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Abstract
We describe the µ–toksia argumentation reasoning system.
The system supports a range of different reasoning tasks over
both standard and dynamic abstract argumentation frame-
works under essentially all central argumentation semantics,
covering all tracks and reasoning tasks considered in the most
recent International Competition on Computational Models
of Argumentation (ICCMA 2019). µ–toksia ranked first in
all reasoning tasks in the main track of ICCMA 2019, and
has been shown to scale noticeably better on the dynamic
track tasks than its current competitors. In this paper, we
provide an overview of µ–toksia and its algorithmic and
implementation-level details, and provide further empirical
evidence beyond ICCMA 2019 on the efficiency of µ–toksia
compared to related systems.

1 Introduction
Argumentation is a central area of knowledge representa-
tion and reasoning research. Abstract argumentation (Dung
1995), with Dung’s argumentation frameworks (AFs) as the
key formalism, is one of the main directions in argumen-
tation research. Despite the simplistic syntactic form of
AFs, central reasoning tasks in AFs such as credulous and
skeptical acceptance of arguments, and extension enumera-
tion, are computationally difficult under various argumenta-
tion semantics (Dvorák and Dunne 2018). Various practi-
cal algorithmic approaches for reasoning in AFs have been
developed (Charwat et al. 2015; Cerutti et al. 2018). The
biennial series of International Competitions on Computa-
tional Models of Argumentation (ICCMA) (Thimm and Vil-
lata 2017; Gaggl et al. 2020), with its 3rd instantiation in
2019 (Bistarelli et al. 2018), provides further incentives for
developing efficient argumentation reasoning systems. IC-
CMA 2019 expanded the range of reasoning tasks by in-
troducing a so-called dynamic track, generalizing the stan-
dard acceptance and enumeration tasks to sequences of re-
lated tasks resulting from iteratively changing the attack
structure of the AF on which reasoning is performed (Liao,
Jin, and Koons 2011; Baroni, Giacomin, and Liao 2014;
Alfano, Greco, and Parisi 2017; Alfano, Greco, and Parisi
2019).

This paper describes the µ–toksia argumentation reason-
ing system. The system supports a range of different rea-

soning tasks over both standard and dynamic abstract ar-
gumentation frameworks under essentially all central ar-
gumentation semantics, covering all tracks and reasoning
tasks considered in ICCMA 2019. Motivated by vari-
ous successes in employing declarative solving for reason-
ing in AFs and their generalizations (Dvorák et al. 2014;
Cerutti, Giacomin, and Vallati 2019; Alviano 2019; Lagniez,
Lonca, and Mailly 2015; Egly, Gaggl, and Woltran 2010;
Gaggl et al. 2015; Bistarelli, Rossi, and Santini 2017) as a
fundamental choice of attack µ–toksia makes heavy use of
state-of-the-art Boolean satisfiability (SAT) solvers in opti-
mized ways. In terms of empirical performance, µ–toksia
arguably represents the current state of the art in abstract ar-
gumentation reasoners: it ranked first in all reasoning tasks
in the main track of ICCMA 2019. Furthermore, in an ex-
tended evaluation of the system on the tasks of the ICCMA
2019 dynamic track, µ–toksia has been recently shown to
scale noticeably better than its current competitors (Niska-
nen and Järvisalo 2020).

In this paper, we provide an overview of µ–toksia and its
various algorithmic and implementation-level details. While
the algorithmic approach implemented in µ–toksia for the
dynamic track tasks is described in a separate work (Niska-
nen and Järvisalo 2020), here we describe details on how µ–
toksia implements the standard “static” tasks, and provide
extensive empirical results beyond ICCMA 2019 bench-
marks on the efficiency of µ–toksia compared to competing
systems (including ones not participating in ICCMA 2019).

2 Abstract Argumentation
An argumentation framework (AF) is a pair F = (A,R),
whereA is a (finite) set of arguments andR ⊆ A×A is a set
of attacks. An argument a ∈ A is defended by a set S ⊆ A if
for all (b, a) ∈ R there is c ∈ S with (c, b) ∈ R. For S ⊆ A,
define DF (S) = {a ∈ A | a is defended by S}. The range
of S ⊆ A isRF (S) = S ∪ {a ∈ A | (b, a) ∈ R, b ∈ S}.

Argumentation semantics (Baroni, Caminada, and Gia-
comin 2018) define sets of jointly acceptable arguments
called extensions. Given an AF F = (A,R), a set S ⊆ A
is conflict-free if there are no x, y ∈ S with (x, y) ∈ R. We
denote the collection of conflict-free sets of F as cf(F ). For
a conflict-free set S ∈ cf(F ), we denote



• S ∈ adm(F ) if S ⊆ DF (S), S ∈ com(F ) if S = DF (S),
• S ∈ prf(F ) if S ∈ com(F ) and there is no S′ ∈ com(F )

with S′ ⊃ S,
• S ∈ stb(F ) ifRF (S) = A,
• S ∈ sem(F ) if S ∈ com(F ) and there is no S′ ∈ com(F )

withRF (S′) ⊃ RF (S),
• S ∈ stg(F ) if S ∈ cf(F ) and there is no S′ ∈ cf(F ) with
RF (S′) ⊃ RF (S),

• S ∈ grd(F ) if S =
⋂

com(F ),
• S ∈ id(F ) if S ∈ adm(F ), S ⊆

⋂
prf(F ) and there is no

S′ ⊆
⋂

prf(F ) with S′ ⊃ S.
The functions adm, com, prf, stb, sem, stg, grd, id stand for
admissible, complete, preferred, stable, semi-stable, stage,
grounded, and ideal semantics, respectively. For a semantics
σ, a set E ∈ σ(F ) is an extension under σ, or a σ-extension.
An argument a ∈ A is credulously (skeptically) accepted
under σ if it is in some (all) σ-extension(s).

Apart from deciding credulous/skeptical acceptance and
finding a single or all extensions of a given AF, µ–toksia
supports the problem setting of the ICCMA 2019 dynamic
track (Bistarelli et al. 2018), where in addition to an AF,
a sequence of changes to the attack structure of the AF is
provided (Alfano, Greco, and Parisi 2017; Alfano, Greco,
and Parisi 2019), and the task is to output the answer to the
task at hand for all AFs defined by the sequence.

Let F = (A,R) be an AF, and χ = (χ1, . . . , χn) a se-
quence where each χi is either +(a, b) (addition of an at-
tack) or −(a, b) (deletion of an attack) for some a, b ∈ A.
The sequence χ then generates a sequence of attack struc-
tures (R0, R1, . . . , Rn) recursively, where R0 = R (i.e., the
attack structure given as input), and

Ri =

{
Ri−1 ∪ (a, b) if χi = +(a, b) and a, b ∈ A,
Ri−1 \ (a, b) if χi = −(a, b) and a, b ∈ A.

We define static and dynamic attacks Rs and Rd via

Rs =

n⋂
i=0

Ri, Rd =

(
n⋃
i=0

Ri

)
\Rs,

where (Ri)
n
i=0 is the sequence of attack structures generated

by χ. The corresponding dynamic AF is Fχ = (A,R, χ).

3 µ–toksia
3.1 Overview
The µ–toksia system supports credulous (DC) and skeptical
(DS) acceptance of an argument, outputting a single exten-
sion (SE), and extension enumeration (EE) under semantics
com, prf, stb, sem, stg, grd, and id with respect to a given AF
(and a query argument), as well as DC, DS, SE, and EE for
dynamic AFs under semantics com, prf, stb, and grd (as in
ICCMA 2019). The system is based heavily on incremental
use of a SAT solver (Eén and Sörensson 2003): a SAT solver
is instantiated only once during a single execution µ–toksia,
and iterative computations are done keeping the state of the
SAT solver through its API.
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Figure 1: SAT encodings used in µ–toksia.

3.2 Algorithmic Details and Optimization
The exact SAT encodings used by µ–toksia are shown in
Figure 1, based on standard encodings of argumentation se-
mantics (Besnard and Doutre 2004). Variables xa indicate
that argument a ∈ A is included in a σ-extension, and ya
that a ∈ A is attacked by it. Variables ra,b are used to rep-
resent dynamic attacks (a, b) ∈ Rd to cover dynamic tasks,
enabling incremental computation, along with sa,b and za,b
variables (Niskanen and Järvisalo 2020). For tasks over
fixed AFs (“static” tasks), Rd = ∅ and the encodings reduce
to the standard encodings. We first give semantics-specific
details for static tasks and then shortly outline the general-
ization to dynamic AFs.

Grounded semantics Unit propagation (standard in SAT
solvers) on φcom(F ) gives the polytime computable
grounded extension (Lagniez, Lonca, and Mailly 2015). Ac-
ceptance is decided by checking if xq for the query argument
q ∈ A is assigned to true after propagation.

Complete semantics NP-complete credulous acceptance of
q ∈ A is decided by invoking the SAT solver on φadm(F ) ∧
xq . Skeptical acceptance is decided via grounded, and
the grounded extension gives a single extension. For ex-
tension enumeration, all models of φcom(F ) are enumer-
ated, blocking each found extension E by adding the clause∨
a∈E ¬xa ∨

∨
a∈A\E xa until the SAT solver reports unsat-

isfiability.

Stable semantics We first compute the grounded extension
Egrd, as it is a subset of every stable extension. Credulous
acceptance of q ∈ A is decided on φstb(F ) ∧

∧
a∈Egrd

xa ∧
xq , skeptical acceptance by unsatisfiability of φstb(F ) ∧∧
a∈Egrd

xa ∧ ¬xq . Single extension and extension enumer-
ation is performed on φstb(F ) ∧

∧
a∈Egrd

xa.

Preferred semantics NP-complete credulous acceptance is
decided by credulous acceptance under complete. For Πp

2-
complete skeptical acceptance, we implement the iterative
SAT-based CEGAR approach of (Dvorák et al. 2014) (with-
out so-called shortcuts in contrast to Cegartix).



Semi-stable and stage semantics We define Boolean vari-
ables

∧
a∈A(ra ↔ (xa ∨ ya)) representing the range of the

extension determined by the xa variables. For credulous and
skeptical acceptance, we implement the CEGAR algorithms
from (Dvorák et al. 2014), omitting all shortcuts. For stage
semantics, we first check if a stable extension exists using
assumptions

∧
a∈A ra, and in the positive case instead in-

voke the algorithm for stable semantics. For a single semi-
stable extension, we subset-maximize a complete extension
(resp. conflict-free set for stage) with respect to the range.
For enumeration, at each iteration we assume the range af-
ter subset-maximization, iteratively enumerate all complete
(resp. conflict-free) extensions with this range, and iterate
after adding a clause blocking all subsets of this range.

Ideal semantics The union of admissible extensions is ob-
tained on φcom(F ), adding clauses

∨
a∈A\E xa for each ex-

tension found. If the query is not in the union, we re-
ject. Then, we compute the arguments in the union not at-
tacked by the union. If the query is not in this set, we re-
ject. Then, we assume that all arguments outside this set
are not in an extension, and iteratively subset-maximize a
complete extension within this set. This corresponds exactly
to the ideal extension (Dunne, Dvorák, and Woltran 2013;
Wallner, Weissenbacher, and Woltran 2013).

Generalization to dynamic AFs The ra,b variables con-
dition standard SAT encodings for each dynamic attack
(a, b) ∈ Rd, and are used as assumptions through the SAT
solver API to switch such attacks on-off (present-absent)
during iterative computations on dynamic AFs. This allows
for using the same techniques as just-described for static
AFs also on dynamic AFs. The algorithmic details for the
dynamic tasks are fully detailed in (Niskanen and Järvisalo
2020).

3.3 Implementation, Availability and Usage
The system, implemented in C++ and using standard STL
data structures (apart from employing a hash function from
the Boost library), is available under the open-source MIT
licence at https://bitbucket.org/andreasniskanen/mu-toksia.
Its design aims at avoiding applications of specialized algo-
rithms to cover different types of special cases, and makes
extensive use of SAT solver APIs. The system includes in-
terfaces to the Glucose (Audemard and Simon 2018) and
CryptoMiniSAT (Soos, Nohl, and Castelluccia 2009) SAT
solvers. A generic SAT solver interface SATSolver.h is
available for integrating any SAT solver with an assumptions
interface.

Usage µ–toksia is invoked via command line by

./mu-toksia -p <task> -f <file> -fo <format>
[-a <query>] [-m <modfile>]

where <task> is the task (e.g., DS-PR for skeptical ac-
ceptance under prf, or DC-CO-D for credulous acceptance
under com on a dynamic AF), <file> the input AF file-
name, <format> either apx or tgf, <query> the query
argument (for acceptance), and <modfile> the file with
changes to the attack structure (for dynamic tasks).

task solver # solved VBS time
DC-CO argmat-sat 308 104 13390.86

ArgSemSAT 305 94 7366.16
Aspartix 317 10 16588.00
Cegartix 309 104 13353.49
CoQuiAAS 307 65 7450.00
pyglaf 313 0 18313.79
µ–toksia 325 222 15395.26

DC-ST argmat-sat 315 183 13753.50
ArgSemSAT 302 83 17039.21
Aspartix 326 65 13898.51
Cegartix 308 86 16105.28
CoQuiAAS 316 114 11079.49
pyglaf 318 1 15165.57
µ–toksia 326 133 14697.66

DS-ST ArgSemSAT 287 85 44126.20
Aspartix 316 72 19148.97
Cegartix 292 71 32495.35
CoQuiAAS 291 171 11816.92
pyglaf 300 2 25002.93
µ–toksia 312 141 21892.89

DS-PR argmat-sat 300 116 20704.71
ArgSemSAT 318 93 14411.45
Aspartix 299 2 10160.48
Cegartix 302 25 43282.10
CoQuiAAS 277 70 17303.92
pyglaf 287 44 2064.21
µ–toksia 326 194 22819.06

DC-SST argmat-sat 301 133 17587.45
ArgSemSAT 312 88 20558.02
Aspartix 256 0 13949.41
Cegartix 330 64 25046.95
CoQuiAAS 246 31 25147.22
pyglaf 276 2 28572.59
µ–toksia 336 235 7464.34

DS-SST argmat-sat 304 123 17782.17
ArgSemSAT 313 93 22485.71
Aspartix 254 2 11638.68
Cegartix 301 18 42691.19
CoQuiAAS 270 54 18407.72
pyglaf 278 53 3363.16
µ–toksia 327 216 23720.55

DC-STG argmat-sat 273 127 25299.99
Aspartix 232 8 6159.26
Cegartix 284 17 48685.60
CoQuiAAS 205 28 23186.74
pyglaf 230 16 6648.47
µ–toksia 317 250 19518.67

DS-STG argmat-sat 311 152 15427.73
Aspartix 231 2 4689.58
Cegartix 278 2 42670.30
CoQuiAAS 252 30 23817.32
pyglaf 247 42 1921.85
µ–toksia 314 207 17605.09

DC-ID argmat-sat 239 26 32990.52
Aspartix 319 6 36913.05
Cegartix 300 35 26760.89
CoQuiAAS 283 59 18201.06
pyglaf 298 23 28364.07
µ–toksia 327 254 23388.07

Table 1: Number of solved instances, number of times contributed
to VBS, cumulative time over solved instances for all solvers.

https://bitbucket.org/andreasniskanen/mu-toksia
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Figure 2: Performance comparison on selected tasks.

Input formats µ–toksia accepts AF files as input in the stan-
dard APX and TGF formats. APX uses predicates arg and
att to represent arguments and attacks. In TGF each argu-
ment is represented by a string separated by whitespace, then
# as delimiter, followed by the attacks separated by whites-
pace. Dynamic changes to the attack structure are repre-
sented with +att(a,b). and -att(a,b). in APX, and
+a b and -a b in TGF.

4 Empirical Evaluation
In ICCMA 2019, µ–toksia consistently outperformed all
other solvers. However, the ICCMA 2019 instances are
very easy for declarative approaches with almost no time-
outs in the main track. For a further evaluation of µ–toksia,
we report results on acceptance problems on ICCMA 2017
instances which are empirically more challenging. We com-
pare µ–toksia to the ICCMA 2017 top-performing solvers of
CO, ST, PR, SST, STG, and ID tasks and the top-3 solvers
on these tasks in ICCMA 2019:1 argmat-sat (ICCMA 2017
version) (Pu, Ya, and Luo 2017), ArgSemSAT (ICCMA
2017 version) (Cerutti, Giacomin, and Vallati 2019), Ce-
gartix (ICCMA 2017 version) (Dvorák et al. 2014), pyglaf

1On DS-ST argmat-sat reported incorrectly “NO” on 128 in-
stances that have no extensions; we exclude it from the evaluation
on DS-ST. pyglaf 2019 is also excluded due to noticeable numbers
of incorrect answers across the tasks. Further, Aspartix was incor-
rect on DS-SST on 2 instances.

(ICCMA 2017 version) (Alviano 2019), Aspartix (version
V19-4) (Dvorák et al. 2020), and CoQuiAAS (ICCMA 2019
version) (Lagniez, Lonca, and Mailly 2015). For this eval-
uation, we use CryptoMiniSAT version 5.6.8 in µ–toksia.
CryptoMiniSAT is used with default parameters, with the
exception of deciding variables to their positive polarities in
the CEGAR algorithms, which yields modest improvements
w.r.t. the default. The experiments were run on nodes with 8-
core Intel Xeon E5-2670 2.6-GHz CPUs and 64-GB RAM.
We set a per-instance 1800-second time (three times longer
than the 10-minute ICCMA time limit) and 16-GB memory
limit.

The results are summarized in Table 1 (all static tasks) and
Figure 2 (selected tasks). Here µ–toksia ranks first on tasks
DC-CO, DS-PR, DC-SST, DS-SST, DC-STG, DS-STG, and
DC-ID, and ties with Aspartix on DC-ST with respect to
the number of solved instances; i.e., the only exception is
that Aspartix solves more instances than µ–toksia on DS-ST
(316 vs 312). We hypothesize it to be due to the close re-
lationship of stable semantics and answer set (stable model)
semantics (Dung 1995). All solvers are essentially on par
on DC-CO. Interestingly, on DC-SST, DC-STG, and DC-
ID, µ–toksia is in particular very close to the performance
of the virtual best solver (VBS, comprised of taking for each
instance the best runtime over all solvers). Furthermore, µ–
toksia makes the largest contribution to the VBS on all tasks
except for *-ST.



5 Conclusion
We described the SAT-based µ–toksia argumentation rea-
soning system and provided further empirical results (be-
yond ICCMA 2019 where µ–toksia dominated the competi-
tion) on the efficiency of µ–toksia compared to other argu-
mentation reasoners.
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