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Abstract

Deciding acceptance of arguments is a central problem in
the realm of abstract argumentation. Beyond mere accep-
tance status, when an argument is rejected it would be in-
formative to analyze reasons for the rejection. Recently,
two complementary notions—explanations and diagnoses—
were proposed for capturing underlying reasons for rejec-
tion in terms of (small) subsets of arguments or attacks. We
provide tight complexity results for deciding and comput-
ing argument-based explanations and diagnoses. Computa-
tionally, we identify that smallest explanations and diagnoses
for argumentation frameworks can be computed as so-called
smallest unsatisfiable subsets (SMUSes) and smallest correc-
tion sets of propositional formulas. Empirically, we show that
SMUS extractors and maximum satisfiability solvers (com-
puting smallest correction sets) offer effective ways of com-
puting smallest explanations and diagnoses.

1 Introduction
Formal argumentation is an active area of knowledge repre-
sentation and reasoning research, where abstract argumenta-
tion frameworks (AFs) constitute a central formalism (Dung
1995). Syntactically AFs are directed graphs in which nodes
represent arguments and directed edges conflicts (attacks)
between arguments. Argumentation semantics define crite-
ria for acceptable subsets of arguments called extensions.

A central fundamental reasoning task in AFs is to de-
cide whether a given query argument is accepted credulously
(i.e., contained in at least one extension of an AF) or skep-
tically (i.e., contained in all extensions) under a prescribed
argumentation semantics. For credulous reasoning a “yes”
answer is witnessed by an extension containing the query
argument. However, a “no” answer requires proving that no
such extensions exists. Our focus is on credulous reasoning,
building on (Saribatur, Wallner, and Woltran 2020).1

Beyond mere acceptance status, in particular when an ar-
gument is rejected under credulous reasoning, it would be
more informative to obtain information on the reasons for
rejection. While automated reasoning can be harnessed for

1Dually, for skeptical reasoning a “no” answer is witnessed by
an extension, “yes” answer requires a proof that counterexamples
do not exist.

constructing proofs (Wetzler, Heule, and Hunt 2014) of re-
jection, such proofs can be exponentially large and do not di-
rectly provide informative ideas for the reasons of rejection.
This intuition has led to recent proposals for explaining re-
jection (or non-acceptability) in terms of, e.g., minimal sets
of arguments and attacks to be removed from an AF to en-
force acceptability (Fan and Toni 2015)2, and abduction in
argumentation frameworks as modifications to an AF to en-
force a status under a labeling-based view (Sakama 2018).

In this work, we focus on two complementary notions—
explanations (Saribatur, Wallner, and Woltran 2020) and di-
agnoses (Ulbricht and Baumann 2019)—that, building in
part on the notion of strong inconsistency in non-monotonic
reasoning (Brewka, Thimm, and Ulbricht 2019), have been
recently proposed for capturing underlying reasons for re-
jection in terms of (small) subsets of arguments or attacks
which are enough to yield rejection. Intuitively, a diagnosis
is a part of an AF the removal of which results in accep-
tance, and an explanation is a part which resists all additions
allowed by the AF in terms of rejection of the query. While
diagnoses were originally proposed without attention to ac-
ceptance of arguments (Ulbricht and Baumann 2019), we
focus on rejection of a particular query argument.

We provide complexity results and practical algorithms
for computing smallest and minimal explanations and di-
agnoses, with a stronger focus on the smallest counterparts
which can be viewed as the most generic explanations and
diagnoses. We identify that a standard reduction of proposi-
tional formulas in conjunctive normal form to AFs allows for
obtaining tight complexity results for computing argument-
based explanations and diagnoses. In particular, we identify
a correspondence between smallest explanations and small-
est unsatisfiable subsets (SMUSes) of propositional formu-
las, as well as smallest diagnoses and smallest correction
sets of propositional formulas. This correspondence allows
for harnessing Boolean satisfiability (SAT) based SMUS ex-
tractors (Ignatiev et al. 2015) and maximum satisfiability
(MaxSAT) solvers for computing smallest explanations and
smallest diagnoses, respectively, as well as MUS extractors
and MCS extractors for computing minimal explanations

2With our terminology explanations of (Fan and Toni 2015) cor-
respond to minimal diagnoses (Ulbricht and Baumann 2019).



and diagnoses. Empirically, we show that SMUS extraction
and MaxSAT are effective ways of computing smallest ex-
planations and diagnoses for rejection in credulous reason-
ing on standard argumentation reasoning benchmarks, sig-
nificantly outperforming a recently proposed answer set pro-
gramming approach (Saribatur, Wallner, and Woltran 2020)
to computing smallest explanations.

2 Preliminaries
We begin with background on abstract argumentation, ex-
planations and diagnoses in AFs, and unsatisfiability and
correction sets in propositional logic.

Abstract Argumentation An argumentation framework
(AF) (Dung 1995) is a pair F = (A,R) where A is a
(finite) set of arguments and R ⊆ A × A is a set of at-
tacks. The notions of admissibility and stable semantics (Ba-
roni, Caminada, and Giacomin 2018) provide two ways for
characterizing jointly acceptable arguments.3 Given an AF
F = (A,R), a set S ⊆ A is conflict-free if there are no
x, y ∈ S with (x, y) ∈ R. The collection of conflict-free
sets of F is denoted by cf(F ). A set S ∈ cf(F ) is an admis-
sible set if for each (b, a) ∈ R with a ∈ S there is (c, b) ∈ R
with c ∈ S. A set S ∈ cf(F ) is a stable extension if for
each a ∈ A \ S there is b ∈ S with (b, a) ∈ R. Admissible
sets and stable extensions of F are denoted by adm(F ) and
stb(F ), respectively. Argument a is credulously accepted
under semantics σ ∈ {adm, stb} if there is E ∈ σ(F ) with
a ∈ E; otherwise a is rejected in F (in terms of credulous
reasoning).

Explanations and Diagnoses Following Saribatur, Wall-
ner, and Woltran (2020), if a is not credulously accepted
under semantics σ, a strongly rejecting subframework pro-
vides an explanation for not accepting a. A subset of ar-
guments A′ ⊆ A gives rise to the subframework F |A′ =
(A′, R ∩ (A′ × A′)), and a subset of attacks R′ ⊆ R gives
rise to the subframework F |R′ = (A,R′).

Definition 1. For a set A′ ⊆ A, the subframework F |A′

strongly rejects a if a is not credulously accepted under σ
in F |A′′ for any A′′ ⊇ A′. Such A′ is an argument-based
explanation for rejecting a. For a set of attacks R′ ⊆ R,
the subframework F |R′ strongly attack-rejects a if a is not
credulously accepted under σ in F |R′′ for any R′′ ⊇ R′.
Such R′ is an attack-based explanation for rejecting a.

Diagnoses (Ulbricht and Baumann 2019) are a dual notion
of explanations for non-acceptability.4 In particular, diag-
noses are subsets of arguments and attacks whose removal
from the framework results in a subframework—called a
repair—where the argument is credulously accepted.

Definition 2. A set A′ ⊆ A is an argument-based diagno-
sis (of rejection) if a is credulously accepted under σ in the

3Note that credulous acceptance under admissibility coincides
with credulous acceptance under complete and preferred seman-
tics. Thus admissible and stable semantics cover credulous reason-
ing under all standard AF semantics (Dung 1995) except grounded.

4Ulbricht and Baumann (2019) consider diagnoses and repairs
in the context where no argument is accepted, i.e.

⋃
σ(F ) = ∅.

subframework F |A\A′ . A set of attacks R′ ⊆ R is an attack
based-diagnosis if a is credulously accepted under σ in the
subframework F |R\R′ .

Our focus is on smallest (and minimal) explanations and
diagnoses in terms of set-cardinality.

MUSes and MaxSAT We recall standard notions for an-
alyzing the unsatisfiability of propositional formulas cen-
tral in our complexity analysis and algorithms for com-
puting small explanations and diagnoses. We assume fa-
miliarity with propositional logic, in particular satisfiability
(SAT) of formulas in conjunctive normal form (CNF). Let
F = {c1, . . . , cm} be a CNF formula.
Definition 3. A setM⊆ F is a minimal unsatisfiable sub-
formula (MUS) (Bruni 2003; Liffiton and Sakallah 2008;
Kleine Büning and Kullmann 2009) of an unsatisfiable CNF
formula F if (i)M is unsatisfiable and (ii) everyM′ (M
is satisfiable. A smallest MUS (SMUS)M is an MUS such
that there is no MUSM′ with |M′| < |M|.

Deciding whether a given CNF formula F has an unsatis-
fiable subformula of size ≤ k for a given integer k is known
to be Σp2-complete (Liberatore 2005).

Minimal correction sets (Marques-Silva et al. 2013) are a
dual notion of MUSes (Reiter 1987).
Definition 4. A set M ⊆ F is a minimal correction set
(MCS) of an unsatisfiable CNF formula F if (i) F \ M is
satisfiable and (ii) for allM′ (M, F \M′ is unsatisfiable.

The task of computing a smallest MCS of a given CNF
formula F is equivalent to finding an optimal MaxSAT so-
lution (Li and Manyà 2009) to F , i.e., a truth assignment
that satisfies as many clauses of F as possible; in particular,
the clauses left unsatisfied by an optimal MaxSAT solution
are a smallest MCS of F .

A standardly used and implemented generalization of
MUSes and MCSes is to allow for declaring both a set of
hard clauses H and soft clauses S, and defining MUSes
(resp. MCSes) as minimal subsets M ⊆ S of the soft
clauses which together with the hard clauses constitute an
unsatisfiable CNF formulaM∪H (resp. such thatH∪ (S \
M) is satisfiable). In particular, MUS and MCS extraction
algorithms readily support this generalization which has no
impact on computational complexity.

3 Complexity Results
Saribatur, Wallner, and Woltran (2020) showed that deciding
whether there is a subframework strongly rejecting a queried
argument is in Σp2 and NP- and coNP-hard under admissibil-
ity. We close this gap by showing Σp2-hardness under ad-
missibility and establish Σp2-completeness under stable se-
mantics. Furthermore, we show that verification of minimal
explanations is DP-complete.
Theorem 1. Given an AF F = (A,R), a ∈ A, σ ∈
{adm, stb}, and an integer k ≥ 0, the following hold.
(i) Deciding whether there is an argument-based explana-
tion A′ ⊆ A with |A′| ≤ k for rejecting a in F under σ is
Σp2-complete. (ii) Verifying that a givenA′ ⊆ A is a minimal
argument-based explanation for rejecting a in F under σ is
DP-complete.



Proof. (i) Membership is by guessing a subset A′ ⊆ A and
checking in coNP if F |A′ strongly rejects a under σ (Sarib-
atur, Wallner, and Woltran 2020).

For hardness, we reduce from the Σp2-complete (Libera-
tore 2005) problem of deciding whether there is an unsat-
isfiable subset of size at most k. Let F = {c1, . . . , cm}
be a CNF formula over variables X = {x1, . . . , xn} and
k ≥ 0. Consider the standard reduction from CNF formulas
to AFs (Dimopoulos and Torres 1996; Dvorák and Dunne
2018), i.e., F = (A,R) with A = Ax ∪ Ac ∪ {ϕ}, where
Ax = {xi, xi | i = 1..n} and Ac = {cj | j = 1..m},
and R = {(xi, xi), (xi, xi) | i = 1..n} ∪ {(xi, cj) | xi ∈
cj} ∪ {(xi, cj) | ¬xi ∈ cj} ∪ {(cj , ϕ) | j = 1..m}. It is
well-known that ϕ is credulously accepted under σ iff F is
satisfiable. Suppose ϕ is not credulously accepted in F , and
let A′ ⊆ A. We make the following observations: (a) The
set A′ is an explanation for rejecting ϕ under adm iff A′ is
an explanation for rejecting ϕ under stb. (b) If A′ is an ex-
planation for rejecting ϕ under σ, then so is A′ ∩ Ac. By
observation (a) it suffices to consider one of adm or stb to
prove the claim.

Let M ⊆ F , |M| ≤ k be an unsatisfiable subformula.
We show that F |A′ with A′ = {cj | cj ∈ M} strongly re-
jects ϕ under adm, which in turn implies |A′| ≤ k. Suppose
on the contrary that for some A′′ ⊇ A′, ϕ is credulously ac-
cepted in F |A′′ . Now ϕ is credulously accepted also in F ′ =
(Ax∪A′′, {(xi, xi), (xi, xi) | i = 1..n}∪(R∩(A′′×A′′))).
Further, F ′ corresponds to the formulaM′ = {cj \ ({xi |
xi 6∈ A′′} ∪ {¬xi | xi 6∈ A′′}) | cj ∈ A′′}, implying that
M′ is satisfiable. However, sinceM is obtained fromM′
by removing clauses and adding literals to clauses,M must
also be satisfiable, which is a contradiction.

Let A′ ⊆ A, |A′| ≤ k, and F |A′ be a strongly rejecting
subframework for ϕ under adm. Via observation (b),A′∩Ac
also yields such a strongly rejecting subframework. We
show thatM = {cj | cj ∈ A′ ∩Ac} is an unsatisfiable sub-
formula, implying |M| ≤ k. Suppose on the contrary that
M is satisfiable. This implies that ϕ is credulously accepted
under adm in the framework F ′′ = (A′′, R ∩ (A′′ × A′′)),
where A′′ = Ax ∪ (A′ ∩ Ac) ∪ {ϕ}. But A′′ ⊇ A′ ∩ Ac,
which contradicts strong rejection.

(ii) Membership in DP is by checking first in NP if for all
a′ ∈ A′ the argument a is credulously accepted under σ in
F |A′\{a′}, and then in coNP whether F |A′ strongly rejects
a under σ (Saribatur, Wallner, and Woltran 2020).

For hardness, we reduce from the DP-complete problem
of verifying whether for a CNF formula F a given subfor-
mulaM is an MUS (Papadimitriou and Wolfe 1988). Con-
sider again the reduction from CNF formulas to AFs (recall
part (i)).

LetM ⊆ F be an MUS. The set A′ = {cj | cj ∈ M}
is now an argument-based explanation for rejecting ϕ under
σ ∈ {adm, stb}. Minimality of A′ follows from the fact
that for any cj ∈ M, the subframework F |A′\{cj} does not
strongly reject ϕ, sinceM\ {cj} is satisfiable.

Let A′ ⊆ A be a minimal argument-based explanation
for rejecting ϕ under σ ∈ {adm, stb}. Since A′ is minimal,
A′ ⊆ {cj | j = 1..m}, and henceM = {cj | cj ∈ A′} is
an unsatisfiable subformula. Minimality ofM follows from

the fact that for any cj ∈ A′ the subformula M \ {cj} is
satisfiable, since F |A′\{cj} does not strongly reject ϕ.

We continue with complexity results for argument-based
diagnoses. In particular, we establish NP-completeness for
deciding whether there exists a diagnosis of at most a given
size. Further, we extend the DP-completeness result of veri-
fying minimal diagnoses for semantical collapse (

⋃
σ(F ) =

∅) (Ulbricht and Baumann 2019) to argument rejection.
Theorem 2. Given an AF F = (A,R), a ∈ A, σ ∈
{adm, stb}, and k ≥ 0, the following hold. (i) Decid-
ing whether there is an argument-based diagnosis A′ ⊆
A with |A′| ≤ k of rejecting a in F under σ is NP-
complete. (ii) Verifying that a given A′ ⊆ A is a minimal
argument-based diagnosis for rejecting a in F under σ is
DP-complete.

Proof. (Sketch.) (i) For membership, guess a subset of ar-
guments A′ and a set E ⊆ A′ containing a, and verify in
polynomial time whether |A′| ≤ k and E ∈ σ(F |A\A′).
For hardness, reduce from credulous acceptance under σ (an
NP-complete problem) by setting k = 0.

(ii) Membership follows from checking in NP whether a
is credulously accepted in F |A\A′ and in coNP whether for
all a′ ∈ A, a is not credulously accepted in F |A\(A′\{a′}).
For hardness, reduce from the DP-complete problem of ver-
ifying an MCS (Chen and Toda 1995), utilizing again the
standard reduction from CNF to AFs. In particular, argu-
ments cj form a minimal diagnosis for rejecting ϕ under σ
if and only if clauses cj form an MCS.

4 Smallest Explanations as Smallest MUSes
Moving from complexity to computation, we show how to
encode the problem of computing a smallest explanation of
credulous rejection as the problem of computing a small-
est MUS. This is in particular motivated by the fact that
deciding the existence of small argument-based explana-
tions (Theorem 1) and small MUSes are both Σp2-complete.
The same approach also allows for computing minimal
argument-based explanations.

Let F = (A,R) be an AF, and σ ∈ {adm, stb}. We
declare variables xa for each a ∈ A corresponding to the
inclusion of a in a σ-extension of F , and ya for each a ∈ A
corresponding to the existence of argument a in a subframe-
work. We define the propositional formulas ϕAcf (F ) =∧

(a,b)∈R ((ya ∧ yb)→ (¬xa ∨ ¬xb)) , ϕAadm(F ) as

ϕAcf (F ) ∧
∧

(b,a)∈R

((ya ∧ yb ∧ xa)→
∨

(c,b)∈R

(yc ∧ xc)), and

ϕAstb(F ) = ϕAcf (F ) ∧
∧
a∈A

((ya ∧ ¬xa)→
∨

(b,a)∈R

(yb ∧ xb)).

Proposition 3. Given F = (A,R), q ∈ A, and σ ∈
{adm, stb}, for the formula HA ∪ SA withHA = ϕAσ (F ) ∧
¬xq and SA =

∧
a∈A ya, the subformula

∧
a∈A′⊆A ya is a

(smallest) MUS of HA ∪ SA if and only if A′ is a minimal
(resp. smallest) argument-based explanation for rejecting a
in F under σ.
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Figure 1: Left: SMUS vs ASP on computing a smallest explanation (ICCMA’19 instances). Right: MaxSAT on computing a smallest
diagnosis (ICCMA’17 instances).

For attack-based explanations, we declare variables xa for
each a ∈ A corresponding to a σ-extension, and furthermore
variables ra,b for each (a, b) ∈ R corresponding to the ex-
istence of attack (a, b) in a subframework. We consider the
formulas ϕRcf (F ) =

∧
(a,b)∈R (ra,b → (¬xa ∨ ¬xb)) ,

ϕRadm(F ) = ϕRcf (F )∧
∧

(b,a)∈R

((rb,a∧xa)→
∨

(c,b)∈R

(rc,b∧xc)),

and ϕRstb(F ) = ϕRcf (F )∧
∧
a∈A

(¬xa →
∨

(b,a)∈R

(rb,a ∧xb)).

.
Proposition 4. Given F = (A,R), q ∈ A, and
σ ∈ {adm, stb}, for the formula HR ∪ SR with HR =
ϕRσ (F ) ∧ ¬xq and SR =

∧
(a,b)∈R ra,b, the subformula∧

(a,b)∈R′⊆R ra,b is a (smallest) MUS of HR ∪ SR if and
only if R′ is a minimal (resp. smallest) attack-based expla-
nation for rejecting a in F under σ.

5 Smallest Diagnoses via Smallest MCSes
We turn to the computation of smallest (and minimal) di-
agnoses via MCS extraction. In particular, standard MCS
extraction algorithms can then be used to extract minimal di-
agnoses, and MaxSAT solvers are applicable for extracting
smallest diagnoses. Again, the related decision problems of
small argument-based (Theorem 2) and small-cost MaxSAT
solutions coincide. The following propositions also estab-
lish that computing smallest both argument and attack-based
diagnoses is polynomial-time computable with access to a
logarithmic number of NP oracle calls.

Here we again make use of the formulas ϕAσ (F ) and
ϕRσ (F ) for capturing both argument-based and attack-based
diagnosis, as detailed by the following propositions.
Proposition 5. Given F = (A,R), a ∈ A, and σ ∈
{adm, stb}, consider the CNF formula HA ∪ SA with hard
clauses HA = ϕAσ (F ) ∧ ¬xa and soft clauses SA =∧
a∈A ya. Now

∧
a∈A′⊆A ya is an MCS of HA ∪ SA if

and only if A′ is a minimal argument-based diagnosis for
rejecting a in F under σ. In particular, τ is an opti-
mal MaxSAT solution to HA ∪ SA if and only if the set
{a ∈ A | τ(ya) = 0} is a smallest argument-based di-
agnosis for rejecting a in F under σ.

Similarly, MaxSAT can be used for computing smallest
attack-based diagnoses.

Proposition 6. Given F = (A,R), a ∈ A, and σ ∈
{adm, stb}, consider the CNF formula HR ∪ SR with hard
clauses HR = ϕAσ (F ) ∧ ¬xa and soft clauses SR =∧

(a,b)∈R ra,b. Now
∧

(a,b)∈R′⊆R ra,b is an MCS ofHR∪SR
if and only if R′ is a minimal attack-based diagnosis for
rejecting a in F under σ. In particular, τ is an optimal
MaxSAT solution to HR ∪ SR if only if the set {(a, b) ∈
R | τ(ra,b) = 0} is a smallest attack-based diagnosis for
rejecting a in F under σ.

6 Experiments
We evaluate the empirical efficiency of computing small-
est attack and argument-based explanations and diagnoses
for credulously rejecting an argument using state-of-the-art
implementations for computing smallest MUSes and opti-
mal MaxSAT solutions. We use FORQES (Ignatiev et al.
2015) as the SMUS extractor, and RC2 (Ignatiev, Morgado,
and Marques-Silva 2019) as the MaxSAT solver. For small-
est explanations we compare to the recent answer set pro-
gramming (ASP) based approach presented in (Saribatur,
Wallner, and Woltran 2020), which uses the ASP solver
CLINGO (Gebser et al. 2016). To the best of our knowledge,
our system is the first one for computing smallest diagnoses.

For explanation benchmarks, we followed (Saribatur,
Wallner, and Woltran 2020), and used ICCMA’19 compe-
tition AFs. We used the original query arguments for “no”
instances. For original “yes” instances, we chose at random
an alternative query and used it in case it gave a “no” in-
stance. This gave 211 instances. The ICCMA’19 instances
turned out to be too easy for diagnosis (inline with lower
computational complexity of diagnosis), so for diagnosis we
used the ICCMA’17 competition benchmark set B instances
that yield “no” instances under admissibility, giving 193 in-
stances. The experiments were run on nodes with 8-core In-
tel Xeon E5-2670 2.6-GHz CPUs and 64-GB memory under
a per-instance 1800-second time and 16-GB memory limit.

Figure 1 (left) shows that SMUS extraction with FORQES
vastly outperforms the ASP approach to explanation.
FORQES solved > 80% of the instances for both argu-



ment and attack-based explanations and both semantics.
CLINGO solved ≈ 40% for argument-based and ≈ 20%
for attack-based explanations. FORQES solves instances
for which smallest explanations have over 4000 elements,
while CLINGO only solves instances with up to 4 argu-
ments and 3 attacks in the smallest explanations. Instances
with more than 50 elements in smallest explanations arose
only from the AdmBuster instance family consisting of
crafted instances (Mailly and Maratea 2019). We hypothe-
size that for this reason also the corresponding explanations
may have compact representations. Figure 1 (right) shows
that MaxSAT is effective in finding smallest diagnoses.
Argument-based diagnosis appears easier than attack-based,
possibly due to the larger search space over attacks, the num-
ber of which can be quadratic in the number of arguments.

7 Conclusion
Computing minimal explanations and diagnoses of rejecting
a credulous query in abstract argumentation tightly corre-
spond to the established concepts of minimal unsatisfiable
subsets and minimal correction sets of propositional for-
mulas. Identifying this connection yields new complexity
results for computing and verifying explanations and diag-
noses. Furthermore, harnessing SAT-based algorithmic ap-
proaches to computing smallest unsatisfiable subsets and
correction sets yields efficient ways of computing smallest
explanations and diagnoses for credulous rejection of argu-
ments in argumentation frameworks. Establishing the com-
putational complexity of attack-based explanations and di-
agnoses is an important aspect of future work.
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