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Abstract
Boolean satisfiability (SAT) solvers allow for incremental computations, which is key to efficient
employment of SAT solvers iteratively for developing complex decision and optimization procedures,
including maximum satisfiability (MaxSAT) solvers. However, enabling incremental computations on
the level of constraint optimization remains a noticeable challenge. While incremental computations
have been identified to have great potential in speeding up MaxSAT-based approaches for solving
various real-world optimization problems, enabling incremental computations in MaxSAT remains to
most extent unexplored. In this work, we contribute towards making incremental MaxSAT solving
a reality. Firstly, building on the IPASIR interface for incremental SAT solving, we propose the
IPAMIR interface for implementing incremental MaxSAT solvers and for developing applications
making use of incremental MaxSAT. Secondly, we expand our recent adaptation of the implicit
hitting set based MaxHS MaxSAT solver to a fully-fledged incremental MaxSAT solver in terms
of implementing the IPAMIR specification in full, and detail in particular how, in addition to
weight changes, assumptions are enabled without losing incrementality. Thirdly, we provide further
empirical evidence on the benefits of incremental MaxSAT solving under assumptions.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Theory
of computation → Constraint and logic programming

Keywords and phrases maximum satisfiability, MaxSAT, incremental optimization, API, implicit
hitting set approach

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.14

Supplementary Material Source code and experiment data available at https://bitbucket.org/
coreo-group/incremental-maxhs/.

Funding Work financially supported by Academy of Finland under grants 322869 and 342145.

Acknowledgements The authors wish to thank Fahiem Bacchus, Alexey Ignatiev, Ruben Martins,
and Peter Stuckey for valuable discussions on IPAMIR, and the Finnish Computing Competence
Infrastructure (FCCI) for supporting this project with computational and data storage resources.

1 Introduction

Beyond one-shot search for satisfiability, incremental use of of Boolean satisfiability (SAT)
solvers [12, 22] is a key contributing factor in the successful employment of SAT solvers as
“practical NP-oracles” in a range of applications and as the basis for developing complex
decision, search and optimization procedures [4, 17, 13, 19, 11]. Incrementality allows for
maintaining solver state, including learned clauses and heuristic scores, between consecutive
solver calls on related SAT instances, and altering the instance at hand by adding clauses
and forcing a partial assignment for the next solver call through so-called assumptions. The
IPASIR application programming interface (API) has been developed as a standard for
building incremental applications of SAT [5].
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14:2 Incremental Maximum Satisfiability

Maximum satisfiability (MaxSAT) [4] is the natural optimization extension of SAT.
The constraints underlying an optimization problem are encoded in MaxSAT as “hard”
propositional clauses, which all solutions must satisfy. The objective function at hand is
encoded using weighted “soft” clauses, with the weights standing for the objective function
coefficients, the aim being to find an optimal solution, i.e., an assignment that minimizes the
sum of the weights of the soft clauses it falsifies. MaxSAT is one of the successes of incremental
SAT solving: most if not all modern MaxSAT solvers make heavy use of incremental SAT,
typically using assumptions for iteratively extracting unsatisfiable cores, i.e., subsets of the set
of soft clauses that together with the hard clauses are unsatisfiable [29, 16, 9, 26, 1, 2]. However,
in various real-world settings incremental MaxSAT solving would be beneficial for more
efficiently finding optimal solutions to a sequence of related MaxSAT instances [20, 7, 33, 30].
For example, in different types of timetabling problems, changes to the available resources
(such as e.g. availability of classrooms, changes to the curriculum and the like in university
timetabling) may render a previously obtained optimal timetabling invalid, and it would
be beneficial to be able to incrementally compute a new optimal solution [18, 10]. The
availability of resources and other changes in constraints would require the ability to add or
remove previous hard or soft clauses, or the ability to call a MaxSAT solver with different
assumptions. As another example, changes to the weights of soft clauses would be beneficial to
handle incrementally; one application scenario for this is in the context of learning classifiers
where MaxSAT has been employed for implementing AdaBoost [15].

Although achieving truly incremental computations in declarative optimization remains
a challenge, MaxSAT is a promising paradigm when it comes to achieving high levels of
incrementality, in particular due to many state-of-the-art solvers performing unsatisfiability-
based search (via iterative unsatisfiable core extraction) instead of solution-improving search
towards finding better and better solutions. However, despite the potential of incremental
MaxSAT solving, so far only partial solutions in terms to “true” incrementality have been
proposed [32, 27].

In this work, we make several contributions towards making incremental MaxSAT solving
a reality. Firstly, we outline the various forms of incrementality called for in MaxSAT
solving, and—extending on IPASIR for incremental SAT—propose an API for incremental
MaxSAT. The API, named IPAMIR, provides a common interface for implementing support
for incremental computations in MaxSAT solvers as well as for application developers making
use of future incremental MaxSAT solvers. The interface is also at center stage in MaxSAT
Evaluation 2022 (https://maxsat-evaluations.github.io/2022/), with the introduction
of the incremental track. Secondly, we develop what we believe to be a first openly-available
incremental MaxSAT solver in its generality. The solver supports all functionality specified
in IPAMIR. Extending further a recent adaptation of the successful MaxHS implicit hitting
set (IHS) style MaxSAT solver [8, 6] that so-far supports changing weights of soft clauses
incrementally [27], we integrate further functionalities to the solver, including support for
incrementally handling MaxSAT solver calls under assumptions. The choice of extending
MaxHS in particular is motivated by the fact that the IHS approach does not alter the input
formula during computations like the so-called core-guided approaches do, which makes it a
prime candidate for developing support for incrementality. Thirdly, complementing previous
evidence on the benefits of supporting incrementality under changes to soft clause weights [27],
we provide empirical evidence that support for incremental computations under different
sets of assumptions is similarly promising in terms of speeding up solving of sequences of
interrelated MaxSAT instances.

https://maxsat-evaluations.github.io/2022/
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2 Maximum Satisfiability

For a Boolean variable x, there are two literals x and ¬x. For a set L of literals, the
set ¬L consists of their negations. A clause C is a disjunction of literals and a CNF
formula F a conjunction of clauses. We will mostly view a clause as a set of literals and
a formula as a set of clauses. The set of variables of a clause C and a CNF formula F

are var(C) = {x | x ∈ C or ¬x ∈ C} and var(F ) =
⋃

C∈F var(C), respectively. The set
lit(F ) of literals of a CNF formula F is lit(F ) =

⋃
C∈F C. A (truth) assignment τ maps

Boolean variables to 1 (true) or 0 (false). Truth assignments extend to literals l, clauses
C and formulas F in the standard way: τ(¬l) = 1 − τ(l), τ(C) = max{τ(l) | l ∈ C} and
τ(F ) = min{τ(C) | C ∈ F}.

An instance F = (FH ,FS , w) of (weighted partial) MaxSAT consists of two CNF formulas,
the hard clauses FH and the soft clauses FS , and a weight function w : FS → N that assigns
a positive weight to each soft clause. An assignment τ that satisfies FH (i.e., for which
τ(FH) = 1 is a solution of F , its cost cost(F , τ) =

∑
C∈FS

w(C)(1− τ(C)) is the sum of
weights of the soft clauses it falsifies. A solution τ is optimal if cost(F , τ) ≤ cost(F , τ ′)
holds for any solution τ ′ of F . The cost of optimal solutions of F is denoted by cost(F).
When convenient, we treat a solution τ as the set of literals the assignment satisfies, i.e, as
τ = {l | τ(l) = 1}.

Normalized Form

From now on, we will assume that all MaxSAT instances are in what we call normalized
form. Specifically, for a MaxSAT instance F = (FH ,FS , w), we assume each soft clause
C ∈ FS is a unit clause of form C = (¬b) containing the negation of a literal b. The
assumption can be made w.l.o.g. since any soft clause C can be extended with a fresh
variable b /∈ var(FH ∧FS) (depending on the context, sometimes called a relaxation variable,
reification variable, blocking variable, or assumption variable in the literature) to form the
hard clause C ∨ b and the soft clause (¬b). The set FL of soft literals contains all literals b for
which (¬b) ∈ FS . By extending the weight function w to soft literals by w(b) = w((¬b)) the
cost of a solution τ can equivalently be expressed as cost(F , τ) =

∑
b∈FL

τ(b)w(b). Instead
of the classical way of viewing MaxSAT in terms of hard and soft clauses, we will from now
on adopt the equivalent view of treating a MaxSAT instance F = (FH ,FL, w) as a set FH

of hard clauses, a set FL of soft literals and a weight function w : FL → N.

MaxSAT under Assumptions

A set A of assumptions is a set of literals such that x /∈ A or ¬x /∈ A holds for any variable
x. Solving a MaxSAT instance F under a set of assumptions refers to computing an optimal
solution to the MaxSAT instance F ∧A = (FH ∧

∧
l∈A(l),FL, w).

▶ Example 1. Consider the MaxSAT instance F = (FH ,FL, w) with FH = {(b1 ∨ x), (¬x ∨
b2), (¬z), (z∨ y∨ b3∨ b4), (¬y∨ b3∨ b4)}, FL = {b1, b2, b3, b4} and w(b1) = w(b3) = w(b4) = 1
and w(b2) = 2. The solution τ = {b1,¬b2, b3,¬b4,¬x, y,¬z} is an optimal solution of F ,
with cost(F , τ) = cost(F) = 2.

3 Incremental MaxSAT

The goal of incremental MaxSAT solving is to solve a sequence of related MaxSAT instances.
The input to an incremental MaxSAT solver is a sequence of MaxSAT instances (F1, . . . ,Fk).

SAT 2022
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However, this sequence need not be predefined, and instead, a next instance may be adaptively
formed: for all i = 1, . . . , k − 1 the instance F i+1 may depend on the optimal solutions
τ1, . . . , τi of the previous instances in the sequence.

A next instance F i+1 is obtained from F i by applying a set of changes to F i. We consider
the following types changes to a MaxSAT instance F = (FH ,FL, w).

Adding hard clauses. Given a clause C, add it to the hard clauses of F :
addHard(F , C) = (FH ∪ {C},FL, w).
Adding soft literals. Given a variable b ̸∈ FL with weight wb, add it to the set of soft
literals of F : addSoft(F , b, wb) = (FH ,FL ∪ {b}, w ∪ {b 7→ wb}).
Changing the weight of a soft literal. Given a literal b ∈ FL with weight wb, change its
weight in F to wb:
changeWeight(F , b, wb) = (FH ,FL, (w \ {b 7→ w(b)}) ∪ {b 7→ wb}).

Let us shortly describe a few use cases for these types of changes. MaxSAT-based CEGAR
algorithms (e.g. [21, 28]) iteratively add hard or soft clauses in order to refine the search
space. Recalling that a soft clause C may be added via the hard clause C ∨ b with b as a soft
literal, addHard and addSoft cover these types of applications. In turn, changeWeight
has proven useful e.g. in implementing MaxSAT-based AdaBoost [15, 27].

Any number of these changes may be performed to transform F i to F i+1. In addition, we
allow for enforcing assumptions on the variables of an instance. This means that, in addition
to F i, at each iteration the input instance contains given a set of assumption literals Ai. The
goal at iteration i to solve the instance F i ∧Ai. Note that assumptions allow for simulating
the removal of hard clauses and hardening soft clauses. Removing a soft literal can in turn
be simulated by setting its weight to zero.

▶ Example 2. Consider the MaxSAT instance F from Example 1. Suppose we solve it under
the assumptions A = {x}, that is, enforcing that τ(x) = 1 must hold for any solution of
F . Now τ = {¬b1, b2, b3,¬b4, x, y,¬z} is an optimal solution of F under the assumptions A,
with cost(F ∧A, τ) = 3. Note that if we view the hard clause b1 ∨ x as a normalized soft
clause x with weight w(b1), by assuming {¬b1} we effectively harden the soft clause x, which
in this case achieves the same result as assuming {x}. Now suppose we instead consider the
instance F ′ = changeWeight(F , b1, 0) which sets the weight of the first soft literal to zero.
An optimal solution of F ′ is τ ′ = {b1,¬b2, b3,¬b4,¬x, y,¬z} with cost cost(F ′, τ ′) = 1.
Note how assigning its weight to 0 effectively removes b1 as a soft literal.

4 IPAMIR: Interface for Incremental MaxSAT Solving

We continue by describing IPAMIR (Re-entrant Incremental MaxSAT solver API), as our
proposal for a generic interface for incremental MaxSAT solving. We build heavily on
IPASIR [5], the standard interface for incremental SAT solving. The IPAMIR interface is
available in open source at https://bitbucket.org/coreo-group/ipamir/. Examples of
its usage are also provided in the repository in the app directory.

The functions specified by IPAMIR are listed in Figure 1. The functions ipamir_init,
ipamir_release, ipamir_assume, ipamir_solve, and ıpamir_set_terminate are identical
to their IPASIR counterparts [5]. Generalizing on IPASIR and its ipasir_add function,
we distinguish between adding hard clauses via ipamir_add_hard and soft literals via
ipamir_add_soft_lit. Note that as in IPASIR, ipamir_add_hard adds literals into a
clause one at a time, and the current clause is finalized with zero (as in the DIMACS
formats). The ipamir_add_soft_lit function declares the given literal as a soft literal with
the given weight, represented as a 64-bit unsigned integer, implementing addSoft. If the

https://bitbucket.org/coreo-group/ipamir/
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// Construct a MaxSAT solver and return a pointer to it.
void * ipamir_init ();
// Deallocate all resources of the MaxSAT solver .
void ipamir_release (void * solver );
// Add a literal to a hard clause or finalize the clause with zero.
void ipamir_add_hard (void * solver , int32_t lit_or_zero );
// Add a weighted soft literal .
void ipamir_add_soft_lit (void * solver , int32_t lit , uint64_t weight );
// Assume a literal for the next solver call.
void ipamir_assume (void * solver , int32_t lit );
// Solve the MaxSAT instance under the current assumptions .
int ipamir_solve (void * solver );
// Compute the cost of the solution .
uint64_t ipamir_val_obj (void * solver );
// Extract the truth value of a literal in the solution .
int32_t ipamir_val_lit (void * solver , int32_t lit );
// Set a callback function for terminating the solving procedure .
void ipamir_set_terminate (void * solver , void * state ,

int (* terminate )( void * state ));

Figure 1 Functions declared in the IPAMIR header.

argument literal in question has already been declared soft, ipamir_add_soft_lit changes
its weight to the given weight, thereby also implementing changeWeight. We declare the
function ipamir_val_obj to extract the cost, i.e., the value of the objective function, of
the current solution, and ipamir_val_lit to extract the value of a literal, corresponding to
ıpamir_val in IPASIR.

The function ipamir_solve invokes a MaxSAT solver on a MaxSAT instance defined
by calls to ipamir_add_hard and ipamir_add_soft_lit under the current assumptions
defined by calls to ipamir_assume. Upon termination it returns a code corresponding to the
state of the solver. If the search is interrupted before determining whether a solution exists,
the state of the solver is changed to INPUT and ipamir_solve returns 0. If no solution
exists, the state of the solver is changed to UNSAT and ipamir_solve returns 10. If the
search is interrupted via ipamir_set_terminate but a solution (not necessarily optimal) has
been found, the state of the solver is changed to SAT and ipamir_solve returns 20. If an
optimal solution is found, the state of the solver is changed to OPTIMAL and ipamir_solve
returns 30. Finally, if the solver is in the state ERROR, ipamir_solve returns 40. The
solver enters state ERROR if a sequence of IPAMIR function calls have been made which the
solver does not support (e.g., using assumptions, changing weights of soft literals). The state
transitions are depicted in Figure 2. Note that in contrast to IPASIR [5], we distinguish
between OPTIMAL and SAT. Furthermore, as a current design choice, the dedicated ERROR
state is included in order to accommodate solvers which do not implement IPAMIR in full.

5 Incremental Implicit Hitting Set based MaxSAT Solving

We describe an extension of the implicit hitting set based MaxSAT algorithm that implements
the IPAMIR interface in full in an incremental way. In particular, we build on the recent
extension of the state-of-the-art IHS solver MaxHS [8, 6] to support incremental computation
under changes to weights [27], to allow incremental computations w.r.t. all functionality
of IPAMIR. A major aspect of this extension is enabling incremental MaxSAT solving
under assumptions. We start with an overview of the IHS approach to MaxSAT solving to
the extent necessary, and then detail how we adapt it to incremental computations under

SAT 2022
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INPUT SOLVING

SAT or OPTIMAL
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ERROR
init

add
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interrupted
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no solution
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solve

add
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add
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val

Figure 2 IPAMIR solver states and state transitions.

assumptions and what implementation-level changes to MaxHS are necessary for achieving
full incrementality.

5.1 The Implicit Hitting Set Approach to MaxSAT
The IHS algorithm for MaxSAT makes use of unsatisfiable cores and hitting sets. For a
MaxSAT instance F = (FH ,FL, w), a (an unsatisfiable) core is a clause C that is entailed by
FH and for which lit(C) ⊂ FL. In other words, C is a core if it is satisfied by all solutions
of F and only contains soft literals of F . Note that this definition is equivalent to the more
standard one of a core being a set of soft clauses which is unsatisfiable together with the
hard clauses, since FH ∧

∧
(¬b)∈κ(¬b) is unsatisfiable for a subset κ ⊂ FS if and only if FH

entails the clause
∨

(¬b)∈κ b. (Our definition actually better captures how cores are expressed
in MaxSAT solvers making use of cores.)

For a set C of cores, a hitting set hs ⊂ FL is a set of soft literals that has non-empty
intersection with each κ ∈ C (each κ viewed as a set of literals). The cost of a hitting set
hs is cost(F , hs) =

∑
b∈hs w(b). A hitting set hsm is minimum-cost if cost(F , hsm) ≤

cost(F , hs).
IHS MaxSAT solvers [8, 31, 6] rely on the well-known fact that hitting sets over sets of

cores of a MaxSAT instance provide lower bounds on the optimal cost of the instance. More
formally, let hs be a minimum-cost hitting set over a set C of cores of an instance F . Then
cost(F , hs) ≤ cost(F).

Algorithm 1 details IHS, a basic implicit hitting set algorithm to computing an optimal
solution to a given MaxSAT instance F . The algorithm alternates between core extraction
(the Extract-Cores subroutine) and hitting-set computation (the Min-Hs subroutine). The
former extracts cores of F and accumulates them in the set C. Upon termination, the
Extract-Cores subroutine also returns a (not necessarily optimal) solution τ of F that is
used to refine the upper bound ub on cost(F). The latter subroutine computes a minimum-
cost hitting set over C. The cost cost(F , hs) of such a hitting set hs is a lower bound on
cost(F). The algorithm terminates once lb = ub and returns τbest, the found solution for
which cost(F , τbest) = ub and which is guaranteed to be an optimal solution.
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1 IHS(F)
Input: An instance F = (FH ,FL, w)
Output: An optimal solution τ

2 lb ← 0; ub ←∞;
3 τbest ← ∅; C ← ∅;
4 while (true) do
5 hs← Min-Hs(FL, C);
6 lb = cost(F , hs);
7 if (lb = ub) then break;
8 (K, τ)← Extract-Cores(FH ,FL, hs);
9 if (cost(F , τ) < ub) then

τbest ← τ ; ub ← cost(F , τ);
10 if (lb = ub) then return τbest ;
11 C ← C ∪K;

Algorithm 1 MaxSAT solving via implicit hitting sets

minimize
∑

b∈FL

w(b) · b

subject to∑
b∈κ b ≥ 1 ∀κ ∈ C

b ∈ {0, 1} ∀b ∈ FL

Figure 3 An integer program for
computing a hitting set over a set C
of cores of an instance F

In more detail, on input F = (FH ,FL, w) the upper and lower bounds ub and lb are
initialized to ∞ and 0, respectively, on Line 2. Further, the best known model τbest is
initialized to ∅ and a set C of cores of F (represented as sets of soft literals) to ∅ on Line 3.
The main search loop (Lines 4-11) iterates while lb < ub. During each iteration of the loop,
a minimum-cost hitting set hs over C is computed on Line 5 by solving the integer program
detailed in Figure 3 via the procedure Min-Hs(FL, C), representing negative soft literals
¬x ∈ FL in the standard way as the term (1−x). The cost cost(F , hs) is used for updating
the lower bound lb on cost(F) on Line 6. Since no cores are removed from C during the
execution of IHS, cost(F , hs) is non-decreasing over the iterations.

After updating the lower bound, the termination criterion is checked on Line 7. If ub = lb,
the algorithm terminates and returns the current best solution τbest as optimal. Otherwise,
the core extraction step Extract-Cores is invoked on Line 8. The procedure employs the
assumption interface offered by most modern SAT solvers to extract previously unseen cores
of F in the form of a disjoint set K of cores such that each κ ∈ K is a subset of FL \ hs.
When no more such cores can be found, the SAT solver also provides a solution τ of F . The
current upper bound ub is updated to the cost cost(F , τ) if applicable on Line 9. If the
updated bounds match, the algorithm terminates on Line 10. Otherwise, the new cores in K

are added to C and the loop reiterated.
An important intuition for understanding the IHS algorithm is that all cores in K are

disjoint from the hitting set hs and are thus not hit by hs. Adding the new cores to C results
in hs not being a hitting set over C in subsequent iterations. The algorithm terminates in
the worst-case after having accumulated all cores of the input instance.

▶ Example 3. Consider an invocation of IHS on the MaxSAT instance F from Example 1.
Initially C = ∅ so the first call to Min-Hs returns hs = ∅ which updates lb = cost(F , hs) =
0. As ub = ∞ ̸= 0 = lb, the algorithm continues to the core extraction step. As-
sume the Extract-Cores subroutine returns K = {{b1, b2}, {b3, b4}} and the solution
τ = {b1, b2, b3, b4, x,¬y,¬z}. The algorithm then updates ub = cost(F , τ) = 5. As
lb = 0 < 5 = ub the set K is added to C and the algorithm reiterates. In the next iteration
C = {{b1, b2}, {b3, b4}} so Min-Hs computes (for example) the hitting set hs = {b1, b3}. The
lower bound lb is then updated to cost(F , hs) = 2 < 5 = ub before invoking the next core
extraction step. This time around, the first SAT solver call in Extract-Cores is done with

SAT 2022
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the (solver) assumptions {¬b | b ∈ FL \ hs} = {¬b2,¬b4}. The result is SAT, the solver
returns the solution τ = {b1, b3,¬b2,¬b4,¬x,¬z, y}. The procedure Extract-Cores then
terminates, after which IHS updates ub = cost(F , τ) = 2. Since ub = lb, the algorithm
terminates and returns τ as an optimal solution of F .

Abstract Cores

The technique of abstract cores is a recently-proposed improvement to IHS [6]. An abstract
core is a compact representation of a large—potentially exponential—number of regular
cores. An abstraction set ab ⊂ FL is a subset of n soft literals that are augmented with
count variables ab.c[1] . . . ab.c[n]. Informally speaking, the count variables count the number
of variables in ab set to true. More precisely, the definition of the count variable ab.c[k] is the
constraint ab.c[i]↔

∑
b∈ab b ≥ i. An abstract core of an instance F w.r.t. a collection AB of

abstraction sets is then a clause κ that (i) contains only soft literals or count variables and
(ii) is entailed by the conjunction of hard clauses of F and the definitions of count variables.

An IHS algorithm using abstract cores, IHS-abscores, extracts both abstract and regular
cores during search. Additionally it maintains and dynamically updates a collection AB
of abstraction sets over which the abstract cores are then extracted. The abstraction sets
are computed based on a graph G that initially has the soft literals as nodes and an edge
between any two literals with the same weight that have been found in a core together. The
weight of each edge in G between the nodes n1 and n2 is the number of times that the literals
corresponding to n1 and n2 have appeared in cores together. The abstraction sets are then
computed by clustering G and using the clusters as abstraction sets. The intuition here
is that we wish two literals that often appear in cores together (and are as such in some
sense related) to be included in the same abstraction set. During search the quality of the
abstraction sets in AB is monitored. If the extracted (abstract) cores are not driving up the
lb computed by Min-Hs(FL, C), then the graph G is reclustered by merging the nodes in the
current clusters and then re-clustering the graph.

5.2 Implicit Hitting Sets for Solving MaxSAT under Assumptions
Algorithm 2 details IHS-assumptions, our extension of the IHS algorithm to incremental
MaxSAT solving under assumptions. The main differences to IHS (Algorithm 1) are high-
lighted in blue. We note that a straightforward extension of IHS to MaxSAT solving under
assumptions would be to add the clauses {(l) | l ∈ A} to the hard clauses of the instance.
Doing so would, however, prevent incremental invocations as the SAT solver would need to
be reset when removing assumptions between iterations.

Our approach for circumventing the need to reset the SAT solver is based on a concept
we call conditional cores. A conditional core of a MaxSAT instance F = (FH ,FL, w) w.r.t. a
set A of assumptions is a clause κa containing soft literals and negated assumptions (i.e.,
κa ⊂ ¬A ∪ FL) that is entailed by FH . The restriction rest(κa) = κa \ ¬A of a conditional
core κa is obtained by removing the negated assumptions from it.

Given a MaxSAT instance F = (FH ,FL, w) and a set A of assumptions, IHS-assumptions
maintains a set C containing the restriction of conditonal cores of F w.r.t. A. Similarly
as IHS, IHS-assumptions alternates between hitting set computation and core extraction
steps. During the hitting set computation steps, a minimum-cost hitting set hs is computed
over the restriction of conditional cores in C exactly as in IHS (notice that each such
restriction is a subset of FL). The core extraction steps Extract-Cores-Assumptions
then extract more cores by iteratively invoking a SAT solver on the clauses of FH with
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1 IHS-assumptions(F , cond-C, A)
Input: An instance F = (FH ,FL, w), a set A of assumptions, a set cond-C of

conditional cores
Output: An optimal solution τ under the assumptions A

2 lb ← 0; ub ←∞; τbest ← ∅; C ← ∅;
3 for κa ∈ cond-C do
4 κ← κa \ ¬A;
5 if κa ∩A = ∅ ∧ (κ ⊂ FL) then C ← C ∪ {κ};
6 while (true) do
7 hs← Min-Hs(FL, C);
8 lb = cost(F , hs);
9 if (lb = ub) then break;

10 (K, τ)← Extract-Cores-Assumptions(FH ,FL, A, hs);
11 if (cost(F , τ) < ub) then τbest ← τ ; ub ← cost(F , τ);
12 if (lb = ub) then return τbest ;
13 for κa ∈ K do
14 cond-C ← cond-C ∪ {κa};
15 C ← C ∪ {κa \ ¬A};

Algorithm 2 Incremental MaxSAT solving under assumptions

Solver-A = ({¬b | b ∈ FL \ hs} \ {l | l ∈ FL ∩ ¬A}) ∪ A as the (solver) assumptions. If
the result is “satisfiable”, the solver returns a model τ ⊃ A which is feasible for the
MaxSAT instance under the set of assumptions A. If the result is “unsatisfiable”, the solver
returns a subset κ ⊂ ¬Solver-A, i.e., a conditional core. At the end of each iteration the
restriction rest(κa) of each κa computed during Extract-Cores-Assumptions is added to
C. Additionally, all conditional cores are added to a set cond-C to be stored in between
iterations.

The correctness of IHS-assumptions follows from the fact that FH entails a conditional
core κa if and only if FH ∧

∧
l∈A(l) entails its restriction rest(κa). In other words, every

conditional core of F w.r.t. the assumptions A is a (standard) core of the instance (FH ∧
A,FL, w). In fact, given a clause C entailed by FH and a set A of assumptions, C is a
conditional core w.r.t. A if and only if (C \¬A) ⊂ FL. This allows for initializing the set C by
the restrictions of conditional cores computed in previous iterations that are also conditional
cores w.r.t. the current set of assumptions (Lines 3-5 of Algorithm 2).

The concept of conditional cores extends to abstract cores: an abstract conditional core
w.r.t. a set of assumptions A is a clause that (i) contains soft literals, count variables or
negations of literals in A and (ii) is entailed by FH and the definitions of the count variables.

▶ Example 4. Consider an invocation of IHS-assumptions on the MaxSAT instance F
from Example 1 under the assumptions A = {x}. For clarity, here we will ignore the
set cond-C. Initially C = ∅, so the first hitting set hs = ∅, As such lb = cost(F , hs) =
0 < ∞ = ub, so the algorithm invokes Extract-Cores-Assumptions(FH ,FL, {x}, ∅). The
procedure extracts conditional cores of F by invoking a SAT solver under the assumptions
Solver-A = {¬b | b ∈ FL \ hs} ∪ A = {¬b1,¬b2,¬b3,¬b4, x}. The result is “unsatisfiable”.
Assume the solver returns the conditional core κa = {¬x, b2}. The next solver call is made
under the assumptions Solver-A = {¬b1,¬b3,¬b4, x}. The result is again “unsatisfiable” and
the solver returns the (conditional) core {b3, b4}. The third solver call returns “satisfiable” and
(for example) the solution τ = {¬b1, b2,¬b3, b4, x, y,¬z} so Extract-Cores-Assumptions
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terminates. The upper bound is updated by ub = cost(F , τ) = 3 and the restrictions of
each conditional core added to C. In the next iteration C = {{b2}, {b3, b4}} and the Min-Hs
procedure returns (for example) hs = {b2, b3}. This hitting set updates the lower bound to
lb = cost(F , hs) = 3 = ub so the algorithm terminates and returns τ as an optimal solution
to F under A.

5.3 Implementing IPAMIR Functionality in the MaxHS Solver
With the necessary concepts in place, we now describe our implementation of the IPAMIR
functions within the state-of-the-art IHS MaxSAT solver MaxHS [8, 6], resulting in a truly
incremental MaxSAT solver. We extend further on our previous extension of MaxHS which
was focused on enabling incremental computations w.r.t. changeWeight (partially covering
ipamir_add_soft_lit), described in [27]. It should be noted that the current version of
MaxHS goes well beyond this basic description of IHS, employing a variety of runtime
improving techniques [3, 6, 9] and implementation-level “tricks”. As we develop a concrete
incremental extension of MaxHS, it is important to consider in more detail some of these
techniques—in particular, some of these techniques can result in incorrectness if not carefully
taken into account in an incremental extension of MaxHS.

Managing Variables

MaxHS implements a class for managing different variables depending on their type: original,
soft, count (for implementing abstract cores). We extend this to allow for setting an
existing variable to a soft literal (to allow for using ipamir_add_soft_lit after solving)
and creating new variables (to allow for using ipamir_add_hard and ipamir_assume after
solving). We also extend variable types to cover user-provided assumptions. This way we
can straightforwardly check whether a literal in a core reported by the SAT solver is a
user-provided assumption, never removing it from the assumptions given to the SAT solver.
Similarly, restrictions of conditional cores are easily computed this way.

Internal SAT Solver and MUS Extractor

We extend the internal SAT solver to allow for performing unit propagation on the user-
provided assumption literals. This allows for sharing the derived soft literals to solvers
computing minimum hitting sets, namely CPLEX as an IP solver and a greedy hitting set
solver. In addition to fixed truth values the SAT solver derives from the formula, user-
provided assumption literals and ones derived from them via unit propagation are also
considered fixed values during an iteration. In MaxHS these fixed values are used for, e.g.,
removing redundant assumptions from SAT solver calls and computing an initial lower bound.
Extracted conditional cores containing assumptions can be soundly minimized using the
internal minimal unsatisfiable core extractor. However, we do not immediately return a unit
conflict if a literal in the core has been fixed due to assumptions, unlike if it has been fixed
otherwise.

Reduced Cost Fixing

MaxHS determines whether a soft literal can be fixed using so-called reduced costs extracted
from the optimal solution of the LP relaxation of the hitting set problem [3]. As noted
in [27], this is incorrect under changes to the weights in a MaxSAT instance. Similarly, due
to supporting user-provided assumptions via ipamir_assume, the opposite of a literal that
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has been fixed via reduced costs could be assumed, leading to an empty conflict. However,
the fixing of variables based on the reduced costs of the current hitting set problem can
be implemented correctly using assumptions. In particular, if a soft literal is fixed due to
reduced costs, instead of adding the corresponding unit clause to the SAT solver, we add it
to the set of user-provided assumptions. As assumptions are cleared after each solve call,
reduced cost fixings become reverted between iterations.

Abstract Cores

The abstraction sets employed for abstract cores in the incremental MaxHS are computed on
a graph structure whose nodes correspond to the soft literals of the instance. The weight
of an edge between two nodes n1 and n2 indicates the number of times a conditional core
containing both a literal corresponding to n1 and a literal corresponding to n2 has been
extracted. When building an abstraction set, MaxHS attempts to compute a lower bound
k ≥ 1 on the number of count variables assigned to 1 by any solutions of the instance.
(This resembles the so called core-exhaustion technique employed by core-guided MaxSAT
solvers [16].) In the incremental version, we perform this step independently of the current
assumptions. In other words, we compute lower bounds on abstraction sets that hold for
any solution of the instance, not only solutions that satisfy the current assumptions. As a
consequence, any assignments obtained during this lower-bounding phase need not satisfy the
assumptions and as such might not be feasible solutions to the current iteration. Even so, the
intuition here is that the benefits of computing lower bounds usable also in future iterations
outweigh the drawbacks of not obtaining feasible solutions for the current instance. Finally,
as detailed in [27], changing the weights of any soft literals invalidates any abstraction sets
that now contain literals with differing weights. We allow the soft literals in any invalidated
abstraction sets to be reintroduced into the graph in order to possibly be assigned to future
abstraction sets.

Conditional Core Database

To store conditional cores, we use an additional SAT solver instance to which all conditional
cores are added as clauses. When extracting a set of cores to be added to the IP solver, we
perform unit propagation using current user-provided assumptions. Afterwards we check each
clause remaining in the database. Each clause that at this point only contains soft literals
or count variables is added to the IP solver. The intuition here is that unit propagation
simulates the computation of the relaxation of each conditional core in the database wrt
the current set of assumptions. Note however that using unit propagation rather than a
straight-forward application of the definitions (as is done on Lines 3-5 of Algorithm 2) can
allow for the computation of more and smaller valid cores.

▶ Example 5. Let A = {x,¬b2} be the set of assumptions to be propagated on the data-
base containing the clauses {{¬x, b1}, {¬x, y, b2}, {¬b1, b3, b4}, {¬y, b5, b6}} that represent
conditional cores found in earlier iterations. Assume that each bi for i = 1, . . . , 4 is a soft
literal and x and y are other (non count) literals. After running unit propagation to fix-
point, the database contains the clauses {{b1}, {y}, {b3, b4}, {b5, b6}}. From these the clauses
{b1}, {b3, b4} and {b5, b6} are obtained as valid cores to add to the IP solver. In contrast,
checking if rest(C) = C \ ¬A contains only soft literals for each clause in the database
would give the cores {b1} and {¬b1, b3, b4}.

Each valid core obtained after unit propagation is added to the IP solver and the greedy
hitting set solver whenever they are reinitialised, which in turn happens at the start of

SAT 2022



14:12 Incremental Maximum Satisfiability

each iteration prior to which new soft literals have been declared or assumptions have been
provided.

IPAMIR Wrapper

Before ipamir_solve is called, ipamir_add_hard and ipamir_add_soft_lit operate on the
internal WCNF data structure. When ipamir_solve is called for the first time, simplification
on the WCNF is invoked and the MaxSAT solver is initialized. After this, implementing the
IPAMIR functions requires more attention. Since ipamir_add_hard, ipamir_add_soft_lit,
and ipamir_assume make use of external literals, we map them to internal ones, making
sure that literals which have been fixed by simplification are handled correctly. That is,
if the literal has been fixed to true, we skip the clause, soft literal, or the assumption;
if to false, we skip it from the clause (for ipamir_add_hard), increase the base cost (for
ipamir_add_soft_lit), or set the UNSAT flag to true (for ipamir_assume). Now, the
internal hard clause added using ipamir_add_hard can be directly added to the internal
SAT solver. If the added hard clause is falsified under the current model, the upper bound is
set to ∞. The lower bound is set to 0.

To add a new soft literal via ipamir_add_soft_lit, no changes to the SAT solver
are necessary. Instead, the literal is declared as a soft literal in the corresponding data
structures. However, if the user calls ipamir_add_soft_lit with a negative literal ¬x after
ipamir_solve has been called, since MaxHS does not support negative soft literals, we
instead add a binary hard clause b ∨ ¬x with a fresh variable b, which is declared soft. If
ipamir_add_soft_lit is called with a soft literal that has already been declared, we instead
make use of the weight changing procedure implemented previously [27].

Finally, user-provided assumptions added via ipamir_assume are stored in a separate
container which the main solving procedure has access to.

WCNF Simplification

Finally, we note that MaxHS employs by default several simplification techniques which are
applied to the input formula before calling the solving procedure. We overview the effect of
these simplification techniques on the implementation of incremental functions.

Weight-based hardening of soft clauses. MaxHS attempts to harden soft clauses based on
their (high) weight. This is not directly applicable in incremental MaxSAT solving. For
example, a hardened unit soft clause added via ipamir_add_soft_lit can be assumed
false using ipamir_assume. This is also the case for changing weights [27]. Similarly
to [27], we disable this functionality in the simplification procedure. In contrast, at the
beginning of each solve call, we check which soft clauses can be hardened given the current
assumptions and weights. Similarly as for reduced cost fixing, we add the corresponding
soft literal forcing a soft clause to be satisfied to the current set of assumption literals.
Unit propagation and equality detection. MaxHS performs two rounds of unit propagation
(on the hard clauses) and equality detection (on the hard and soft clauses), and eliminates
pure literals between these rounds. Pure literal elimination is not directly applicable
for incremental solving: for example, the negation of the literal can be assumed via
ipamir_assume or used in a hard clause via ipamir_add_hard. Thus, this feature is
disabled. To allow for using literals which have been eliminated due to unit propagation,
we remember which units have been derived. Similarly, to allow for using literals which
have been replaced by their equal representative, we remember which equalities have
been detected.
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Finally, variables are remapped from external variables to internal variables. We make
use of these mappings when adding hard clauses, soft literals and assumptions. Additional
techniques have been discussed from the perspective of changing weights in [27].

6 Empirical Evaluation

We turn to an empirical evaluation comparing the runtime efficiency of our incremental
MaxHS extension called iMaxHS (available in open source) to that of the the MaxSAT
Evaluation 2021 version of MaxHS on which our incremental extension is based on. For
the experiments, the original non-incremental MaxHS was run in default settings. The
experiments were run on machines with 8-core 2.60-GHz Intel Xeon E5-2670 CPUs and
57-GB RAM under Red Hat Enterprise Linux 8.5. A per-instance timeout limit of 7200
seconds (2 hours) and a memory limit of 16 GB was enforced. Specifically, the 7200-second
time limit is for solving a specific MaxSAT instance n times with n different assumptions
A1, . . . ,An. For both the incremental and non-incremental solver, we record the solving time
tk of each iteration k. The kth iteration as well as all subsequent ones are considered timed
out if

∑k
i=1 ti > 7200 seconds.

6.1 Benchmarks
As benchmarks we used all 1184 instances from the complete tracks of MaxSAT Evaluation
2021, including both weighted and unweighted instances and covering a wide range of different
(non-random) problem domains. For each MaxSAT Evaluation 2021 instance, we construct
an incremental benchmark, constituting of 20 MaxSAT solver calls, each under a different set
of assumptions. Each set of assumptions is obtained by hardening each soft clause uniformly
at random with probability p = 1/100. All in all, starting from the 1184 MaxSAT Evaluation
instances, this results in a total of 23680 iterations overall. As the original non-incremental
MaxHS does not support assumptions, we instead add the hardened soft clauses directly as
hard clauses for each iteration of a benchmark. To focus the comparison on actual runtime
effects rather than potentially over-emphasizing parsing times of the original MaxHS, we
exclude the WCNF parsing times from the CPU times when reporting the results.

6.2 Results
In the default version of iMaxHS, we initialize the set of conditional cores by solving the
original instance (without assumptions) for a maximum of 100 seconds (for the release
version, this time limit is a user-controlled option). In addition, we perform the initial
disjoint phase—where an initial set of disjoint cores are extracted before calling the hitting
set solver—only once per benchmark. If this initial phase is completed during initialization,
we do not perform it again during solver calls for assumptions. To investigate the impact of
different parameter choices in iMaxHS in addition to comparing its runtime performance in
its default settings to the performance of the original non-incremental MaxHS, we consider
three further configurations of iMaxHS.

iMaxHS-noi: does not perform the initialization phase (where the original instance is
solved without assumptions).
iMaxHS-noc: does not make use of conditional cores, instead using only cores found
during initialization.
iMaxHS-dja: performs the initial disjoint phase at each iteration.
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Figure 4 Left: Per-iteration runtime comparison of iMaxHS and MaxHS; blue points correspond
to earlier iterations and yellow points to later ones. Right: Mean runtime per-iteration for MaxHS
and different configurations of iMaxHS.

Figure 4 (left) shows a per-iteration runtime comparison between the default configuration
of iMaxHS (x-axis) and MaxHS (y-axis). Points are colored by the iteration index: the
more blue a point, the earlier the iteration; the more yellow, the later the iteration. We
observe that iMaxHS outperforms MaxHS overall, with the exception of the first iteration
taking approximately 100 seconds on some instances which MaxHS solves quickly. This is
due to the runtime allocation of 100 seconds for the initialization phase in iMaxHS. Overall,
there are 6450 timeouts for iMaxHS against 6821 timeouts for MaxHS. Figure 4 (right)
shows a runtime comparison of different configurations of iMaxHS and MaxHS in terms of
mean solving time per each iteration over all benchmarks. Timeouts are included as the
timeout limit (7200 seconds). We observe that already after 2 iterations, incrementality
of iMaxHS starts to pay off. The gap between iMaxHS and the non-incremental MaxHS
increases significantly with the number of iterations for the benefit of iMaxHS. Interestingly,
comparing iMaxHS and iMaxHS-dja, it appears that performing the initial disjoint phase is
somewhat detrimental to the performance. This may indicate that cores extracted during
the initial disjoint phase are somewhat similar to the later extracted cores, resulting in an
unnecessary runtime overhead for iMaxHS-dja. The iMaxHS-noc configuration exhibits
weaker performance when compared to the other incremental configurations. This suggests
that conditional cores gathered during earlier iterations are essential for making use of
incrementality.

Finally, Figure 5 shows the number of solved instances at iterations k = 2, 5, 10 for
different per-instance time limits. The benefits of incrementality are clear already at the
second iteration (Figure 5 left): all incremental versions—especially the default iMaxHS—
exhibit faster runtimes than MaxHS on average. Comparing iMaxHS to iMaxHS-noi, the
benefit of initialization is clear at k = 2, as the default iMaxHS is faster on average. We also
observe that iMaxHS-noc is on average slower than all other configurations especially on the
harder instances. The benefits of incrementality become increasingly clear as more iterations
are made. On the fifth iteration (Figure 5 center) iMaxHS is significantly faster than MaxHS.
We observe that iMaxHS-dja is significantly slower than iMaxHS, again confirming that
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Figure 5 Cactus plots (number of solved instances for a CPU time limit) for different iterations.

performing the initial disjoint phase only once is beneficial for overall performance. iMaxHS-
noc is clearly not competitive with other versions of iMaxHS, emphasizing the importance
of conditional cores. Finally, the picture remains similar when comparing the fifth and tenth
iterations (Figure 5 right).

7 Related Work

There is some earlier work on enabling incrementality in MaxSAT solving, although in much
more restricted ways as what we develop in this work. In [32] the authors investigate a
restricted form of incremental MaxSAT that only allows adding hard and soft clauses in the
context of core-guided MaxSAT, in particular for the classical Fu-Malik algorithm [14]. Since
adding clauses does not invalidate any cores, the algorithm can preserve all of the found cores
between iterations. The authors suggest to periodically restart the search—thus removing all
discovered cores—to improve performance. We believe that it would be non-trivial to extend
the algorithm of [32] to support the full IPAMIR interface (i.e., assumptions and changing
weights).

A lazy grounding framework for solving large MaxSAT instances was presented in [21].
The idea is to solve a large instance F by solving a sequence of instances consisting of different
subsets of the clauses in F . The paper proposes a variety of ways of selecting which clauses to
lazily include in the next instance of the sequence. To the best of our understanding, however,
the implementation experimented with does not make use of any forms of incrementality on
the MaxSAT-level but instead resets the MaxSAT solver between each iteration.

Finally, we note that so-called incremental cardinality constraints commonly applied in
modern core-guided MaxSAT solvers [25, 24, 23] refer to incrementality on the SAT-level,
allowing the core transformations in the core-guided approach to be performed without
reseting the internal SAT solver. This is different from enabling incremental computations
on the MaxSAT-level, i.e., incrementally solving a sequence of related MaxSAT instances
under various types of changes.

8 Conclusions

Incremental computations are today widely supported by SAT solvers, and are a key to
the employment of SAT solvers as practical NP oracles in various applications. In analogy,
enabling truly incremental computations for solving sequences of related optimization problem
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instances has the potential for major performance improvements. In this work, we made
several contributions towards incremental MaxSAT solving. Building on the IPASIR interface
from the realm of SAT, we proposed the IPAMIR interface as a standard for supporting
incremental functionality in MaxSAT solvers and for developing applications of incremental
MaxSAT solving. Extending the successful implicit hitting set approach to MaxSAT solving
as a prime candidate for enabling incremental computations, we provided what we believe
to be the first openly-available incremental MaxSAT solver in its generality. In particular,
iMaxHS supports the full range of functionality specified by IPAMIR. Complementing recent
empirical evidence on the benefits of incremental computations under changes to soft clause
weights, we provided empirical evidence on the potential of incrementally solving the same
MaxSAT instances under varying sets of assumptions.

In terms of further work, in the specific context of IHS-based MaxSAT solving there is
potential for improving the performance of our current incremental extension of MaxHS by
a more in-depth study of e.g. different heuristic choices and implementation-level aspects.
More generally, we hope and believe IPAMIR offers a basis for developing truly incremental
functionality into MaxSAT solvers more widely, with a promising line of development in
further extending the reach of MaxSAT as a paradigm of choice to solving combinatorial
optimization problems. This also opens up various non-trivial research questions, such as the
challenge of enabling strong preprocessing and other forms of extended reasoning techniques
in incremental MaxSAT solving.
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