, then A τX [τX ,τY ]∪{ϕ} is admissible in AFτX .

2. Let C be a set of arguments containing ϕ̄ and any number of—but at least one—clause argument c̄i. C is
admissible in AFτX .

3. If ϕ[τX ,τY ] = false for all assignments τY on Y , then the sets C as defined in the previous Part 2 are the only590

nonempty admissible sets in AFτX .

Proof. For Part 1, the proof of Lemma 18 applies here as well. The only difference here are the additional attacks
by argument ϕ̄ , which are defended by ϕ .

Now assume that ϕ[τX ,τY ] = false (Part 2). Let C be a set containing ϕ̄ and any positive number of clause
arguments c̄i. C is clearly conflict-free in all completions of IAF. Also, C has (conditionally) definite attacks against595

all arguments in
(
A ∪A ?

)
\C: ϕ̄ has (conditionally) definite attacks against all grounded arguments gi and against

all literal arguments, and each clause argument c̄i has a definite attack against ϕ . Thus C is necessarily stable in IAF
and, in particular, admissible in AFτX .

Finally, assume that ϕ[τX ,τY ] = false for the fixed assignment τX on X and for all assignments τY on Y (Part 3).
We show that the sets C are the only nonempty admissible sets in AFτX . For the sake of contradiction, assume that600

there is a nonempty admissible set A in AFτX that is not one of the sets C.

18



• If ϕ̄ ∈ A, since A is assumed to be conflict-free, then the only possibility is A = {ϕ̄}. However, {ϕ̄} cannot
defend itself against ϕ and is thus not admissible.

• If ϕ̄ < A, but c̄i ∈ A for some clause argument c̄i, then the literal arguments corresponding to the negations of
the literals in clause ci must be in A, too, to defend c̄i against its attackers. These, in turn, must be defended605

against the attack by ϕ̄ , which can only be achieved by having ϕ ∈ A. However, since c̄i attacks ϕ and A is
conflict-free, this is a contradiction. So, we cannot have c̄i ∈ A when ϕ̄ < A.

• If ϕ ∈ A, then A must contain the literal arguments that defend ϕ against all clause arguments. However, such a
set of literal arguments would correspond to a satisfying assignment for the formula ϕ , which cannot exist for
the fixed assignment τX , due to our assumption that ϕ[τX ,τY ] = false for all assignments τY on Y .610

• If ϕ < A, the only remaining possibility is that A consists of only literal arguments and/or grounded arguments
gi. But this set cannot defend itself against ϕ̄ and is thus not admissible.

This concludes the proof. q

Using Lemma 32, we can now show hardness of AD, /0-SA, AD, /0-PSA, and AD, /0-PEXSA.

Theorem 33. AD, /0-PSA and AD, /0-PEXSA are Σ
p
2 -hard, and AD, /0-SA is coNP-hard.615

Proof. We reduce Σ2SAT to AD, /0-PSA. Let (ϕ,X ,Y ) be a Σ2SAT instance. If (ϕ,X ,Y ) ∈ Σ2SAT, we have
that (∃τX )(∀τY )[ϕ[τX ,τY ] = false], so by Lemma 32, there is a completion AFτX of the corresponding incom-
plete argumentation framework IAF where every nonempty admissible set contains ϕ̄ , so (IAF, ϕ̄) ∈ AD, /0-PSA and
(IAF, ϕ̄) ∈ AD, /0-PEXSA. If (ϕ,X ,Y ) < Σ2SAT, we have that (∀τX )(∃τY )[ϕ[τX ,τY ] = true], so for all completions
of the corresponding incomplete argumentation framework IAF, there is some τY such that the set A τX [τX ,τY ]∪{ϕ}620

is admissible, and thus, not every nonempty admissible set in AFτX contains ϕ̄ . Therefore, (IAF, ϕ̄) < AD, /0-PSA and
(IAF, ϕ̄) < AD, /0-PEXSA.

If we fix X = /0, then the Σ2SAT instance (ϕ, /0,Y ) corresponds to a 3-UNSAT instance (ϕ,Y ). As a special case
of the previous proof, we obtain a reduction from 3-UNSAT to AD, /0-SA, which directly provides coNP-hardness of
AD, /0-SA. q625

Next, we adapt the construction of Definition 30 to show Π
p
2 -hardness of AD, /0-NEXSA and ST-NEXSA.

Definition 34. Let (ϕ,X ,Y ) be an instance of Π2SAT. Let IAF′ = 〈A ′,A ′?,R ′,R ′?〉 be an incomplete argumentation
framework created for it according to Definition 30. We extend IAF′ to IAF by letting ϕ̄ attack itself. Formally,
IAF = 〈A ,A ?,R,R?〉 with A = A ′, A ? = A ′?, R? = R ′?, and R = R ′∪{(ϕ̄, ϕ̄)}.

Lemma 35 pinpoints the behavior of the argumentation frameworks generated by Definition 34.630

Lemma 35. Given a QSAT instance (ϕ,X ,Y ) and an assignment τX on X. Let IAF be an incomplete argumentation
framework created for (ϕ,X ,Y ) following Definition 34, and let AFτX be its completion corresponding to τX .

1. For any assignment τY on Y , let A τX [τX ,τY ] be the set of literal arguments and grounded arguments corre-
sponding to the total assignment. If ϕ[τX ,τY ] = true, then A τX [τX ,τY ]∪{ϕ} is admissible and stable in AFτX .

2. No nonempty sets other than those of the form A τX [τX ,τY ]∪{ϕ} for some assignment τY can be admissible635

or stable in AFτX . In particular, if ϕ[τX ,τY ] = false for all assignments τY on Y , then AFτX has no nonempty
admissible set and no stable extension.

Proof. For Part 1, the proof of Lemma 18 applies here as well and yields that A τX [τX ,τY ]∪{ϕ} is admissible and
stable.

Now we show that no nonempty sets other than sets of the form A τX [τX ,τY ]∪{ϕ} can be admissible or stable in640

AFτX (Part 2). Let A⊆A τX be a nonempty admissible set.

• A cannot contain the self-attacking argument ϕ̄ .
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• If c̄i ∈ A for some clause argument c̄i, then the literal arguments corresponding to the negations of the literals in
clause ci must be in A, too, to defend c̄i against its attackers. These, in turn, must be defended against the attack
by ϕ̄ , which can only be achieved by having ϕ ∈ A. However, since c̄i attacks ϕ and A is conflict-free, this is a645

contradiction. So, we cannot have c̄i ∈ A.

• If ϕ ∈ A, then A must contain the literal arguments that defend ϕ against all clause arguments. Such a set of
literal arguments corresponds to a satisfying assignment for the formula ϕ , so we have A = A τX [τX ,τY ]∪{ϕ}
for some τY that satisfies ϕ[τX ,τY ] = true. However, if ϕ[τX ,τY ] = false for all assignments τY , then such a
set cannot exist for our fixed assignment τX on X .650

• If ϕ < A, the only remaining possibility is that A consists of only literal arguments and/or grounded arguments
gi. But this set cannot defend itself against ϕ̄ and is thus not admissible.

We showed that only sets of the form A τX [τX ,τY ]∪{ϕ} can be nonempty admissible sets in AFτX . Since every stable
extension of AFτX is also a nonempty admissible set, we also know the same for the stable semantics. This concludes
the proof. q655

Theorem 36. AD, /0-NEXSA and ST-NEXSA are Π
p
2 -hard.

Proof. We reduce Π2SAT to AD, /0-NEXSA and ST-NEXSA. Let (ϕ,X ,Y ) be a Π2SAT instance. If (ϕ,X ,Y ) ∈
Π2SAT, we have that (∀τX )(∃τY )[ϕ[τX ,τY ] = true], so by Lemma 35, for all completions of the corresponding
incomplete argumentation framework IAF, the sets A τX [τX ,τY ]∪{ϕ} for any τY are admissible and stable, and no
other nonempty sets are admissible or stable. Therefore, (IAF,ϕ) ∈ AD, /0-NEXSA and (IAF,ϕ) ∈ ST-NEXSA.660

If (ϕ,X ,Y ) <Π2SAT, we have that (∃τX )(∀τY )[ϕ[τX ,τY ] = false], so by Lemma 35, there is a completion AFτX

of the corresponding incomplete argumentation framework IAF that has no nonempty admissible set and no stable
extension, so (IAF,ϕ) < AD, /0-NEXSA and (IAF,ϕ) < ST-NEXSA. q

We have covered the complexity of all possible and necessary generalizations of acceptance problems in incom-
plete argumentation frameworks. What is left to classify is the new problem AD, /0-EXSA for standard argumentation665

frameworks, which, just like its sibling ST-EXSA, is hard for the class DP of the boolean hierarchy, which lies be-
tween the first and second level of the polynomial hierarchy. To prove DP-hardness of AD, /0-EXSA, we reduce from
the canonical DP-hard problem 3-SAT-UNSAT, which is the intersection of 3-SAT and 3-UNSAT. An instance
(ϕ1,X1,ϕ2,X2) consists of a 3-CNF formula ϕ1 on a set X1 of variables and a 3-CNF formula ϕ2 on a set X2 of vari-
ables, and the question is whether (ϕ1,X1)∈ 3-SAT and (ϕ2,X2)∈ 3-UNSAT. Our reduction bears some similarities670

to the one used by Dunne and Wooldridge [44] in their proof that ST-EXSA is DP-hard. The increased difficulty of our
reduction is due to avoiding unwanted AD, /0 sets that do not include the target argument, which is not accomplished
by (and not necessary for) the reduction by Dunne and Wooldridge.

Definition 37. Let (ϕ1,X1,ϕ2,X2) be an instance of 3-SAT-UNSAT, and let—for k ∈ {1,2}—ϕk =
∧

i ck
i and ck

i =∨
j αk

j for each clause ck
i in ϕk, where the αk

j are the literals over Xk that occur in clause ck
i . We define an argumentation

framework representation 〈A ,R〉 of (ϕ1,X1,ϕ2,X2) as follows:

A ={x1
i , x̄

1
i | x1

i ∈ X1}∪{x2
i , x̄

2
i | x2

i ∈ X2}
∪{c̄1

i | c1
i in ϕ

1}∪{c̄2
i | c2

i in ϕ
2}

∪{ϕ1, ϕ̄1,ϕ2, ϕ̄2,ψ};
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Figure 10: Visualization of the argumentation framework created by Definition 37 for the 3-SAT-UNSAT instance given in Example 38.

R ={(x1
i , x̄

1
i ),(x̄

1
i ,x

1
i ) | x1

i ∈ X1}∪{(x2
i , x̄

2
i ),(x̄

2
i ,x

2
i ) | x2

i ∈ X2}
∪{(x1

k , c̄
1
i ) | x1

k in c1
i }∪{(x̄1

k , c̄
1
i ) | ¬x1

k in c1
i }

∪{(x2
k , c̄

2
i ) | x2

k in c2
i }∪{(x̄2

k , c̄
2
i ) | ¬x2

k in c2
i }

∪{(c̄1
i ,ϕ

1) | c1
i ∈ ϕ

1}∪{(c̄2
i ,ϕ

2) | c2
i ∈ ϕ

2}
∪{(ψ,x1

i ),(ψ, x̄1
i ) | x1

i ∈ X1}∪{(ϕ̄2,x2
i ),(ϕ̄

2, x̄2
i ) | x2

i ∈ X2}
∪{(ϕ1, ϕ̄1),(ϕ2, ϕ̄2),(ϕ1,ϕ1),(ϕ1,ϕ2),(ϕ2,ψ),(ψ,ψ)}.

Again, we identify an assignment τS on a set S = {s1, . . . ,s|S|}⊆ (X1∪X2) of variables with a set A [τS] = {si |τS(si) =
true}∪{s̄i | τS(si) = false} of arguments.675

Example 38. Let (ϕ1,X1,ϕ2,X2) be a 3-SAT-UNSAT instance with X1 = {x1
1,x

1
2,x

1
3}, X2 = {x2

1,x
2
2,x

2
3}, ϕ1 = c1

1∧c1
2

with c1
1 = x1

1 ∨¬x1
2 and c1

2 = x1
2 ∨¬x1

3, and ϕ2 = c2
1 ∧ c2

2 with c2
1 = ¬x2

1 ∨¬x2
2 and c2

2 = x2
2 ∨ x2

3. The argumentation
framework created for (ϕ1,X1,ϕ2,X2) by the translation of Definition 37 is displayed in Figure 10.

Lemma 39. Let (ϕ1,X1,ϕ2,X2) be an instance of 3-SAT-UNSAT, and let 〈A ,R〉 be the argumentation framework
created for it by Definition 37.680

1. (∃τX1)[ϕ1[τX1 ] = true] if and only if there is a nonempty admissible set E in 〈A ,R〉 with ϕ̄2 ∈ E (i.e.,
(〈A ,R〉, ϕ̄2) ∈ AD, /0-CA).

2. (∃τX2)[ϕ2[τX2 ]] = true if and only if there is a nonempty admissible set E in 〈A ,R〉 with ϕ̄2 < E (i.e.,
(〈A ,R〉, ϕ̄2) < AD, /0-SA).

Proof. Assume that (∃τX1)[ϕ1[τX1 ] = true] (Part 1). Let C2 be a set of arguments containing ϕ̄2 and any number685

of—but at least one—clause argument c̄2
i representing a clause in ϕ2. Then the set A [τX1 ]∪{ϕ1}∪C2 is admissible,

since there are no attacks among these arguments, and because arguments A [τX1 ]∪ {ϕ1} defeat ϕ̄1 and all argu-
ments c̄1

j , and because arguments C2 defeat ψ , ϕ2, and all arguments x1
k , x̄1

k (analogously to Lemma 18). If instead
(∀τX1)[ϕ1[τX1 ] = false], then no admissible set can defend ϕ1 against all clause arguments c̄1

i . Since ϕ1 is the only
argument that can defend ϕ̄2 against ϕ̄1, however, this means that ϕ̄2 cannot be contained in any admissible set.690

Now assume that (∃τX2)[ϕ2[τX2 ] = true] (Part 2). Then the set A [τX2 ]∪ {ϕ2} is admissible (again, analo-
gously to Lemma 18), so not every nonempty admissible set in 〈A ,R〉 contains the target argument ϕ̄2. If instead
(∀τX2)[ϕ2[τX2 ] = false], we prove that every admissible set must include the target argument ϕ̄2.

• Firstly, the self-attacking arguments ϕ̄1 and ψ can clearly never be members of admissible sets.
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• The literal arguments {x2
i , x̄

2
i | x2

i ∈ X2} need to be defended against the attack by ϕ̄2 in order to appear in695

admissible sets—however, the only argument that could provide this defending attack is ϕ2, and we know that
no admissible set can defend ϕ2 against all clause arguments c̄2

i , since τX2 is unsatisfiable. Therefore, neither
ϕ2 nor any literal argument in {x2

i , x̄
2
i | x2

i ∈ X2} can be in an admissible set.

• A set of arguments containing a clause argument c̄2
i must also defend c̄2

i against the attacks by literal arguments.
The only candidates for this are other literal arguments in {x2

i , x̄
2
i | x2

i ∈ X2} or ϕ̄2, and since we ruled out literal700

arguments in the previous step, the only option is that the admissible set must contain ϕ̄2.

• Literal arguments in {x1
i , x̄

1
i | x1

i ∈ X1} must be defended against ψ in order to be members of admissible sets,
which can only be done by ϕ̄2.

• Again, a set of arguments containing a clause argument c̄1
i must defend c̄1

i against the attacks by literal argu-
ments. The only candidates for this are other literal arguments in {x1

i , x̄
1
i | x1

i ∈ X1} or ψ . For the latter, we705

know that ψ can never occur in admissible sets, and for the former, we determined that this also requires ϕ̄2 to
be in the admissible set.

• A set of arguments containing argument ϕ1 must defend it against all clause arguments c̄1
i , which can only be

done by literal arguments in {x1
i , x̄

1
i | x1

i ∈ X1}, which in turn require ϕ̄2 to be in the admissible set, too.

This completes the proof. q710

Theorem 40. AD, /0-EXSA is DP-hard.

Proof. We reduce from 3-SAT-UNSAT. Let (ϕ1,X1,ϕ2,X2) be a 3-SAT-UNSAT instance.
If (ϕ1,X1,ϕ2,X2) ∈ 3-SAT-UNSAT, we have that (∃τX1)[ϕ[τX1 ] = true] and (∀τX2)[ϕ[τX2 ] = false], so by

Lemma 39, there is a nonempty admissible set E in 〈A ,R〉 with ϕ̄2 ∈ E (Part 1) and there is no nonempty admissible
set E in 〈A ,R〉 with ϕ̄2 < E (negation of Part 2), which means (〈A ,R〉, ϕ̄2) ∈ AD, /0-CA and (〈A ,R〉, ϕ̄2) ∈715

AD, /0-SA, so (〈A ,R〉, ϕ̄2) ∈ AD, /0-EXSA.
If (ϕ1,X1,ϕ2,X2) < 3-SAT-UNSAT, we have that (∀τX1)[ϕ[τX1 ] = false] or (∃τX2)[ϕ[τX2 ] = true], so by

Lemma 39, it holds that (〈A ,R〉, ϕ̄2) < AD, /0-CA or (〈A ,R〉, ϕ̄2) < AD, /0-SA, so (〈A ,R〉, ϕ̄2) < AD, /0-EXSA. q

4. Preservation of Extensions

In this section, we describe atomic changes to completions (adding or removing a single uncertain argument or720

attack) that are guaranteed to be redundant from the point of view of preserving a given s extension of the completion.
As we will show later in Section 6–7, these observations will prove to be crucial in designing efficient algorithms for
the acceptance problems with complexity beyond NP (assuming, as is widely believed, that the polynomial hierarchy
does not collapse to NP). Related to the observations presented in this section, there is a substantial amount of research
on the dynamic aspects of AFs (see [39] for an overview), in particular on the impact of the addition and removal of725

arguments and attacks on the semantics, which we overview in Section 8. The preservation of stable and preferred
extensions when removing and adding attacks was first studied by Rienstra et al. [77] (in terms of labelings); our
results for these semantics naturally coincide, and we further extend the results to (nonempty) admissible sets.

For an incomplete argumentation framework IAF, a completion AF∗ = 〈A ∗,R∗〉 of IAF, a semantics s, and an
extension E ∈ s(AF∗), we denote IN(E ) = E , OUT(E ) = {a ∈A ∗ | (b,a) ∈R∗ with b ∈ IN(E )}, and UNDEC(E ) =730

A ∗ \ (IN(E )∪OUT(E )).
We begin by considering adding an argument a∈A ?\A ∗ to the completion. If there is a definite attack (b,a)∈R

with b ∈ IN(E ), then any attacks by a against arguments in E would be defended by E in the modified completion,
which ensures that E stays an extension, both under nonempty admissible and stable semantics.

Proposition 41. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete AF, AF∗= 〈A ∗,R∗〉 a completion of IAF, s∈{AD, /0, ST},735

E ∈ s(AF∗), and a ∈A ? \A ∗. If there exists (b,a) ∈R with b ∈ IN(E ), then E ∈ s(AF′) for AF′ = 〈A ∗∪{a},R∗∪
R|A ∗∪{a}〉.
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Proof. Clearly, the set E ⊆A ∗ is still conflict-free in AF′.

• If s = AD, /0, we know that every attack (c,d) ∈R∗ against E with c ∈A ∗ and d ∈ E is defended by E since
E ∈ AD, /0(AF∗), and the only new attacks against E that might have been added in AF′ are attacks by a, which740

are defended by b ∈ E by assumption. Therefore, E ∈ AD, /0(AF′).

• If s = ST, since E ∈ ST(AF∗), for each c ∈ A ∗ \ E there exists an attack (d,c) ∈ R∗ with d ∈ E . Also, by
assumption (b,a) ∈R and b ∈ E , and thus E ∈ ST(AF′).

This completes the proof. q

We continue by considering removing an argument a ∈ A ? ∩A ∗ from the completion. In particular, removing745

arguments (along with incident attacks) that are members of OUT(E ) or of UNDEC(E ) has no effect on the current
extension E .

Proposition 42. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete AF, AF∗= 〈A ∗,R∗〉 a completion of IAF, s∈{AD, /0, ST},
E ∈ s(AF∗), and a ∈A ?∩A ∗. If a < IN(E ), then E ∈ s(AF′) for AF′ = 〈A ∗ \{a},R∗|A ∗\{a}〉.

Proof. Again, the set E ⊆A ∗ is still conflict-free in AF′.750

• If s = AD, /0, since a < E and E ∈ AD, /0(AF∗), E still defends all its members in AF′ and thus E ∈ AD, /0(AF′).

• If s = ST, since E ∈ ST(AF∗), for each c ∈A ∗ \E there exists an attack (d,c) ∈R∗ with d ∈ E . Since a < E ,
these attacks still exist in AF′. Thus E ∈ ST(AF′).

This completes the proof. q

We continue with an illustrative example on an application of Proposition 42.755

Example 43. Consider the incomplete argumentation framework IAF = 〈A ,A ?,R,R?〉 from Example 8 illustrated
in Figure 3. Further, consider the completion in Figure 4a, including both uncertain arguments a and g and the
uncertain attack ( f ,d). By Example 10, E = {a,c, f} is a nonempty admissible extension of this completion, and
we have IN(E ) = {a,c, f}, OUT(E ) = {b,d,e}, and UNDEC(E ) = {g}. Removing the argument g results in the
completion illustrated in Figure 4c. By Proposition 42, since g < IN(E ), we know that E is an extension of this760

completion.

Next, we identify redundant attacks. Removing an uncertain attack (b,a) ∈R?∩R∗ with the source b ∈ OUT(E )
has no effect on the extension E , and neither does removing an attack with the target a ∈ IN(E ). Further, the fact that
E is admissible is not changed by removing attacks between UNDEC(E ) arguments or from UNDEC(E ) to OUT(E )
arguments (when E is stable, UNDEC(E ) = /0).765

Proposition 44. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete AF, AF∗= 〈A ∗,R∗〉 a completion of IAF, s∈{AD, /0, ST},
E ∈ s(AF∗), and (b,a) ∈R?∩R∗. If b < IN(E ) or a < OUT(E ), then E ∈ s(AF′) for AF′ = 〈A ∗,R∗ \{(b,a)}〉.

Proof. Clearly, the set E ⊆A ∗ is still conflict-free in AF′. Suppose b < IN(E ), that is, b < E .

• s = AD, /0: Since E ∈ AD, /0(AF∗), each attack (a′,c) ∈R∗ where c ∈ E and a′ ∈A ∗ is countered by an attack
(b′,a′) ∈ R∗ with b′ ∈ E . This holds in AF′, since by assumption b < E , and hence the counterattack is not770

removed. Thus E ∈ AD, /0(AF′).

• s = ST: Since E ∈ ST(AF∗), for each a′ ∈ A ∗ \E there is an attack (b′,a′) ∈R∗ with b′ ∈ E . This holds in
AF′, since by assumption b < E . Thus E ∈ ST(AF′).

Suppose a < OUT(E ), that is, there is no attack (e,a) ∈R∗ with e ∈ E .

• s = AD, /0: Since E ∈ AD, /0(AF∗), each attack (a′,c) ∈R∗ where c ∈ E and a′ ∈A ∗ is countered by an attack775

(b′,a′) ∈ R∗ with b′ ∈ E . If for some attack we would have a′ = a, this would be a contradiction with the
assumption that there is no attack (e,a) ∈ R∗ with e ∈ E . That is, the counterattacks are not removed, and
hence, E ∈ AD, /0(AF′).
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• s = ST: Since E ∈ ST(AF∗), for each a′ ∈ A ∗ \E there is an attack (b′,a′) ∈ R∗ with b′ ∈ E . Again, if we
would have a′ = a, this would be a contradiction with the assumption that there is no attack (e,a) ∈R∗ with780

e ∈ E . Thus E ∈ ST(AF′).

This completes the proof. q

Finally, we consider adding uncertain attacks to the completion. Adding an uncertain attack (b,a) ∈R? \R∗ is
only relevant if the source b < OUT(E ) and if the target a ∈ IN(E ), assuming b,a ∈ A ∗. This is due to the fact that
attacks by OUT(E ) arguments are defended and thus inactivated by E , and that adding any further attacks against785

OUT(E ) arguments has no effect on E . The admissibility of E is not changed by adding attacks between UNDEC(E )
arguments or from IN(E ) arguments to UNDEC(E ) arguments. Note that we assume b,a ∈A ∗ here, since if b <A ∗

or a <A ∗, we would first need to add the argument in order to add the attack, and we only consider atomic changes.

Proposition 45. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete AF, AF∗= 〈A ∗,R∗〉 a completion of IAF, s∈{AD, /0, ST},
E ∈ s(AF∗), and (b,a) ∈ R? \R∗ with b,a ∈ A ∗. If b ∈ OUT(E ) or a < IN(E ), then E ∈ s(AF′) for AF′ =790

〈A ∗,R∗∪{(b,a)}〉.

Proof. The set E ⊆A ∗ is still conflict-free in AF′. Suppose b ∈ OUT(E ), that is, there exists an attack (e,b) ∈R∗

with e ∈ E .

• s = AD, /0: Since E ∈ AD, /0(AF∗), each attack (a′,c) ∈R∗ where c ∈ E and a′ ∈A ∗ is countered by an attack
(b′,a′) ∈R∗ with b′ ∈ E . If a ∈ E , by assumption there exists an attack (e,b) ∈R∗ with e ∈ E , so the attack795

(b,a) is countered as well. Hence, E ∈ AD, /0(AF′).

• s = ST: Since E ∈ ST(AF∗), for each a′ ∈ A ∗ \E there is an attack (b′,a′) ∈R∗ with b′ ∈ E . This holds in
AF′, since by assumption b < E . Thus E ∈ ST(AF′).

Suppose a < IN(E ), that is, a < E .

• s = AD, /0: Since E ∈ AD, /0(AF∗), each attack (a′,c) ∈R∗ where c ∈ E and a′ ∈A ∗ is countered by an attack800

(b′,a′) ∈R∗ with b′ ∈ E . Since by assumption a < E , adding the attack (b,a) has no effect on the admissibility
of E . Hence, E ∈ AD, /0(AF′).

• s = ST: Since E ∈ ST(AF∗), for each a′ ∈ A ∗ \E there is an attack (b′,a′) ∈R∗ with b′ ∈ E . This holds in
AF′, and hence E ∈ ST(AF′).

This completes the proof. q805

We continue with an illustrative example on an application of Proposition 45.

Example 46. Consider the incomplete argumentation framework IAF = 〈A ,A ?,R,R?〉 from Example 8, illustrated
in Figure 3. Further, consider the completion in Figure 4h, excluding both uncertain arguments a and g and the
uncertain attack ( f ,d). By Example 10, E = {b,e, f} is a stable extension of this completion and we have IN(E ) =
{b,e, f} and OUT(E ) = {c,d}. Including the attack ( f ,d) results in the completion illustrated in Figure 4g. By810

Proposition 45, since the target argument d < IN(E ), we know that E is still an extension of this completion.

In addition to admissible and stable semantics, we make use of similar results for preferred semantics, under
which the picture is slightly different as the conditions on undecided arguments are more restrictive when removing
arguments and changing the attack structure. Consider first adding an argument in A ? \A ∗. If it is definitely at-
tacked by an argument in the preferred extension, adding it will not affect the extension being preferred, exactly as in815

Proposition 41 for admissible and stable semantics.

Proposition 47. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete AF, AF∗ = 〈A ∗,R∗〉 a completion of IAF, E ∈
PR(AF∗), and a ∈A ? \A ∗. If there exists (b,a) ∈R with b ∈ IN(E ), then E ∈ PR(AF′) for AF′ = 〈A ∗∪{a},R∗∪
R|A ∗∪{a}〉.
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Proof. Since now E ∈ AD(F∗), due to Proposition 41, E ∈ AD(AF′), and it remains to show that there is no820

E ′ ∈ AD(AF′) with E ′ ⊃ E . Suppose on the contrary that such a set E ′ exists. Since now a < IN(E ′) as otherwise E ′

would not be conflict-free, by Proposition 42, E ′ ∈ AD(AF∗), contradicting the assumption that E ∈ PR(AF∗). This
completes the proof. q

If E is a preferred extension, removing an argument a ∈ A ? ∩A ∗ with a ∈ UNDEC(E ) does not necessarily
preserve E , in contrast to Proposition 42.1 On the other hand, the observation in Proposition 42 regarding arguments825

in OUT(E ) does still hold for preferred semantics.

Proposition 48. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete AF, AF∗ = 〈A ∗,R∗〉 a completion of IAF, E ∈
PR(AF∗), and a ∈A ?∩A ∗. If a ∈ OUT(E ), then E ∈ PR(AF′) for AF′ = 〈A ∗ \{a},R∗|A ∗\{a}〉.

Proof. Since E ∈ AD(AF∗), via Proposition 42, E ∈ AD(AF′). It remains to show that there is no E ′ ∈ AD(AF′) with
E ′ ⊃ E . Suppose on the contrary that such a set E ′ exists. Since a∈ OUT(E ), there exists b∈ E with (b,a)∈R∗. The830

conditions of Proposition 41 now hold for the incomplete argumentation framework IAF′= 〈A ∗,{a},R∗,R?|A ∗∪{a}〉
and the completion AF′. Since E ′ ∈ AD(AF′), this results in E ′ ∈ AD(AF∗), which contradicts our assumption E ∈
PR(AF∗). This completes the proof. q

Regarding removing and adding attacks, the results by Rienstra et al. [77] for preferred semantics are directly
applicable in our context. The key difference to admissible and stable semantics is that removing and adding attacks835

between undecided arguments and adding attacks from the extension to undecided arguments may result in a larger
admissible extension. We summarize these results in the following propositions.

Proposition 49. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete AF, AF∗ = 〈A ∗,R∗〉 a completion of IAF, E ∈
PR(AF∗), and (b,a)∈R?∩R∗. If b < IN(E ) or a < OUT(E ), and b < UNDEC(E ) or a < UNDEC(E ), then E ∈ PR(AF′)
for AF′ = 〈A ∗,R∗ \{(b,a)}〉.840

Proposition 50. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete AF, AF∗ = 〈A ∗,R∗〉 a completion of IAF, E ∈
PR(AF∗), and (b,a) ∈ R? \R∗ with b,a ∈ A ∗. If b ∈ OUT(E ) or a ∈ OUT(E ), then E ∈ PR(AF′) for AF′ =
〈A ∗,R∗∪{(b,a)}〉.

We summarize our observations about the effects of atomic changes to the set of arguments on the preservation of
a given extension:845

• by Propositions 41 and 47, under all three semantics AD, /0, ST, and PR, adding arguments that will definitely be
attacked by the current extension does not have an effect on the extension;

• by Proposition 42, under AD, /0 and ST, removing arguments that are not in the current extension does not have
an effect on the extension;

• by Proposition 48, under PR, this only concerns arguments that are attacked by the extension.850

Regarding atomic changes to the set of attacks, Table 3 summarizes the allowed changes.

5. Encoding into SAT

We begin the algorithmic part of this work by providing encodings in boolean satisfiability (SAT) for the problem
variants with first-level complexity. The encodings extend the standard encodings for argumentation semantics [20] to
incomplete AFs, essentially conditioning relevant parts of the formulas on the existence of an argument or an attack.855

Given an incomplete argumentation framework IAF and a semantics s, we will present propositional formulas ϕs(IAF)
such that completions of the incomplete AF and s extensions of the completion are in a one-to-one correspondence
with models of ϕs(IAF). These encodings will then form the basis for the SAT-based algorithms deciding the various

1In particular, removing arguments in UNDEC(E ) may break odd-length cycles and thus modify the preferred extension.
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Table 3: Overview of the atomic changes on the set of attacks that do not affect an extension E of a completion, based on Propositions 44 and 45
for AD, /0 and ST and on Propositions 49 and 50 for PR. Here, the symbol 3 means that the change has no effect under all semantics AD, /0,ST, and
PR, (3) means that the change has no effect under semantics AD, /0 or ST but may have an effect under PR, and 7 means that the change may have
an effect under all semantics AD, /0,ST, and PR.

adding attack (b,a) removing attack (b,a)
a ∈ IN(E ) a ∈ OUT(E ) a ∈ UNDEC(E ) a ∈ IN(E ) a ∈ OUT(E ) a ∈ UNDEC(E )

b ∈ IN(E ) 7 3 (3) 3 7 3
b ∈ OUT(E ) 3 3 3 3 3 3

b ∈ UNDEC(E ) 7 3 (3) 3 3 (3)

forms of acceptance in incomplete argumentation frameworks, including the NP- and coNP-complete problems which
are solved using a single SAT solver call, as well as problems beyond NP for which we develop counterexample-guided860

approaches in Section 6.
Consider an input IAF = 〈A ,A ?,R,R?〉. We use variables xa and ya for all a ∈A ∪A ? and ra,b for all (a,b) ∈

R ∪R?, with the following interpretations:

• ya = true if and only if a ∈A ∗,

• ra,b = true if and only if (a,b) ∈R∗, and865

• xa = true if and only if a ∈ E ∈ s(AF∗),

where AF∗ = 〈A ∗,R∗〉 is a completion of IAF defined by the y∗ and r∗,∗ variables. In other words, the x∗ variables
encode an extension of the completion encoded by the y∗ and r∗,∗ variables. Now, the formula

ϕCF(IAF) =
∧

(a,b)∈R∪R?

(
(ya∧ yb∧ ra,b)→ (¬xa∨¬xb)

)
encodes conflict-free sets in a completion of IAF, expressing that if two arguments and an attack between them are
present in the completion, one cannot include both of the arguments in the extension. To express IAF semantics, we
use additional variables za for each a ∈A ∪A ?, binding their value to the rest of the variables via equivalences

ϕz(IAF) =
∧

a∈A ∪A ?

za↔
∨

(b,a)∈R∪R?

(xb∧ yb∧ rb,a)

 .

Now za is assigned to true if and only if a is attacked by the extension encoded by the x∗ variables in the completion
encoded by the y∗ and r∗,∗ variables. Using this and the encoding for conflict-free sets,

ϕAD(IAF) = ϕCF(IAF)∧ϕz(IAF)∧
∧

a∈A ∪A ?

∧
(b,a)∈R∪R?

(
(xa∧ ya∧ yb∧ rb,a)→ zb

)
encodes admissible sets by expressing that, for each argument and for each attack on the argument, if the argument
is included in the extension of the completion, the attacker must be attacked by the extension. That is, the extension
defends itself. Nonempty admissible semantics can now be encoded as

ϕAD, /0(IAF) = ϕAD(IAF)∧
∨

a∈A ∪A ?

xa.

The encoding for complete semantics is

ϕCP(IAF) = ϕAD(IAF)∧
∧

a∈A ∪A ?

( ∧
(b,a)∈R∪R?

(
(ya∧ yb∧ rb,a)→ zb

)
→ xa

)
,
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stating that a complete extension is admissible, and for each argument, if the argument is defended by the extension of
the completion (i.e., each attacker of the argument is attacked by the extension if the attack and the incident arguments
are present in the completion), it is also included in the extension. We express stable semantics with

ϕST(IAF) = ϕCF(IAF)∧ϕz(IAF)∧
∧

a∈A ∪A ?

(
(ya∧¬xa)→ za

)
,

which states that a stable extension is conflict-free, and for each argument, if the argument exists in the completion
and is not included in the extension, it must be attacked by the extension.

Finally, for the grounded semantics we adapt the encoding due to Niskanen et al. [73], using additionally variables
la
n for each a ∈A ∪A ? and for each integer n ∈ {1, . . . ,d|A ∪A ?|/2e}, with the interpretation that la

n = trueif and
only if a ∈ Fn

AF∗( /0). The upper bound on n is explained by the fact that for AFs with |A | arguments, the maximum
number of iterations of the characteristic function to the empty set until the fixpoint is d|A |/2e. This upper bound is
realized by an AF which consists of a directed path of arguments. The constraints

ϕ
a
1 (IAF) = la

1 ↔

(
ya∧

∧
(b,a)∈R∪R?

(yb→¬rb,a)

)
,

ϕ
a
n (IAF) = la

n ↔

(
ya∧

∧
(b,a)∈R∪R?

(
(yb∧ rb,a)→

∨
(c,b)∈R∪R?

(lc
n−1∧ yc∧ rc,b)

))
,

simulate the application of the characteristic function on a completion of the input incomplete AF, and finally

ϕGR(IAF) =
∧

a∈A ∪A ?

((
xa↔

( d|A ∪A ?|/2e∨
n=1

la
n

))
∧
d|A ∪A ?|/2e∧

n=1

ϕ
a
n (IAF)

)

requires that an argument is included if and only if it is included in Fn
AF∗( /0) for some n, hence capturing the grounded

extension of the completion AF∗.870

Finally, to encode valid completions, we observe that ya is always true for all definite arguments, and likewise
ra,b is true for all definite attacks.2 Further, if an uncertain argument is not included in the completion, it cannot be
accepted, and all incident attacks are not included either. This information is encoded as

ϕ?(IAF) =
∧

a∈A
ya∧

∧
(a,b)∈R

ra,b∧
∧

a∈A ?

(
¬ya→

(
¬xa∧

∧
(a,b)∈R?

¬ra,b∧
∧

(b,a)∈R?

¬rb,a

))
.

The latter conjunction is in fact redundant, given that the ϕs(IAF) formulas are conditioned on the existence of an
attack and incident arguments. However, as binarý clauses, these can be beneficial for a SAT solver during search.

The key properties of the encodings are summarized in the following proposition.

Proposition 51. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete AF. Consider a query argument a∈A , and a semantics
s ∈ {AD,AD, /0,CP, ST,GR}.875

• The formula ϕ?(IAF)∧ϕs(IAF)∧ xa is satisfiable if and only if argument a is possibly credulously accepted
under s.

• The formula ϕ?(IAF)∧ ϕs(IAF)∧ (¬xa) is unsatisfiable if and only if argument a is necessarily skeptically
accepted under s.

2In fact, by performing deterministic polynomial-time unit propagation (as implemented in typical SAT solvers) on the encodings with the unit
clauses

∧
a∈A ya∧

∧
(a,b)∈R ra,b expressing the definite elements, the connectives in the ϕs(IAF) encodings split into several subcases depending on

whether arguments and attacks are definite or uncertain. Here we present them in a uniform and more compact way for representational simplicity.
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6. SAT-based Algorithms880

In this section we present a SAT-based approach for argument acceptance in incomplete argumentation frame-
works. For problems on the first level of the polynomial hierarchy, a single call to a SAT solver suffices using the
encodings presented in Section 5. However, for problems beyond NP, there presumably exists no polynomial-time
reduction to SAT. Hence, we develop algorithms based on counterexample-guided abstraction refinement (CEGAR),
originally proposed in the context of model checking [30, 31]. In SAT-based CEGAR, an abstraction of the problem885

at hand—an overapproximation of the original problem that is in NP—is used to query a SAT solver for a candidate
solution to the problem. Then, a SAT solver is again used to check whether the candidate solution is an actual so-
lution to the problem by asking it for a counterexample. If one is found, the abstraction is refined by ruling out the
counterexample. Then the algorithm proceeds iteratively until the solution of the original problem is found.

For the rest of this section, let IAF = 〈A ,A ?,R,R?〉 be an incomplete AF and a ∈A be the query argument.890

6.1. Credulous Acceptance
We start with possible and necessary credulous acceptance. First of all, we note that due to Observation 5, possible

and necessary credulous acceptance coincides for semantics AD, AD, /0, CP, and PR. Hence, to cover all semantics and
both variants of credulous acceptance, it suffices to consider the problems s-PCA and s-NCA for s ∈ {AD, ST,GR}.

Possible credulous acceptance. Recall that the possible variant s-PCA is NP-complete for all s ∈ {AD, ST,GR}, and
due to Proposition 51, is decided by satisfying the input formula

ϕ?(IAF)∧ϕs(IAF)∧ xa.

Note that a satisfying truth assignment also yields a completion of the input IAF and an s extension of the completion895

containing the query argument.

Necessary credulous acceptance. The necessary variant s-NCA is Π
p
2 -complete for s∈{AD, ST} and coNP-complete

for s = GR. Due to Observations 6 and 7, GR-NCA = GR-NSA = CP-NSA, so necessary credulous acceptance
under grounded semantics can be decided by using the procedure for necessary skeptical acceptance under complete
semantics, which we cover in Section 6.2.900

We are left with the problems AD-NCA and ST-NCA, for which we develop a CEGAR procedure, presented as
pseudocode in Algorithm 1. Based on Π

p
2 -completeness, the idea is to look for a counterexample, that is, a completion

Algorithm 1 CEGAR-based necessary credulous acceptance for s∈ {AD, ST}. Input: IAF = 〈A ,A ?,R,R?〉, a∈A .

1: ϕ ← ABSTRACTIONs(IAF,¬xa)
2: while true
3: (sat,τ)← SAT(ϕ)
4: if sat = true
5: AF∗← EXTRACT(τ)
6: (sat,τ ′)← SAT(CHECKs(IAF,AF∗,xa))
7: if sat = false return reject
8: ϕ ← ϕ∧ REFINE(IAF,AF∗)
9: else

10: if s , ST return accept
11: ϕ ← (ϕ \{¬xa}) ∪{xa}
12: while true
13: (sat,τ)← SAT(ϕ)
14: if sat = false break
15: AF∗← EXTRACT(τ)
16: ϕ ← ϕ∧ REFINE(IAF,AF∗)
17: if SAT(ϕ \ϕST(IAF)) = true return reject
18: else return accept
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of IAF which has no extension containing the query argument a. We start by solving an abstraction of the problem,
given in this case by the formula (line 1)

ABSTRACTIONs(IAF,¬xa) = ϕ?(IAF)∧ϕs(IAF)∧¬xa.

If ABSTRACTIONs(IAF,¬xa) is satisfiable, we get a truth assignment τ from which we can extract a completion
AF∗ = EXTRACT(τ) (lines 3 and 5) of the input IAF with EXTRACT(τ) = 〈A ∗,R∗〉, where

A ∗ = {a ∈A ∪A ? | τ(ya) = true}
R∗ = {(a,b) ∈R ∪R? | τ(ra,b) = true}

along with an s extension E ∈ s(AF∗) that does not include a. We still do not know whether there is some other
s extension containing a, so we check whether a is credulously accepted under s in AF∗, which can be done with a
single SAT call on the formula (line 6)

CHECKs(IAF,AF∗,xa) = ϕs(IAF)∧COMPLETION(IAF,AF∗)∧ xa,

where
COMPLETION(IAF,AF∗) =

∧
a∈A ∗

ya∧
∧

a∈(A ∪A ?)\A ∗
¬ya∧

∧
(a,b)∈R∗

ra,b∧
∧

(a,b)∈(R∪R?)\R∗
¬ra,b

encodes the completion AF∗ currently under consideration. Adding these unit clauses essentially reduces the encoding
ϕs(IAF) for incomplete AFs to the respective encoding for standard AFs. If CHECKs(IAF,AF∗,a) is unsatisfiable,
there is no extension containing a in AF∗, so we successfully obtained a counterexample to necessary credulous ac-
ceptance of a, and can reject (line 7). If, however, the formula CHECKs(IAF,AF∗,a) is satisfiable, our counterexample
is not valid for the problem instance at hand and we need to refine the abstraction by adding the clause

REFINE(IAF,AF∗) = ¬COMPLETION(IAF,AF∗) =
∨

a∈A ∗
¬ya∨

∨
a∈(A ∪A ?)\A ∗

ya∨
∨

(a,b)∈R∗
¬ra,b∨

∨
(a,b)∈(R∪R?)\R∗

ra,b

to the original SAT instance (line 8), which tells the solver that we need to find another completion of IAF, and iterate
until we either find a counterexample to necessary credulous acceptance, or reach unsatisfiability.

If ABSTRACTIONs(IAF,¬xa) is unsatisfiable, Proposition 51 implies that a is necessarily skeptically accepted.
For s = AD, this implies that a is also necessarily credulously accepted, so we accept (line 10). For s = ST, it is not
necessarily the case that a is necessarily credulously accepted, since it might be the case that there are completions905

which have no stable extension (recall that an argument is by definition skeptically accepted if the AF has no exten-
sion). In other words, the abstraction initialized with ABSTRACTIONST(IAF,¬xa) only considers those AFs that have
a stable extension not containing a.

To resolve this issue, we iteratively call a SAT solver with the input formula (ϕ \ {¬xa}) ∪{xa} consisting of
ϕ?(IAF)∧ϕST(IAF)∧xa and additional refinement clauses, refining the formula similarly via REFINE(IAF,AF∗) using910

the completion AF∗ extracted from a satisfying assignment, until reaching unsatifiability (lines 11–16). Essentially,
this procedure rules out all completions that possess a stable extension. Finally, we check using ϕ \ϕST(IAF) whether
there still are completions; if so, we reject the query, since these completions have no stable extension, and otherwise
we accept it (lines 17–18).

6.2. Skeptical Acceptance915

We continue by presenting procedures for deciding (both variants of) possible and necessary skeptical acceptance.
As explained in Section 6.1, due to Observations 6 and 7, it suffices to consider CP-NSA in order to decide necessary
(credulous and skeptical) acceptance under grounded semantics. In addition, since possible (credulous and skepti-
cal) acceptance under grounded semantics coincides with CP-PSA, CP-PSA can be solved using the procedure for
GR-PCA described in Section 6.1. Finally, s-PSA and s-PEXSA coincide for semantics under which existence of an920

extension is guaranteed. That is, it suffices to consider s-PEXSA, s-PSA, s-NSA, and s-NEXSA for s ∈ {AD, /0, ST},
PR-PSA, CP-NSA, and PR-NSA to cover all semantics and all variants of skeptical acceptance.
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Necessary skeptical acceptance. Recall that s-NSA is coNP-complete under s ∈ {AD, /0, ST,CP} and via Proposi-
tion 51 can be decided by checking whether the formula

ϕ?(IAF)∧ϕs(IAF)∧¬xa (1)

is unsatisfiable. Note that if this formula is satisfiable, we obtain a truth assignment from which we can extract a
completion of the input IAF and an s extension of the completion not containing the query argument.

Necessary existence and skeptical acceptance. For s-NEXSA under s ∈ {AD, /0, ST}, we can use the formula (1) as925

an abstraction. In case of unsatisfiability, we rule all completions that have an s extension out of consideration, and
check whether there still are completions that have no s extension. For details on this procedure, see the description
for ST-NCA in Section 6.1. If there are no completions left, we accept, and otherwise we reject.

Possible existence and skeptical acceptance. We continue with s-PEXSA under s ∈ {AD, /0, ST}, which is Σ
p
2 -

complete. This hints at the idea of looking for a witness completion in which the query argument is skeptically930

accepted, i.e., included in every s extension. The CEGAR procedure is presented in pseudocode as Algorithm 2.
In this algorithm, an abstraction is now formed via the formula (line 1)

ABSTRACTIONs(IAF,xa) = ϕ?(IAF)∧ϕs(IAF)∧ xa.

If ABSTRACTIONs(IAF,xa) is unsatisfiable, we can reject the query (line 4) since then by Proposition 51 a is not
even possibly credulously accepted. If ABSTRACTIONs(IAF,xa) is satisfiable, we extract the current completion
AF∗ = EXTRACT(τ) = 〈A ∗,R∗〉 from the satisfying truth assignment τ (line 5), where A ∗ and R∗ are as defined on
page 29. We proceed by checking whether a is skeptically accepted under s in AF∗. This is accomplished via a SAT
call with the input formula (line 6)

CHECKs(IAF,AF∗,¬xa) = ϕs(IAF)∧COMPLETION(IAF,AF∗)∧¬xa,

where COMPLETION(IAF,AF∗) is defined on page 29.
If CHECKs(IAF,AF∗,¬xa) is unsatisfiable, this proves that we have successfully found a witness completion for

skeptical acceptance of a, and can accept (line 7). If the formula CHECKs(IAF,AF∗,¬xa) is satisfiable, we have shown
that there exists an extension E ∈ s(AF∗) not containing the query argument, so we refine the abstraction by adding935

the clause REFINE(IAF,AF∗) (line 8), as defined on page 29, excluding the current completion. Then, we continue
iteratively until the abstraction becomes unsatisfiable or we find a witnessing completion to possible existence and
skeptical acceptance.

Possible skeptical acceptance. For s-PSA under s ∈ {AD, /0, ST}, we can use the same procedure as for s-PEXSA,
with the following exception. If the abstraction becomes unsatisfiable, we rule out all completions that have an s940

extension, and check whether there still are completions without an s extension, as described in the procedure for
ST-NCA in Section 6.1. If there are completions left, this implies possible skeptical acceptance, and hence we accept,
otherwise we reject.

Necessary skeptical acceptance under preferred semantics. Consider now the PR-NSA problem, which is Π
p
2 -

complete, implying that we are again looking for a counterexample. The source of hardness is the Π
p
2 -completeness

Algorithm 2 CEGAR-based possible existence and skeptical acceptance for s ∈ {AD, /0, ST}. Input: IAF, a ∈A .

1: ϕ ← ABSTRACTIONs(IAF,xa)
2: while true
3: (sat,τ)← SAT(ϕ)
4: if sat = false return reject
5: AF∗← EXTRACT(τ)
6: (sat,τ)← SAT(CHECKs(IAF,AF∗,¬xa))
7: if sat = false return accept
8: ϕ ← ϕ∧ REFINE(IAF,AF∗)
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of standard skeptical acceptance under preferred semantics [43]. Motivated by this, we develop a CEGAR procedure
similar to the SAT-based AF solver CEGARTIX [46]. We describe the algorithm briefly due to the similarities of the
approaches. Our abstraction is based on the complete semantics via

ABSTRACTIONCP(IAF,¬xa) = ϕ?(IAF)∧ϕCP(IAF)∧¬xa.

If the abstraction is unsatisfiable, we accept the argument. A satisfying truth assignment τ yields us a comple-
tion AF∗ = EXTRACT(τ) = 〈A ∗,R∗〉 and a complete extension not containing a. Then, we iteratively subset-945

maximize the complete extension under the constraint that a is still not included, and finally check whether including
a yields a larger complete extension. If not, we have successfully obtained a counterexample, that is, a completion
where a is not skeptically accepted under preferred semantics, and we reject. If yes, we refine the abstraction via
REFINE(IAF,AF∗)∨

∨
b∈A ∗\E xb, where E is the subset-maximal complete extension we found, ruling out all subsets

of it for that particular completion, and continue iteratively.950

Possible skeptical acceptance under preferred semantics. The only problem complete for a class in the third level
of the polynomial hierarchy is the Σ

p
3 -complete PR-PSA. Reflecting the computational complexity, we are looking for

a witness, that is, a completion where a is skeptically accepted under preferred semantics. For the CEGAR algorithm,
we initialize the abstraction using the complete semantics via

ABSTRACTIONCP(IAF,xa) = ϕ?(IAF)∧ϕCP(IAF)∧ xa.

If the abstraction is unsatisfiable, we reject the query argument. A satisfying truth assignment corresponds to a
completion AF∗ and a complete extension containing the query a. Then, our goal is to check whether a is skeptically
accepted under preferred semantics. This is accomplished by first checking whether a is skeptically accepted in the
current completion under complete semantics via

CHECKCP(IAF,AF,¬xa) = ϕCP(IAF)∧COMPLETION(IAF,AF∗)∧¬xa.

If this formula is unsatisfiable, we can safely accept, as skeptical acceptance under complete semantics implies skep-
tical acceptance under preferred semantics. If it is satisfiable, we get a complete extension not containing a, and enter
the same subset-maximization procedure as in the algorithm for PR-NSA. Finally, we check whether including a into
the subset-maximal complete extension not containing a yields a larger complete extension. If this is not possible,
we refine the abstraction via REFINE(IAF,AF∗) and continue iteratively, since a is not skeptically accepted under955

preferred semantics in AF∗, which is witnessed by the preferred extension not containing a. If this is possible, we
add the clause COMPLETION(IAF,AF∗)→

∨
b∈A ∗\E xb, where E is the maximal complete extension, ruling out all

subsets for that completion, and continue.
Finally, we remark that although our algorithm for AD, /0-PEXSA and ST-PEXSA covers the second-level in-

complete variant, it also allows for solving the DP-complete problems AD, /0-EXSA and ST-EXSA. In this case, the960

CEGAR algorithm is bound to work within the resource limits of DP, i.e., terminating after one iteration. This is due
to the fact that if we find a counterexample to the solution of the abstraction, the refinement clause is empty because
there are no incomplete elements, causing immediate termination.

6.3. Strong Refinements

Recall the CEGAR algorithms for s-NCA (Algorithm 1) and s-PEXSA (Algorithm 2) for s ∈ {AD, /0, ST}. Before965

refining the abstraction, in both algorithms we have obtained a counterexample extension E , which either contains
(for s-NCA) or does not contain (for s-PEXSA) the query argument. In both cases, however, we would ideally like
to exclude all completions which still possess the counterexample E as an s extension, since these completions would
only cause more undesired iterations in the CEGAR algorithm. Due to Propositions 41–45 in Section 4, the following
strong refinement is also valid, and excludes certain other completions which admit the counterexample extension:970
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REFINEs(IAF,AF∗,E ) =
∨

a∈A ?∩IN(E )

¬ya∨
∨

a∈A ?\A ∗
(@(b,a)∈R)[b∈IN(E )]

ya

∨
∨

(a,b)∈R?∩R∗∩(IN(E )×OUT(E ))

¬ra,b∨
∨

(a,b)∈(R?\R∗)∩
((IN(E )∪UNDEC(E ))×IN(E ))

ra,b.

Thus in Algorithms 1 and 2 we may replace REFINE(IAF,AF∗) with REFINEs(IAF,AF∗,E ) while maintaining cor-
rectness. Since in the procedure described for PR-NSA on page 30 the counterexample extension E is also an admis-
sible set containing the query, here we may replace REFINE(IAF,AF∗)∨

∨
b∈A ∗\E xb with REFINEAD(IAF,AF∗,E )∨∨

b∈A ∗\E xb.
The situation is different in the procedure for PR-PSA described on page 31. Here we refine the abstraction via975

adding the clause REFINE(IAF,AF∗) if we find a preferred extension not containing the query. Thus we instead make
use of Propositions 47–50 yielding the following strong refinement:

REFINEPR(IAF,AF∗,E ) =
∨

a∈A ?∩(IN(E )∪UNDEC(E ))

¬ya∨
∨

a∈A ?\A ∗
(@(b,a)∈R)[b∈IN(E )]

ya

∨
∨

(a,b)∈R?∩R∗∩
((IN(E )×OUT(E ))∪(UNDEC(E )×UNDEC(E )))

¬ra,b∨
∨

(a,b)∈(R?\R∗)∩
((IN(E )∪UNDEC(E ))×(IN(E )∪UNDEC(E )))

ra,b.

We will show in Section 7 that strong refinements are crucial for solving these problems in practice.

7. Experiments

We continue by an overview of results from an empirical evaluation of the scalability of the approaches to accep-980

tance problems in incomplete AFs described in Section 6. Our implementation, TAEYDENNAE,3 uses Glucose 4.1 [4]
as the underlying SAT solver, and is available in open source:

https://bitbucket.org/andreasniskanen/taeydennae .

In the implementation, we employ fully incremental SAT solving, making use of the assumptions interface of Glucose.

7.1. Experiment Setup985

We generated incomplete AFs based on the benchmarks used in the 2nd International Competition on Computa-
tional Models of Argumentation (ICCMA 2017) [53] as follows. For each AF, we select a query argument uniformly
at random from the set of arguments. For each probability p ∈ {0.05,0.1,0.15,0.2}, we generated three incomplete
AFs: one where each argument (except for the query) is uncertain with probability p, one where each attack is uncer-
tain with probability p, and one where each argument and attack is uncertain with probability p. We used the ICCMA990

2017 benchmark set A for problems on the second level and the set B for problems on the first level, in line with
the complexity of the acceptance problems for which these sets were used in ICCMA 2017. This resulted in a total
of 4200 IAFs for each of the two ICCMA 2017 benchmark sets. A script for generating these IAF instances from
ICCMA 2017 instances is included in the solver repository.

The experiments were run on Intel Xeon E5-2680 v4 2.4-GHz, 256-GB machines with CentOS 7. We set a995

per-instance time limit of 900 seconds and a per-instance memory limit of 64 GB.

3“Täydennä” is the imperative form of the verb “to complete” in Finnish.
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Figure 11: Mean run times (with timeouts included) for purely argument-incomplete (left), purely attack-incomplete (center), and general incom-
plete (right) AFs for the problems on the first level.
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Figure 12: Mean run times (with timeouts included) for purely argument-incomplete (left), purely attack-incomplete (center), and general incom-
plete (right) AFs for possible existence and skeptical acceptance.
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Figure 13: Mean run times (with timeouts included) for purely argument-incomplete (left), purely attack-incomplete (center), and general incom-
plete (right) AFs for necessary credulous acceptance.
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7.2. Results

For the NP-complete problems AD-PCA (= CP-PCA = PR-PCA) and ST-PCA, and the coNP-complete problems
AD, /0-NSA, ST-NSA, and CP-NSA (= GR-NSA = GR-NCA), the mean run times (with timeouts included as the
timeout limit of 900 seconds) are visualized in Figure 11 for different values of p and argument-incompleteness or1000

attack-incompleteness. Interestingly, the empirical hardness of the instances does not increase as incompleteness is
increased; in fact, for problems other than CP-NSA, we are able to solve the corresponding incomplete instance sets
faster on average than for p = 0, which is exactly the original ICCMA benchmark set (i.e., “normal” acceptance
problems in standard AFs), especially when introducing attack-incompleteness. We hypothesize this to be due to the
fact that by making certain elements uncertain, there are more possibilities to have a satisfiable SAT instance—this is1005

witnessed by the fact that as p is increased, the number of accept answers increases considerably for PCA problems
(e.g., from 35% of solved instances with p = 0 to 71% with p = 0.2 for AD-PCA), and decreases for NSA problems
(e.g., from 56% of solved instances with p = 0 to 21% with p = 0.2 for ST-NSA). The only exception is CP-NSA
which is, for our approach and for this set of instances, surprisingly fast to solve, with mean running times around
10 seconds for each choice of parameters despite coNP-completeness of the task for incomplete AFs (as opposed1010

to polynomial-time computability for standard AFs). This can be explained by the fact that the number of accept
answers, i.e., unsatisfiable SAT instances, is very low (about between 6% and 8%) for all choices of p.

The Σ
p
2 -complete problems AD, /0-PEXSA and ST-PEXSA are solved via the CEGAR approach. The mean run

times (with timeouts included as 900 seconds) are shown in Figure 12. We observe that, in contrast to the NP en-
codings, introducing uncertainty makes the instances significantly harder to solve. We suspect this to be due to the1015

fact that the number of potential completions to guess and check is exponential in the number of uncertain elements.
However, the strong refinements described in Section 6.3 resulting from the analysis presented in Section 4, signifi-
cantly speed up the CEGAR approach. Mean run times when using the trivial refinement are considerably higher than
when using the strong refinement, especially for AD, /0-PEXSA, to the extent that the strong refinements are central in
making the CEGAR approach viable for deciding acceptance in incomplete AFs. This is also evident from Figure 141020

(top left and top right), which shows the running times for each instance using the trivial refinement plotted on the
x-axis and for the strong refinement on the y-axis. While a major part of the instances takes almost the exact same
amount of time to solve, the effect of strong refinements is witnessed by the large number of timeouts for the trivial
refinement on the right-hand side of each plot for instances that are solved within the timeout limit using the strong
refinement.1025

The Π
p
2 -complete problems AD-NCA and ST-NCA are also solved employing CEGAR, with the mean running

times (with timeouts included) shown in Figure 13. Here we also observe that the empirical hardness of instances
increases significantly when increasing incompleteness, both in terms of increasing p and in terms of introducing
both argument- and attack-incompleteness. Again, in the worst case we need to check for an exponential number of
completions with respect to the number of uncertain elements, which we hypothesize to be the cause of this behavior.1030

Employing strong refinements is essential also for these problems, as further shown in Figure 14 (bottom left and
bottom right).

Finally, mean run times for the Σ
p
3 -complete problem PR-PSA are shown in Figure 15 (left). We observe that,

similarly to the problems complete for the second level, introducing uncertainty both via increasing p and introducing
both argument- and attack-incompleteness increases the mean running times. Perhaps surprisingly, the scale of the1035

mean run times is also similar despite the gap in theoretical complexity. Clearly, also in this case employing strong
refinements is crucial for solving instances of this problem efficiently, as is evident from significantly smaller run
times on average, as well as the large number of timeouts shown in Figure 15 (right).

Table 4: Number of timeouts for each problem variant using a basic enumeration approach (enum.) and direct SAT or SAT-based CEGAR (SAT).

problem AD-PCA ST-PCA AD, /0-NSA ST-NSA CP-NSA AD, /0-PEXSA ST-PEXSA AD-NCA ST-NCA PR-PSA
enum. 2631 2874 1194 2301 329 3608 3049 985 852 3001

SAT 121 111 164 192 19 752 603 409 559 822
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Figure 14: Trivial vs. strong refinement for AD, /0-PEXSA (top left), ST-PEXSA (top right), AD-NCA (bottom left), and ST-NCA (bottom right).

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20

0
50

10
0

15
0

20
0

25
0

30
0

PR−PSA

p

m
ea

n 
ru

n 
tim

e 
(s

ec
on

ds
)

● arg−inc (strong)
arg−inc (trivial)
att−inc (strong)
att−inc (trivial)
inc (strong)
inc (trivial)

0.01 1.00 100.00

0.
01

1.
00

10
0.

00

PR−PSA

trivial refinement running time (s)

st
ro

ng
 r

ef
in

em
en

t r
un

ni
ng

 ti
m

e 
(s

) p

0.05
0.1
0.15
0.2

Figure 15: Mean run times (with timeouts included) for argument-incomplete, attack-incomplete, and general incomplete AFs for PR-PSA (left),
trivial vs. strong refinement for PR-PSA (right).

7.3. Empirical Comparison with Enumeration-based Acceptance

The SAT-based algorithms presented in this article are the first ones proposed in the context of incomplete AFs,1040

barring direct empirical runtimes comparison with other approaches. However, in principle the acceptance problems
considered in this work can also be decided with a more simple algorithmic approach which enumerates all com-
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pletions of an input IAF and, for each completion, calls a standard AF solver for the respective standard acceptance
problem. For obtaining a baseline for an empirical scalability comparison, we implemented this enumeration approach
based on the state-of-the-art AF solver µ–TOKSIA [68]. For a “possible” variant, the enumeration algorithm outputs1045

“yes” as soon as the AF solver outputs “yes.” Dually, for a “necessary” variant, the algorithm outputs “no” as soon
as the AF solver outputs “no.” Otherwise, it enumerates through all completions of the input IAF. If this is the case,
note that, for an input IAF with a large number of uncertain elements (and thus completions), this algorithm cannot
be expected to terminate in a reasonable amount of time, as the number of completions becomes simply too large.

The results of a comparison of the empirical performance of our SAT-based algorithms and the simple SAT-based1050

enumeration approach are summarized in Table 4. For the first-level problems AD-PCA, ST-PCA, AD, /0-NSA,
ST-NSA, and CP-NSA, the direct SAT-based approach considerably outperforms the enumeration-based approach,
with the enumeration-based approach exhibiting at least seven times as many timeouts as the direct one. For the Σ

p
2 -

complete problems AD, /0-PEXSA and ST-PEXSA, the SAT-based CEGAR algorithm produces approximately five
times fewer timeouts than the enumeration algorithm, and is thus again clearly the superior approach. The picture is1055

less drastic but still clear for the Π
p
2 -complete problems AD-NCA and ST-NCA, for which the enumeration-based

method produces more timeouts than the direct one by a factor of 2.4 and 1.5, respectively. We hypothesize this to be
due to a large ratio of “no” answers to “yes” answers. For the Σ

p
3 -complete PR-PSA, the SAT-based CEGAR again

clearly outperforms the enumeration algorithm which exhibits 3.7 times as many timeouts. All in all, the enumeration-
based approach turned out not to be competitive with the more intricate SAT-based algorithms developed in this work.1060

8. Related Work

Finally, we review works related from different angles to the work presented in this article.

8.1. Instantiation of Incomplete AFs

Various formalisms have been proposed in the literature that allow to instantiate abstract argumentation frame-
works from structured data—typically consisting of literals in some formal language, inference rules that relate these1065

literals, preference relations over different parts of the data, and possibly more auxiliary information. When there
is structural uncertainty about elements in the underlying data, this may translate to structural uncertainty about
arguments or attacks in the abstract argumentation framework that represents it, and thus produce incomplete argu-
mentation frameworks. We give a few examples (for formal definitions, please refer to the original papers).

• In value-based argumentation frameworks [19], when we have two arguments a and b with associated values1070

val(a) and val(b), and if it is known that the preference between the two values is val(b)≥ val(a), but it is not
known whether val(b)> val(a) or val(b) = val(a), then this results in an uncertain attack (a,b).

• A similar situation can arise when using the ASPIC+ model [66]: Consider two rebutting arguments a and b
that have two rules ra and rb as their respective top rules, with preference rb ≥ ra, but it is unknown whether
rb > ra or rb = ra. This may result in the rebutting attack (a,b) being uncertain.1075

• As another example, consider an ASPIC+ argument a with top rule r. If there is structural uncertainty about
r in the underlying knowledge base, then this can translate to a being uncertain in the resulting argumentation
framework.

• The same happens when using the method of Wyner et al. [84] to instantiate argumentation frameworks: uncer-
tainty about the existence of a rule r in the knowledge base produces an uncertain argument r in the argumenta-1080

tion framework representation. Wyner et al.’s method also allows uncertain attacks: Uncertainty about whether
an inference rule r is strict or defeasible in the knowledge base produces an uncertain attack (c,r), where c is
the abstract argument that represents the negation of r’s head literal.
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8.2. IAFs and Other Generalizations of AFs
First, while this work studies “possible” and “necessary” variants of the acceptance problem in IAFs, Baumeister1085

et al. [16, 17, 18] have studied “possible” and “necessary” variants of the verification problem and Skiba et al. [79]
“possible” and “necessary” variants of the existence problem in IAFs in terms of their complexity.

Some other generalizations of abstract AFs exist in the literature that also aim at modeling uncertainty or dynamics
of argumentation in a similar fashion as IAFs. One of them is the model of probabilistic argumentation frameworks
(PrAFs) [60]. A PrAF is an AF with an associated probability distribution both over the set of arguments and over the
set of attacks. Both IAFs and PrAFs allow to represent structural uncertainty in AFs, and both share an assumption of
independence, i.e., that the existence of an uncertain element is independent of that of the other uncertain elements.
However, PrAFs contain more information than IAFs, which, as a positive consequence, allows to represent uncer-
tainty more precisely when there is detailed information about probabilities. On the other hand, they overdefine cases
where the likelihood of existence of the uncertain elements is not known exactly. When this difference is disregarded,
PrAFs and IAFs can be mapped to each other by the following procedure: For any IAF, a corresponding probabilis-
tic argumentation framework PrAF can be obtained by setting the probability PPrAF(x) = 1 for all definite elements
x ∈ A ∪R and setting 0 < PPrAF(y) < 1 for all uncertain elements y ∈ A ? ∪R?. However, this representation in-
dicates a level of precision that may not be justified, since the incomplete AF does not provide information about
how likely the existence of its uncertain elements is. Conversely, any probabilistic argumentation framework PrAF
can be represented as an IAF by including all arguments and attacks x with PPrAF(x) = 1 as definite elements, and all
elements y with 0 < PPrAF(y) < 1 as uncertain elements. This is a lossy representation, since the different probabil-
ities of the uncertain elements are not preserved. Given any pair of IAF and PrAF corresponding to each other, the
possible verification problem s-INCPV4 for IAF corresponds to the question of whether the target set of arguments
has probability greater than zero to be an s extension of PrAF, and the necessary verification problem s-INCNV5 for
IAF corresponds to the question of whether the target set of arguments has probability 1 to be an s extension of PrAF:

(IAF,E ) ∈ s-INCPV ⇔ Ps
PrAF(E )> 0,

(IAF,E ) ∈ s-INCNV ⇔ Ps
PrAF(E ) = 1.

Similarly, the generalized acceptance problems for incomplete AFs studied in this article correspond to the gen-
eralizations P-CAs

PrAF of s-CA and P-SAs
PrAF of s-SA for probabilistic AFs, which are functional problems that

provide the probability for a single argument to be credulously accepted in PrAF (P-CAs
PrAF), respectively, to be

skeptically accepted in PrAF (P-SAs
PrAF), using semantics s. The correpondences are as follows:

(IAF,a) ∈ s-PCA ⇔ P-CAs
PrAF(a)> 0,

(IAF,a) ∈ s-NCA ⇔ P-CAs
PrAF(a) = 1,

(IAF,a) ∈ s-PSA ⇔ P-SAs
PrAF(a)> 0,

(IAF,a) ∈ s-NSA ⇔ P-SAs
PrAF(a) = 1.

However, the expressive power of PrAFs compared to IAFs comes at a computational cost: Fazzinga et al. [52]
show that the PROBs

PrAF problem—which is the generalization of the s-VERIFICATION problem for PrAFs—is FP#P-
complete for all semantics considered here except the conflict-free, admissible, and stable semantics. Similarly,1090

Fazzinga et al. [51] show that the P-CAs
PrAF and P-SAs

PrAF problems are FP#P-complete, too, for every nontrivial
semantics or property. FP#P-complete problems are deemed intractable in practice—after all, by Toda’s theorem [81],
every problem of the polynomial hierarchy can be solved by a polynomial-time Turing-reduction to a #P oracle.
Compared to this, all verification and acceptance problem variants for IAFs are within the first three levels of the
polynomial hierarchy, with the necessary verification problem s-INCNV for IAFs and the possible verification prob-1095

lem s-ATTINCPV for attack-incomplete AFs even being in P for most semantics [17].
The model of incomplete argumentation frameworks is further closely related to the recently proposed control

argumentation frameworks (CAF) [36], which use a similar, yet more specific model of uncertainty in argumentation

4In s-INCPV, we are given an incomplete argumentation framework IAF = 〈A ,A ?,R,R?〉 and a set S⊆A ∪A ?, and the question is whether
there exists a completion AF∗ = 〈A ∗,R∗〉 such that S|A ∗ = S∩A ∗ is an s extension of AF∗.

5s-INCNV is defined similarly to s-INCPV, with the distinction of quantifying universally over completions.
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frameworks that is specifically aimed at representing strategic scenarios, and find applications in, e.g., argument-
based negotiation [37]. There are various cases where both models coincide. For example, possible problem variants1100

in purely argument-incomplete argumentation frameworks can be represented by CAFs using their control-part, while
necessary problem variants in incomplete argumentation frameworks can be represented by CAFs using their un-
certain-part. Although CAFs include an additional symmetric attack relation in the uncertain part, where only the
direction—not the existence—of an attack is uncertain, the complexity results of this article also hold for incomplete
AFs augmented with this form of uncertainty. Furthermore, the SAT encodings presented in this article are also easily1105

adapted to this formalism. In fact, the results of this work have subsequently (after the writing of this article) proven
to be useful for the complexity analysis of and algorithms for the so-called controllability problem in CAFs [70, 64].

8.3. Dynamics of Argumentation Frameworks
The PCA problem in incomplete argumentation frameworks is related to extension enforcement [9, 35], where,

given an argumentation framework and a subset of its arguments, the task is to determine how the attack relation and/or1110

the set of arguments of the argumentation framework can be modified in a smallest possible way so that the given
set becomes part of an extension. Instances for acceptance problems in incomplete argumentation frameworks and
for enforcement problems coincide when the incomplete argumentation framework has only uncertain attacks and no
uncertain arguments, and when the enforcement instance allows only changes to the attack relation and its given subset
is a singleton. However, enforcement aims at finding a smallest possible change to the argumentation framework,1115

which is not the aim in deciding acceptance in incomplete argumentation frameworks. On the other hand, the question
of whether acceptance of a target argument can at all be achieved is trivially true in most variants of enforcement,
while this is the key question for possible-credulous acceptance problems in incomplete argumentation frameworks.
Furthermore, recent work on maximizing goals achievement (in terms of argument labels) while minimizing the
number of actions (additions and deletions of arguments) [32] is also related to the PCA problem in argument-1120

incomplete argumentation frameworks. While in PCA we look at the acceptance of a specific target argument, which
can be seen as a single IN goal, the aforementioned problem has several target arguments expressed as both IN and
OUT goals. A key difference is also that we do not consider optimizing over the presence or absence of uncertain
arguments, which can be seen as actions in the aforementioned problem.

Closely related to the analysis presented in Section 4, Cayrol et al. [28] study the problem of adding an argument1125

and incident attacks, specifically by studying necessary and sufficient conditions for satisfying different properties,
also defining the atomic changes (adding and removing arguments and attacks) we study in the context of incomplete
AFs. However, their focus is on grounded and preferred semantics, whereas we consider admissible and stable
semantics. Semantical change when removing an argument along with incident attacks was studied by Bisquert et
al. [22] under preferred, stable, and grounded semantics, also focusing on the satisfaction of properties of extensions.1130

The preservation of the grounded extension was studied by Boella et al. [23, 24] when removing arguments and
attacks, or adding attacks; again, we focus on admissible and stable extensions. Finally, the work of Rienstra et
al. [77] focuses on the preservation of grounded, complete, preferred, stable, and semi-stable labelings under changes
to the attack structure, and their results for the stable and preferred semantics coincide with ours.

Incremental algorithms for dynamic argumentation frameworks, where in addition to an AF a change or a sequence1135

of changes to the attack structure is provided, and the task is to answer a query for all AFs defined by the sequence
of changes, have been recently studied both in the context of computing extensions [54, 55, 1] and for acceptance
problems [2]. These algorithms build on the division-based method [61, 7] which divides the updated AF into affected
and unaffected parts, and expand this method by, e.g., taking into account an initial extension of the first AF. In
dynamic AFs, the sequence of changes is provided as input, hence the number of AFs considered is linear with1140

respect to the size of the input. In contrast, in incomplete AFs the number of completions is exponential with respect
to the input size. However, via casting a dynamic AF to an attack-incomplete AF by setting all attacks amenable to
change as uncertain attacks, a “no” answer to s-PCA implies that the answer is “no” also for all AFs defined by the
dynamic AF. Similarly, a “yes” answer to s-NSA implies that the answer is “yes” for all AFs of the dynamic AF. In a
sense, this work on reasoning in incomplete AFs provides a shortcut for acceptance problems in dynamic AFs.1145

The problem of adding an argument along with incident attacks is also related to expansions [11, 9, 8], where sets
of new arguments along with incident attacks are added to an AF. Likewise, removing arguments has been studied
in the form of deletions [10]. There may be potential for using further theoretical results of expansion, deletion,
and update equivalence in order to strengthen the refinement in the CEGAR algorithm. However, equivalence is a
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considerably more general concept, as it concerns preserving all extensions of a given AF, whereas in our approach1150

we are interested in preserving just the counterexample. In addition, recent work on preprocessing argumentation
frameworks via so-called replacement patterns [45], based on a parameterized notion of equivalence [12], may prove
to be useful in the context of algorithms for incomplete AFs, as well. In particular, it would be interesting to study an
adaptation of this form of equivalence for incomplete AFs, where changes are allowed only on the uncertain part.

8.4. SAT-Based Approaches to Argumentation1155

In terms of practical systems for reasoning in argumentation frameworks, the SAT-based approaches developed in
this work continue the successful line of work on applying SAT-based approaches to reasoning over various computa-
tional models of argumentation. These include argument acceptance problems and extension enumeration in standard
AFs [46, 58, 50, 29], other generalization of AFs such as abstract dialectical frameworks [62], as well as various forms
of optimization problems underlying argumentations dynamics, including enforcement, adjustment, repairment, syn-1160

thesis, reasoning in dynamic AFs, and goals achievement [83, 72, 73, 59, 74, 67, 32]. The strong refinements we
develop have subsequently (after the writing of this article) shown to be applicable in the context of CEGAR algo-
rithms for second-level complete variants of enforcement and synthesis [69]. Similar ideas have also been considered
in the specific context of the NP-complete problem of extension enforcement under grounded semantics [73].

9. Conclusion1165

The recently proposed notion of incomplete argumentation frameworks generalizes Dung’s standard abstract ar-
gumentation frameworks by allowing for modeling uncertain attacks and arguments. In contrast to standard AFs,
the computational complexity of variants of acceptance problems in the context of incomplete AFs has not been
thoroughly established to-date. Furthermore, the introduction of incomplete AFs raises the challenge of developing
practical decision procedures for reasoning about acceptance under uncertainties. In this article, we address both of1170

these challenges. In particular, we proposed natural generalizations of credulous and skeptical acceptance in AFs to
incomplete AFs, giving rise to several variants for both of the two reasoning modes.

By establishing a full complexity landscape of acceptance in AFs for the variants under various central argumen-
tation semantics (see Table 1 on page 9), we showed that acceptance in incomplete AFs is most often hard for the
first level of the polynomial hierarchy, and can reach completeness for this hierarchy’s second or even third level in1175

some cases. Motivated by the success of SAT-based practical decision procedures developed for reasoning in standard
AFs, we proposed SAT-based algorithms for all of the variants of acceptance in incomplete AFs covered by our com-
plexity analysis. We showed through an empirical evaluation that for NP-complete variants of acceptance, reasoning
in incomplete AFs turns out to be at least as efficient in practice as reasoning about acceptance in standard AFs, and
that the CEGAR approaches we developed for the variants with beyond-NP complexity also scale to instances of1180

reasonable size.
While the complexity results provided in this article cover several central argumentation semantics, the analysis

could be extended to cover even further semantics such as ideal [40], semi-stable [27], and stage [82] semantics.
Exploring SCC-recursive semantics [6] in the context of incomplete AFs is also a possible interesting direction for
future work. Analyzing the complexity of acceptance in structural or distance-based subclasses of incomplete AFs1185

would also be of interest, in analogy with related analyses provided earlier in the context of standard AFs [34, 42,
48, 47, 46]. Further, it would also be interesting to extend both the complexity analysis and the decision procedures
presented in this article to other related formalisms that allow to represent unquantified uncertainty, such as control
argumentation frameworks. In terms of potential improvements to the empirical performance of the proposed decision
procedures, further analysis on possible ways of obtaining even stronger refinements than those obtained through the1190

presented analysis on the persistence of extensions under change may be fruitful.
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