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Abstract. Motivated by the fact that argumentation is intrinsically

a dynamic process, the study of representational and computational

aspects of dynamics in argumentation is starting to gain more trac-

tion. This is also witnessed by the most recent 2019 edition of the

International Competition on Computational Models of Argumen-

tation (ICCMA 2019), which introduced a new track focusing on

dynamic argumentation frameworks. In this paper, we present an

efficient Boolean satisfiability (SAT) based approach to reasoning

over dynamic argumentation frameworks. In particular, based on em-

ploying incremental SAT solving, we detail algorithms covering all

of the reasoning tasks—credulous and skeptical acceptance, as well

as the computation of a single and all extensions—and semantics—

complete, preferred, stable, and grounded—constituting the ICCMA

2019 dynamic track. Furthermore, we demonstrate empirically that

an implementation of the approach is highly competitive.

1 INTRODUCTION

Computational aspects of argumentation is a vibrant area of artificial

intelligence research. Abstract argumentation frameworks (AFs) [23]

constitute a central formalism for knowledge representation and rea-

soning in AI argumentation, allowing for modelling disputes be-

tween agents in a simple yet flexible manner. Syntactically, AFs take

the form of directed graphs, where nodes represent abstract argu-

ments (of agents), edges between nodes represent attacks between

arguments and counterarguments, and semantics identify subsets of

jointly acceptable arguments [7].

In various application scenarios, such as disputes between agents

in online social networks [30], the attack relation is subject to tem-

poral changes, as e.g. disputes may change (be retracted or added)

due to new available knowledge. This underlines the dynamic nature

of argumentation [12, 9]. To account for different types of dynamics

in AFs, going beyond studying different aspects of static AFs, vari-

ous new types of problem settings have been recently considered and

investigated [22] (as further outlined as related work in Section 7).

The focus of this work is on a specific recently formalized type

of AF dynamics, where the attack structure of a given initial AF

is subject to iterative changes in the form of removing and adding

individual attacks, thereby modelling the temporal nature of AFs.

In particular, the computational tasks involving these dynamic argu-

mentation frameworks deal with iteratively deciding the acceptance

of a given argument, or computing a single or all extensions, under a

given semantics after each iterative change to the AF. Naturally, the

computational hardness of deciding acceptance and enumerating ex-

tensions for a given static AF under different AF semantics [25, 31]
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directly implies that the computational tasks involving dynamic AFs

are likewise computationally challenging. Addressing partially this

challenge, first algorithms for specific variants of this problem setting

have been very recently proposed [28, 29, 1, 2]. As the most recent

development, the newest 2019 edition of the International Compe-

tition on Computational Models of Argumentation (ICCMA 2019)

introduced a new track focusing on dynamic argumentation frame-

works, covering both skeptical and credulous acceptance and compu-

tation of a single and all extensions as well as four central argumen-

tation semantics (grounded, complete, preferred, and stable) [15].

In this paper, we describe incremental Boolean satisfiability (SAT)

based algorithms for computational tasks involving dynamic argu-

mentation frameworks. In particular, the algorithms cover all of

the reasoning tasks—credulous and skeptical acceptance, as well as

the computation of a single and all extensions—and semantics—

complete, preferred, stable, and grounded—of the dynamic track of

ICCMA 2019. Building on the success of SAT-based approaches

for reasoning over static AFs [26, 33, 19, 37], we describe SAT

encodings for the dynamic case as a basis of the incremental ap-

proach; and present in detail SAT-based algorithms that make use

of the assumptions interface of a SAT solver—as well as further

optimizations based on knowledge obtained from previous calls—

to avoid making redundant SAT solver calls during the iterative

computation. A preliminary implementation of the approach was

shown to be competitive with other proposed solutions in the ICCMA

2019 competition (https://www.iccma2019.dmi.unipg.

it/results/results-dyn.html). Here we present results

from a more extensive empirical evaluation of the approach extend-

ing the ICCMA 2019 benchmarks to a higher number of changes

to the underlying AFs, showing that the approach scales notice-

ably better than currently available implementations of alternative

approaches [32].

The rest of the paper is organized as follows. We first give nec-

essary background on argumentation frameworks (Section 2) and in

particular dynamic argumentation frameworks and the associated key

computational problems focused on in this work (Section 3). We will

then describe in detail our SAT-based approach to reasoning about

dynamic argumentation frameworks: the SAT encodings used within

the approach (Section 4) and the incremental SAT-based algorithms

for dynamic acceptance and extension computation problems (Sec-

tion 5). Before conclusions, we present results from an empirical

evaluation of the approach (Section 6).

2 ARGUMENTATION FRAMEWORKS

We start by recalling argumentation frameworks [23], the argumen-

tation semantics [6, 7] and the static versions of computational



tasks [25] considered in this work.

Definition 1. An argumentation framework (AF) is a pair F =
(A,R), where A is a finite non-empty set of arguments and R ⊆
A × A is the attack relation. The pair (a, b) ∈ R indicates that a

attacks b. An argument a ∈ A is defended (in F ) by a set S ⊆ A

if, for each b ∈ A such that (b, a) ∈ R, there is a c ∈ S such that

(c, b) ∈ R.

Example 1. Let F = (A,R) be an AF with the set of ar-

guments A = {a, b, c, d, e} and the attack relation R =
{(a, b),(b, a),(b, c),(c, d),(d, e),(e, c)}. The AF F is represented as

a directed graph in Figure 1. Here a defends itself against the attack

from b, and, on the other hand d is defended by the set {b, d} since b

attacks c, the only attacker of d.

Semantics for AFs are defined via functions σ which assign to

each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions correspond-

ing to jointly acceptable subsets of arguments. We consider for σ the

functions cf , adm , com , grd , prf , and stb, which stand for conflict-

free, admissible, complete, grounded, preferred, and stable, respec-

tively. To formally define the semantics, we recall two standard aux-

iliary concepts.

Definition 2. Given an AF F = (A,R), the characteristic function

FF : 2A → 2A of F is FF (S) = {x ∈ A | x is defended by S}.
Moreover, for a set S ⊆ A, the range of S is

S
+
R = S ∪ {x ∈ A | (y, x) ∈ R, y ∈ S}.

The semantics considered in this work are now defined as follows.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free

(in F ) if there are no a, b ∈ S such that (a, b) ∈ R. We denote the

collection of conflict-free sets of F by cf (F ). For a conflict-free set

S ∈ cf (F ), it holds that

• S ∈ adm(F ) iff S ⊆ FF (S),
• S ∈ com(F ) iff S = FF (S),
• S ∈ grd(F ) iff S ∈ com(F ) and 6 ∃S′ ∈ com(F ) with S′ ⊂ S,

• S ∈ prf (F ) iff S ∈ adm(F ) and 6 ∃S′ ∈ adm(F ) with S ⊂ S′,

• S ∈ stb(F ) iff S+
R = A.

If S ∈ σ(F ), then S is called a σ-extension, i.e., an extension under

the semantics σ.

Following from Definition 3, the subset-relations

cf (F ) ⊇ adm(F ) ⊇ com(F ) ⊇ prf (F ) ⊇ stb(F )

hold for any AF F .

Two central reasoning tasks on AFs are deciding whether a given

argument is credulously or skeptically accepted under a prescribed

semantics.

Definition 4. Let F = (A,R) be an AF and σ ∈
{cf , adm, com, grd , prf , stb} an AF semantics. We say that an ar-

gument a ∈ A is credulously accepted under σ if a ∈
⋃

σ(F ), and

skeptically accepted under σ if a ∈
⋂

σ(F ).

That is, an argument is credulously accepted if it is contained in

at least one σ-extension, and skeptically accepted if it is contained

in all σ-extensions of the given AF. We denote the task of credulous

acceptance under semantics σ by DC-σ and the task of skeptical ac-

ceptance by DS-σ.
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Figure 1. Argumentation framework F from Example 1.

Example 2. Consider the AF F in Example 1 and Figure 1. The

σ-extensions of F are com(F ) = {∅, {a}, {b, d}}, prf (F ) =
{{a}, {b, d}}, stb(F ) = {{b, d}}, and grd(F ) = {∅}. The argu-

ment a is credulously, but not skeptically, accepted under preferred

semantics. On the other hand, a is neither credulously nor skeptically

accepted under stable.

The computational complexity of deciding the credulous accep-

tance of a query argument under complete, preferred, and stable se-

mantics is NP-complete [21] (note that the problems coincide under

admissible, complete, and preferred semantics). On the other hand,

deciding the skeptical acceptance of an argument is coNP-complete

under stable semantics, and ΠP

2 -complete under preferred seman-

tics [24]. Skeptical acceptance under complete coincides with skep-

tical acceptance under grounded, which in turn coincides with cred-

ulous acceptance under grounded. This follows from the fact that

the grounded extension is the unique subset-minimal complete ex-

tension: each of these problems is decidable in polynomial time [20]

since the grounded extension of any AF can be computed in polyno-

mial time by simulating the iterative application of the characteristic

function. For an overview of complexity in abstract argumentation,

we refer the reader to [25].

3 DYNAMIC ARGUMENTATION
FRAMEWORKS

In this work we use the term dynamic argumentation frameworks to

refer to standard AFs augmented with an update, i.e., a change to the

attack structure of the AF, following [28, 29, 1, 2].2 The extensions

of the updated AF can clearly change due to the update (consider

e.g. adding a self-attack to an argument that is contained in an ex-

tension). Hence, also the acceptance status of a query argument is

subject to change. In particular, we focus on the computational tasks

of the ICCMA 2019 track over dynamic AFs [15] where in addition

to an AF, a sequence of changes (rather than a single one) to the at-

tack structure of the AF is provided as input, and the task is to answer

the query (credulous or skeptical acceptance, or the computation of

any or all extensions) for each of the AFs defined by the sequence—

with the goal of answering the queries for updates (potentially more

efficiently than computing from scratch).

Example 3. We continue from Example 1. Consider now the AF

F1 obtained by removing the attack (b, c) from the AF F . This

AF is illustrated in Figure 2. Now, the σ-extensions of F1 are

com(F1) = {∅, {a}, {b}}, prf (F1) = {{a}, {b}}, stb(F1) = ∅,
and grd(F1) = {∅}. The complete and preferred extension {b, d}
of F has now lost the argument d, and F1 has no stable extension.

The status of a remains the same under preferred semantics. How-

ever, under stable semantics, a is now skeptically accepted, since no

stable extension exists.

2 We note that other uses of the term dynamic argumentation frameworks do
appear in the literature [36].
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Figure 2. Argumentation frameworks F1 and F2 from Example 2, with the

removed attack as a dotted edge and the added attack as a thick edge.

If, on the other hand, we add the attack (c, b) to F1, as illustrated

again in Figure 2, we obtain another AF F2. The extensions of F2

are com(F2) = {∅, {a}}, prf (F2) = {{a}}, stb(F2) = ∅, and

grd(F2) = {∅}. Now the complete and preferred extension {b} of

F1 has disappeared in F2. However, the acceptance status of a under

these semantics remains the same. Again, every argument is skepti-

cally accepted under stable, since no stable extension exists.

We will consider a standard AF augmented with a sequence of

changes, i.e., additions and removals, to the attack structure. The se-

quence naturally defines a sequence of attack structures, using which

we may distinguish between static and dynamic attacks of the dy-

namic AF.

Definition 5. Consider an input AF F = (A,R), along with a se-

quence of changes χ = (χ1, . . . , χn) where each χi is either +(a, b)
(addition of an attack) or −(a, b) (deletion of an attack) for some

a, b ∈ A. The sequence χ then generates a sequence of attack struc-

tures (R0, R1, . . . , Rn) recursively, where R0 = R (i.e., the attack

structure given as input), and

Ri =

{

Ri−1 ∪ (a, b) if χi = +(a, b) and a, b ∈ A,

Ri−1 \ (a, b) if χi = −(a, b) and a, b ∈ A.

We define static and dynamic attacks Rs and Rd via

R
s =

n
⋂

i=0

Ri,

R
d =

(

n
⋃

i=0

Ri

)

\Rs
,

where (Ri)
n
i=0 is the sequence of attack structures generated by χ.

The corresponding dynamic AF is Fχ = (A,R, χ).

That is, Rs consists of static attacks that are part of every attack

structure of the sequence (Ri)
n
i=0, and Rd contains dynamic attacks

which are included in some structure of the sequence, but not all.

Example 4. Consider the input AF F = (A,R) from Example 1

on page 2, and the changes χ = (−(b, c),+(c, b)) introduced in

Example 2, forming the dynamic AF Fχ = (A,R, χ). The static and

dynamic attacks are

R
s = {(a, b), (b, a), (c, d), (d, e), (e, c)},

R
d = {(b, c), (c, b)}.

Note that in Examples 1 and 2, the singleton {a} is a preferred

extension in every AF of the sequence. That is, we could answer the

question “is b skeptically accepted” more efficiently in F1 and F2

just by checking whether the counterexample extension {a} from F0

is still preferred. The algorithms developed in this work cover cases

like this.

4 ENCODINGS

We continue by providing encodings in Boolean satisfiability (SAT)

for the semantics considered in this paper, extending the standard

encodings for argumentation semantics [13] to the dynamic case by

essentially conditioning relevant parts of the formulas with the exis-

tence of an attack. The encodings will be utilized as main ingredients

of the algorithms for the dynamic versions of the acceptance, search,

and enumeration problems in the extension-based setting. In partic-

ular, our goal is to instantiate a SAT solver with an input formula

φσ , from which the σ-extensions of all AFs in the sequence can be

extracted.

Consider now a dynamic AF Fχ = (A,R, χ), with χ =
(χ1, . . . , χn), and the corresponding static and dynamic attacks Rs

and Rd generated by χ. We declare Boolean variables xa for all

a ∈ A and ra,b for all (a, b) ∈ Rd with the following interpreta-

tions:

• ra,b = ⊤ iff (a, b) ∈ Ri,

• xa = ⊤ iff a ∈ E for some E ∈ σ(Fi),

where Fi = (A,Ri) is the AF to which changes χ1, . . . , χi have

been applied (recall Definition 5). The ra,b variables introduced by

the dynamic attacks in particular will be central to incremental SAT

computations. In addition, we introduce auxiliary variables sa,b for

each (a, b) ∈ Rd, ya for each a ∈ A, and za,b for each (a, b) ∈
Rd, binding their interpretations with equivalences to the xa and ra,b
variables as follows:

sa,b ↔ (ra,b ∧ xa),

ya ↔

(

∨

(b,a)∈Rs

xb ∨
∨

(b,a)∈Rd

sb,a

)

,

za,b ↔ (ra,b → ya).

Intuitively, sa,b is true iff the attack (a, b) exists and the source a

is accepted, ya is true iff the argument a is attacked by an accepted

argument (i.e. defeated), and za,b is true iff the existence of the attack

(a, b) implies that the source is defeated.

Now, the Boolean formula

φcf (F
χ) =

∧

(a,b)∈Rs

(¬xa ∨¬xb)∧
∧

(a,b)∈Rd

(ra,b → (¬xa ∨¬xb))

encodes conflict-free sets of the dynamic AF Fχ, since for all static

attacks we require that we cannot accept both the source and the

target of the attack, and for dynamic attacks we require this only in

the case that the corresponding attack exists.

Likewise the formula φadm(Fχ) defined as

φcf (F
χ) ∧

∧

a∈A

(

xa →

(

∧

(b,a)∈Rs

yb ∧
∧

(b,a)∈Rd

zb,a

))

represents admissible sets, requiring them to be conflict-free and, ad-

ditionally, for each argument a that if we accept a, we need to defend

a against all static and dynamic attacks—that is, for each possible at-

tack, if it exists, we need to accept an argument that counterattacks

the source of the attack.

The encoding for complete semantics is given by ϕcom(Fχ) de-

fined as

φadm(Fχ) ∧
∧

a∈A

((

∧

(b,a)∈Rs

yb ∧
∧

(b,a)∈Rd

zb,a

)

→ xa

)



stating additionally the converse; if we defend an argument, we need

to include it in the extension. This, together with admissibility, cor-

responds exactly to complete extensions.

Finally, our encoding for stable semantics is

φstb(F
χ) = φcf (F

χ) ∧
∧

a∈A

(xa ∨ ya).

stating that stable extensions are conflict-free sets which attack ev-

ery argument outside the set, i.e., either we accept an argument

or accept some attacker of the argument. Note that the formu-

las φcf (F
χ), φadm(Fχ), φcom(Fχ) and φstb(F

χ) are essentially in

conjunctive normal form, the input format required for SAT solvers.

The following proposition summarizes the key properties of the

encodings. The statement follows from the fact that via performing

unit propagation on ra,b and ¬ra,b literals the encodings reduce to

the standard SAT encodings of argumentation semantics [13].

Proposition 1. Given a dynamic AF Fχ = (A,R, χ), where χ =
(χ1, . . . , χn), let Fi = (A,Ri), 0 ≤ i ≤ n, where Ri is defined

according to Definition 5, and

ATT(Fi) = {ra,b | (a, b) ∈ Ri} ∪ {¬ra,b | (a, b) 6∈ Ri}.

In the AF Fi,

• φσ(F
χ) ∧ xa ∧ ATT(Fi) is satisfiable if and only if the argument

a ∈ A is credulously accepted under σ ∈ {com, stb}, and

• φσ(F
χ)∧¬xa∧ATT(Fi) is satisfiable if and only if the argument

a ∈ A is not skeptically accepted under σ ∈ {com, stb}.

5 ALGORITHMS

Making use of the just-described encodings, we detail an incremental

SAT-based approach to credulous and skeptical reasoning and com-

puting a single extension and all extensions for each attack structure

of a given dynamic AF Fχ = (A,R, χ). In particular, we make use

of the so-called assumption interface of a SAT solver to enable in-

crementality, meaning that a SAT solver needs only be instantiated

once for the whole sequence of changes, and information learned by

the SAT solver from the previous iterations can be used for speed-

ing up computations in the forthcoming iterations [27]. Here the “at-

tack variables” ra,b play a crucial role as assumptions at iteration i

in the form of ATT(Fi) (recall Proposition 1) which are separately

communicated to the SAT solver at each iteration for achieving in-

crementality. Furthermore, we outline checks on the persistence of

the previously found solution both in the positive (e.g. the query ar-

gument was accepted during the previous iteration) and the negative

(e.g. the query argument was not accepted previously) case to further

speed up computation.

5.1 Acceptance

Following Proposition 1, our SAT-based approach to credulous ac-

ceptance and skeptical acceptance under σ ∈ {com, stb} is de-

scribed in pseudocode as Algorithm 1. On line 1, we initialize two

empty sets E (extension) and C (core) for storing information from

the previous iteration, and s for storing intermediate results. Here,

depending on the reasoning mode M ∈ {DC,DS} (DC for credu-

lous, DS for skeptical), the algorithm incrementally queries a SAT

solver at each iteration i with the input formula φσ(F
χ) ∧ q under

the assumptions

ATT(Fi) = {ra,b | (a, b) ∈ Ri} ∪ {¬ra,b | (a, b) 6∈ Ri}

Algorithm 1 Algorithm for dynamic credulous and dynamic skepti-

cal acceptance under σ ∈ {com, stb} on input Fχ = (A,R, χ) and

query q ∈ A.

1: E ← ∅, C ← ∅, s← empty Boolean array of size n+ 1
2: if M = DC q ← xq else q ← ¬xq

3: for i = 0, 1, . . . , n
4: if i > 0 and s[i− 1] = 1
5: α← ATT(Fi) ∪ {xa | a ∈ E} ∪ {¬xa | a 6∈ E}
6: ρ← SAT.SOLVE(φσ(F

χ) ∧ q, α)

7: if ρ = sat

8: s[i]← 1
9: continue

10: else if i > 0 and s[i− 1] = 0
11: (a, b)← |χi|
12: ◦ ← sign(χi)
13: if (◦ = + and ra,b 6∈ C) or (◦ = − and ¬ra,b 6∈ C)

14: s[i]← 0
15: continue

16: ρ← SAT.SOLVE(φσ(F
χ) ∧ q, ATT(Fi))

17: if ρ = sat

18: τ ← SAT.GETMODEL()

19: E ← {a ∈ A | τ(xa) = ⊤}
20: s[i]← 1
21: else

22: C ← SAT.GETUNSATCORE()
23: s[i]← 0

24: for i = 0, 1, . . . , n
25: if (M = DC and s[i] = 1) or (M = DS and s[i] = 0)

26: print “YES”

27: else print “NO”

(SAT.SOLVE(φσ(F
χ) ∧ q, ATT(Fi)) on line 16), where q is xa in

the credulous case and ¬xa in the skeptical case (line 2). This ac-

counts to deciding whether a given query argument a ∈ A is cred-

ulously accepted and, respectively, is not skeptically accepted, in

the AF Fi = (A,Ri). Since com and prf coincide for credulous

acceptance, this algorithm also covers credulous acceptance under

preferred semantics. The same algorithm is also applicable to the

polynomial-time computable case of the grounded semantics. This is

guaranteed by running the polynomial-time main propagation mech-

anism of unit propagation in the SAT solver (instead of making a full-

blown SAT solver call) on the SAT encoding of the complete seman-

tics, which is enough for determining acceptance under grounded se-

mantics in Fi by checking whether unit propagation assigns xa to

true [33].

Algorithm 1 includes two optimizations: one for the case where

a was determined as being credulously accepted (or not being skep-

tically accepted) in the previous AF Fi−1 = (A,Ri−1) (the “pos-

itive” case), and one for the case where a was determined as not

being credulously accepted (or being skeptically accepted) in Fi−1

(the “negative” case).

In the positive case, we have obtained a witnessing extension

E through iteration i − 1 of the algorithm (SAT.GETMODEL() on

line 18). Now, instead of immediately calling the SAT solver at itera-

tion i, we can first check whether the witness extension found in the

previous iteration is also an extension of Fi, in which case we can di-

rectly proceed to iteration i+ 1. In practice, however, this check can

also be implemented as a linear-time (in practice very fast) check

by calling the SAT solver under further assumptions enforcing the

witnessing extension E (on lines 4–9). By doing so, satisfiability is



established through mere deterministic polynomial-time propagation

within the SAT solver.

In the negative case, the SAT solver can provide an unsatisfiable

core C, i.e., an explanation of which ra,b and ¬ra,b assumed at the

previous iteration i − 1 the solver needed to contruct an unsatisfi-

ability proof (SAT.GETUNSATCORE() on line 22). Before calling

the SAT solver at iteration i, we check whether the call is necessary

(lines 10–15 in Algorithm 1); if the change χi = ±(a, b) in the at-

tack structure from iteration i − 1 to i does not involve an (¬)ra,b
in the unsatisfiable core C, the core also witnesses the fact that the

SAT solver call at i will necessarily report unsatisfiability, and hence

at iteration i no SAT solver call is needed.3

Skeptical acceptance under preferred. Recall that skeptical ac-

ceptance for σ = prf is in general a ΠP

2 -complete problem. Hence

a single SAT solver call as performed at each iteration of Algo-

rithm 1 is not enough in this case. To cover this ΠP

2 -complete prob-

lem, we generalize Algorithm 1 with an incremental adaptation of the

counterexample-guided abstraction refinement (CEGAR) procedure

of [26] originally proposed for static acceptance to dynamic argu-

mentation frameworks. A particular non-trivial part of this general-

ization is that care needs to be taken in order to make sure that the

so-called blocking clauses, which exclude subsets of the current ex-

tension, added (as in [26] for the static case) at a particular iteration,

will not interfere with correctness of results for the forthcoming iter-

ations.

The resulting algorithm is outlined in pseudocode as Algorithm 2.

On line 1 we initialize an empty set E for storing the potential

counterexample extension found during the previous iteration, set B

for storing additional assumptions needed for deactivating blocking

clauses from previous iterations, and array s for storing intermediate

results. We initialize φ to φcom(Fχ) corresponding to the encod-

ing for complete semantics on line 2—throughout the algorithm, we

will keep updating φ via adding clauses, and calling the SAT solver

with φ and corresponding assumptions α. Each iteration i on lines

from 15 to 37 follows [26]. We include the literal ¬xa to the assump-

tions ATT(Fi) corresponding to the attack structure (line 15), with

the goal of finding a counterexample to skeptical acceptance under

preferred, that is, a preferred extension not containing the query argu-

ment. Then, we iteratively ask a SAT solver for a complete extension

not containing the query argument (line 17). If one is not found, we

accept the argument, since then it is contained in all preferred exten-

sions (lines 18–21). Otherwise, we iteratively subset-maximize the

complete extension (extracted from the truth assignment on lines 22–

23) using the same SAT solver (lines 24–31), resulting in a coun-

terexample candidate. Then, if further including the query argument

(via including xa as an assumption on line 32) into the counterex-

ample candidate results in the subset not being a complete extension

of Fi, the counterexample is valid, i.e., it is a preferred extension not

containing the query argument, and hence we reject (lines 33–37).

Otherwise, we continue by again asking for a complete extension

not containing the query argument, this time ruling out all subsets of

the previously found complete extension using the blocking clauses

added to the solver during subset-maximization (line 26).

Algorithm 2 also includes an optimization for the case where a

was not skeptically accepted during the previous iteration, i.e., a

counterexample extension E was found during iteration i − 1. At

3 In practice, the unsatisfiable core does not need to be checked explicitly,
since it in general holds that if the core is valid for iteration i, then the
SAT solver call at iteration i will consist of unit propagation in linear time
deriving unsatisfiability.

Algorithm 2 Dynamic skeptical acceptance under preferred seman-

tics on input Fχ = (A,R, χ) and query q ∈ A.

1: E ← ∅, B ← ∅, s← empty Boolean array of size n+ 1
2: φ← φcom(Fχ)
3: for i = 0, 1, . . . , n
4: if i > 0 and s[i− 1] = 0
5: α← ATT(Fi) ∪ {xa | a ∈ E} ∪ {¬xa | a 6∈ E} ∪B

6: ρ← SAT.SOLVE(φ, α)

7: if ρ = sat

8: α← ATT(Fi) ∪ {xa | a ∈ E} ∪B ∪ {bi}

9: φ← φ ∧
(

bi →
∨

a∈A\E xa

)

10: ρ← SAT.SOLVE(φ, α)

11: if ρ = unsat

12: s[i]← 0
13: B ← B ∪ {¬bi}
14: continue

15: α← ATT(Fi) ∪ {¬xq} ∪B ∪ {bi}
16: while true

17: ρ← SAT.SOLVE(φ, α)

18: if ρ = unsat

19: s[i]← 1
20: B ← B ∪ {¬bi}
21: break

22: τ ← SAT.GETMODEL()

23: E ← {a ∈ A | τ(xa) = ⊤}
24: while true

25: α← α ∪ {xa | a ∈ E}

26: φ← φ ∧
(

bi →
∨

a∈A\E xa

)

27: ρ← SAT.SOLVE(φ, α)

28: if ρ = sat

29: τ ← SAT.GETMODEL()

30: E ← {a ∈ A | τ(xa) = ⊤}

31: else break

32: α← (α \ {¬xq}) ∪ {xq}
33: ρ← SAT.SOLVE(φ, α)

34: if ρ = unsat

35: s[i]← 0
36: B ← B ∪ {¬bi}
37: break

38: for i = 0, 1, . . . , n
39: if s[i] = 1 print “YES” else print “NO”

iteration i, we first check whether the counterexample extension is

a complete extension of Fi (lines 5–6), and if it is, whether there is

a superset containing the counterexample extension (lines 7–14). In

this case, we may directly proceed to iteration i+1 as the counterex-

ample is still valid, and we have potentially saved resources via a

single polynomial-time propagation check (line 6) and a single SAT

call (line 10), as opposed to making multiple calls iteratively.

To make the approach fully incremental for dynamic argumenta-

tion frameworks, we need to ensure that we do not consider blocking

clauses added during the previous iterations; otherwise correctness

will be lost due to the earlier blocking clauses ruling out counterex-

ample candidates wrt. the current AF Fi. We ensure this critical de-

tail via declaring additional Boolean variables bi, i = 0, . . . , n, with

the interpretation bi = ⊤ iff we are at iteration i. At each iteration,

we use the literals ¬b0,¬b1, . . . ,¬bi−1 (lines 13, 20, and 36) and bi
(lines 8 and 15) as assumptions and condition each blocking clause

with bi (lines 9 and 26). This ensures that all blocking clauses added



Table 1. Cumulative running times (s) with timeouts included as 1800 s, number of timeouts (out of 326 instances) in brackets.

Number of changes

Task Solver 8 16 32 64 128 256

DC-CO-D µ-TOKSIA 115.03 (0) 140.78 (0) 192.45 (0) 366.50 (0) 950.08 (0) 2630.54 (0)

COQUIAAS 271.02 (0) 344.36 (0) 494.77 (0) 890.87 (0) 2353.99 (0) 7262.56 (1)

DC-ST-D µ-TOKSIA 81.44 (0) 93.18 (0) 113.64 (0) 185.22 (0) 426.70 (0) 1189.93 (0)

COQUIAAS 128.95 (0) 164.82 (0) 227.86 (0) 382.99 (0) 891.98 (0) 3812.97 (0)

DS-ST-D µ-TOKSIA 180.94 (0) 199.55 (0) 321.39 (0) 642.84 (0) 1729.48 (0) 5037.50 (0)

COQUIAAS 2172.89 (0) 2546.26 (1) 3499.76 (1) 5735.87 (1) 10178.92 (2) 23198.09 (6)

DS-PR-D µ-TOKSIA 356.54 (0) 483.88 (0) 1171.59 (0) 3006.67 (0) 6097.49 (1) 17856.47 (2)

COQUIAAS 4798.30 (0) 7808.13 (0) 14856.26 (4) 23279.47 (6) 39405.65 (14) 59949.88 (26)

at previous iterations are trivially satisfied, and that blocking clauses

added during the current iteration are active.

5.2 Extension Enumeration

The approaches outlined in the previous section for deciding accep-

tance over dynamic argumentation frameworks can be readily ad-

justed also for computing a single or all extensions of a given dy-

namic framework Fχ = (A,R, χ) without a query argument. In

particular, for computing a single extension at each iteration, we can

disregard the query argument a in Algorithm 1. In this case, the neg-

ative check (using an unsatisfiable core) is only applicable in the case

of stable semantics, since the other semantics are guaranteed to yield

at least one extension. For preferred semantics, we use the same pro-

cedure as for complete semantics, but in addition iteratively subset-

maximize the extension E that was found using blocking clauses of

the form
∧

a∈E

(bi → xa) ∧

(

bi →
∨

a∈A\E

xa

)

,

where bi is again a fresh Boolean variable corresponding to iteration

i. Each solver call at iteration i is then performed under assumptions

¬b0,¬b1, . . . , bi, which again ensure that the blocking clauses added

during the previous iterations are trivially satisfied.

Generalizing to extension enumeration, for σ ∈ {com, stb} at

iteration i after each found extension E we add the blocking clause

bi →
∨

a∈E

xa ∨
∨

a∈A\E

xa

and continue to query the SAT solver for a further extension until

reaching unsatisfiability. At each iteration i, each SAT solver call

call is performed under the assumptions ¬b0,¬b1, . . . , bi to avoid

issues with blocking clauses at previous iterations. For extension

enumeration under preferred semantics, at each iteration we further

subset-maximize a complete extension similarly as in the procedure

for skeptical acceptance under preferred semantics (Algorithm 2),

adding blocking clauses

bi →
∨

a∈A\E

xa

for each preferred extension E.

6 EXPERIMENTS

We present empirical results on the performance of an implemen-

tation of the incremental SAT-based approach to reasoning over

dynamic argumentation frameworks described in the previous sec-

tion. The implementation, named µ-TOKSIA
4, uses Glucose (ver-

sion 4.1) [5] as the SAT solver, making use of its incremental

mode [4]. The system is available online in open source at https:

//bitbucket.org/andreasniskanen/mu-toksia.

6.1 Benchmarks and Setup

As a basis of the evaluation, we used the 326 AFs and the query ar-

guments and attack structure changes from the dynamic track of IC-

CMA 2019 (https://www.iccma2019.dmi.unipg.it). In

the competition, 8 attack structure changes (modifications) were con-

sidered for each AF. We extend our evaluation to up to 256 changes

for obtaining a more general view of scalability by appending uni-

formly at random selected additions and deletions of attacks to the

ICCMA 2019 change lists. Due to space constraints, here we focus

on the arguably central NP-hard acceptence problems of the dynamic

track, i.e., the problems DC-CO-D (credulous acceptance under com-

plete), DC-ST-D (credulous stable), DS-ST-D (skeptical stable) and

DS-PR-D (skeptical preferred).

All experiments were run on Intel Xeon E5-2680 v4 2.4-GHz,

256-GB memory machines running CentOS 7. We enforced a per-

instance time limit of 1800 seconds and a memory limit of 64 GB.

We compare the performance of µ-TOKSIA to that of the currently

available system COQUIAAS supporting the computational tasks of

the dynamic track of ICCMA 2019. While—in addition to µ-TOKSIA

and COQUIAAS—the PYGLAF solver [3] also participated in the

dynamic track of ICCMA 2019, we observed that it reported—inline

with the ICCMA 2019 results—wrong results on 13 (DC-CO-D), 13

(DC-ST-D), 24 (DS-ST-D), and 150 (DS-PR-D) out of the total of

326 benchmark instances with 8 changes, and therefore are unable

to present a meaning comparison to PYGLAF at this time. Further-

more, we note that the prototype system presented in [2] appears to

implement the DS-PR-D task of ICCMA 2019; however, despite our

efforts we were unable to obtain an implementation of the system

from the authors for evaluation.

6.2 Results

A comparison between µ-TOKSIA and COQUIAAS [32] is summa-

rized in Table 1 and Figure 3. Overall, the results show a similar

tendency for each of the problem variants, µ-TOKSIA significantly

outperforming COQUIAAS. As seen from Table 1, µ-TOKSIA times

out only on 3 instances with 128 and 256 changes on skeptical ac-

ceptance under preferred, while COQUIAAS has several timeouts

over several tasks. We observe that skeptical acceptance under pre-

ferred results in highest running times for both of the systems, which

4 Muutoksia means “changes” in Finnish.



0.1 1.0 10.0 100.0 1000.0

0
.1

1
.0

1
0

.0
1

0
0

.0
1

0
0

0
.0

DC−CO−D

coquiaas

m
u

−
to

k
s
ia

8

16

32

64

128

256

0.1 1.0 10.0 100.0 1000.0

DC−ST−D

coquiaas

0.1 1.0 10.0 100.0 1000.0

DS−ST−D

coquiaas

0.1 1.0 10.0 100.0 1000.0

DS−PR−D

coquiaas

Figure 3. µ-TOKSIA vs. COQUIAAS on DC-CO-D, DC-ST-D, DS-ST-D, and DS-PR-D.

is in-line with the increased complexity of this problem variant com-

pared to the other variants. However, as seen in Figure 3 (right), the

running times of µ-TOKSIA are not considerably influenced by the

number of changes, while running times of COQUIAAS increase as

more changes are considered. We expect this behavior of µ-TOKSIA

to be a result of the fully incremental SAT-based approach, which

pays off in particular for the computationally hardest problem vari-

ant. Furthermore, as highlighted in Figure 4, the “positive” check of

the counterexample extension obtained at the previous iteration being

a valid counterexample for the current iteration (recall Section 5) pro-

vides noticeable runtime improvements. This can be seen in Figure 4,

providing a comparison between the performance of µ-TOKSIA with

(y-axis) and without (x-axis) the positive check. At times, the im-

provements due to the positive check are drastic; dropping from a

runtime of 1000 seconds to just over 10 seconds for the same in-

stance.

7 RELATED WORK

Dynamics in abstract argumentation has raised increasing attention

during the recent years [22]. Algorithms for determining a single

extension [1] and the skeptical acceptance of an argument under

preferred semantics [2] in dynamic argumentation frameworks have

been recently developed, building on previous work on incremen-

tal computation of the grounded and ideal extension in dynamic

AFs [28, 29]. In contrast to our work, the authors develop solver-

0.1 1.0 10.0 100.0 1000.0

0
.1

1
.0

1
0

.0
1

0
0

.0
1

0
0

0
.0

DS−PR−D

mu−toksia, no positive check

m
u

−
to

k
s
ia

8

16

32

64

128

256

Figure 4. µ-TOKSIA on task DS-PR-D: with (y-axis) vs without (x-axis)

positive check.

independent techniques by considering arguments that have poten-

tially been affected by the update and using any solver for the com-

putation over a smaller AF. Our approach is purely SAT-based, rely-

ing on the power of incremental solving instead of external calls, and

can support essentially all major semantics. Likewise, the division-

based method of [34], further refined in [8], incrementally computes

extensions of an updated AF, using a notion of the affected part of the

arguments and reusing the extensions of the original AF; however, no

implementation or experimental evaluation is provided. Changes to

AFs in the form of adding and removing attacks or arguments have

also been considered from purely representational pespectives, both

in the form of atomic changes [18, 14, 16, 17, 35] and changes in-

volving sets of arguments and incident attacks [12, 10, 11]. Finally,

we mention that the approach to dynamic argumentation frameworks

presented in this work builds on the earlier success of SAT-based ap-

proaches to reasoning over static AFs [26, 33, 19].

8 CONCLUSIONS

Temporal changes to argumentation frameworks are inherent in var-

ious practical settings, such as disputes among agents in social net-

works. Motivated by this, we detailed a fully incremental Boolean

satisfiability based approach to credulous and skeptical acceptance,

computing a single extension, and extension enumeration under a se-

quence of changes to the attack structure of a given argumentation

framework. Our SAT-based approach covers all of the three seman-

tics (complete, preferred, stable) for which a static acceptance prob-

lem is NP-hard, as well as the polynomial-time computable case of

grounded semantics through guaranteed polynomial-time propaga-

tion on the level of propositional encodings, hence covering all of

the computational tasks featured in the special dynamic track that

was organized as part of the 3rd International Competition on Com-

putational Models of Argumentation (ICCMA 2019). We described

encodings for the dynamic case and algorithms which make full use

of the assumptions interface of a SAT solver as well as optimizations

to avoid making redundant SAT solver calls based on knowledge ob-

tained from previous calls. We showed through an extensive empir-

ical evaluation, extending the ICCMA 2019 dynamic track bench-

marks to higher numbers of changes, that the approach is highly

competitive in practice.
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