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Abstract. Inconsistency measurement aims at obtaining a quanti-
tative assessment of the level of inconsistency in knowledge bases.
While having such a quantitative assessment is beneficial in vari-
ous settings, inconsistency measurement of propositional knowledge
bases is under most existing measures a significantly challenging
computational task. In this work, we harness Boolean satisfiabil-
ity (SAT) based solving techniques for developing practical incon-
sistency measurement algorithms. Our algorithms—some of which
constitute, to the best of our knowledge, the first practical approaches
for specific inconsistency measures—are based on using natural
choices of SAT-based techniques for the individual inconsistency
measures, ranging from direct maximum satisfiability (MaxSAT) en-
codings to MaxSAT-based column generation techniques making use
of incremental computations. We show through an extensive empir-
ical evaluation that our approaches scale well in practice and signif-
icantly outperform recently-proposed answer set programming ap-
proaches to inconsistency measurement.

1 INTRODUCTION
From formal reasoning under various logics to multi-agent and in-
formation aggregation settings in general, the need for algorithmic
approaches to understanding and dealing with conflicting informa-
tion constitutes a major challenge in artificial intelligence. Going be-
yond identifying individual sources of inconsistency, inconsistency
measurement [16, 19] aims at providing a quantitative assessment of
the level of inconsistency in knowledge bases. Various well-justified
inconsistency measures, which allow for expressing the level of in-
consistency in conflicting knowledge bases as a non-negative real
value (with 0 representing the absence of inconsistency), have been
proposed and formally analyzed in the literature [38, 39]. Interest
in practical algorithmic approaches to inconsistency measurement
has recently been on the rise, with motivations in potential applica-
tions in a range of settings, from reliability estimation in multi-agent
systems [8] to collaborative software requirements specification sup-
port [30] and quantitative deadlock analysis in Petri nets [41], among
others. Beyond such specific applications, more scalable practical ap-
proaches to inconsistency measurement hold the promise of gaining
a deeper fundamental understanding of the role of inconsistency in
approaches to automated reasoning in different formal logics.

Underlying the non-trivial nature of inconsistency measurement
as a computational task, it has been recently shown that high com-
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putational complexity is intrinsic to inconsistency measurement in
propositional knowledge bases [39]; determining the level of incon-
sistency is essentially always harder than the NP-complete problem
of deciding satisfiability in propositional logic (i.e., the infamous
SAT problem [7]). Indeed, only very recently first practical algorith-
mic approaches to inconsistency measurement have been proposed.
The current state-of-the-art approaches [26, 27, 23, 24], covering
specific inconsistency measures, are based on employing the declar-
ative paradigm answer set programming (ASP) [15, 32], making use
of optimization capabilities in modern ASP solvers [14] for exactly
determining the inconsistency values of a given propositional knowl-
edge base via declarative encodings of the inconsistency measure-
ment task.

However, when dealing with knowledge bases consisting of propo-
sitional logic formulas, a natural choice of the declarative paradigm
as a basis for developing increasingly effective algorithmic ap-
proaches to inconsistency measurement would seem to be SAT,
building on the extraordinary success of SAT solvers [29] as “real-
world NP oracles” as a key to efficiently find solutions of various de-
cision and optimization problems. First SAT-based approaches have
been recently proposed for inconsistency measurement [23, 24, 21].
However, for the various inconsistency measures we consider in this
work, they have been shown to be outperformed by the ASP-based
approaches. On the other hand, the SAT-based approaches proposed
so-far for our setting can be considered rudimentary, and in particu-
lar do not make use of recent advances in SAT-based optimization,
i.e., state-of-the-art solver techniques developed for maximum satis-
fiability (MaxSAT) [3].

In this work, we rectify this situation by identifying MaxSAT
as a natural choice for the declarative approach to inconsistency
measurement under various measures of inconsistency. Concretely,
we provide direct MaxSAT approaches to a range of well-known
inconsistency measures, including the contension [17], forgetting-
based [5], and hitting set [37] measures, as well as three distance-
based measures [18] (using Dalal distance). Each of these mea-
sures is captured in a natural way directly with MaxSAT encod-
ings. Furthermore, we develop a novel approach to the arguably
more complex η-measure [22], taking the form of a column gen-
eration approach [12, 28]. Column generation is a natural choice
for the η-measure, allowing for dealing with the exponentiality re-
quired for capturing the distribution of truth assignments (interpreta-
tions) through which the η-measure is defined. The approach makes
use of both linear programming and recent advances in incremen-



tal MaxSAT solving [33, 34] for efficiently handling the so-called
pricing problem that needs to be solved several times under different
objective coefficients in the column generation approach. To the best
of our knowledge, our approach to the η-measure is the first practical
approach for this particular measure. We provide an open-source im-
plementation covering all of the considered inconsistency measures,
and show that it considerably outperforms the current state-of-the-art
ASP approaches (to the extent applicable) on a range of knowledge
bases obtained from different settings.

2 PRELIMINARIES
We recall inconsistency measurement in propositional knowledge
bases and maximum satisfiability as considered in this work.

2.1 Inconsistency Measurement

A knowledge base K is a finite set of propositional formulas. As the
algorithms developed in this work are agnostic in terms of the propo-
sitional connectives appearing in formulas, we do not make restric-
tions on the allowed propositional connectives. We denote by At(·)
the signature of a formula or knowledge base, i.e., the set of atoms
(or variables) appearing in the formula/knowledge base. A truth as-
signment τ : At → {0, 1} assigns a truth value (1=true or 0=false)
to each atom in a signature. We denote by Ω(·) the set of all truth as-
signments over the signature of a given formula or knowledge base.
A truth assignment τ satisfies a given formula ϕ if τ(ϕ) = 1, i.e.,
ϕ evaluates to 1 under τ under the classical semantics (also denoted
by τ |= ϕ). Such an assignment is a model of ϕ. If ϕ has a model,
it is satisfiable, and otherwise unsatisfiable. A knowledge base K is
consistent if there is a truth assignment that satisfies all formulas in
K. The set of models of a formula ϕ is Mod(ϕ) = {τ | τ(ϕ) = 1};
for a knowledge base K, we let Mod(K) =

⋂
ϕ∈K Mod(ϕ).

We consider the problem of determining the inconsistency value
I(K) of a given knowledge baseK under various previously-studied
inconsistency measures. Formally, an inconsistency measure is a
function I : K → R∞

≥0 for which I(K) = 0 iff K is consistent
for all K ∈ K. Concretely, we consider the following instantiations
of this general notion.

2.1.1 Contension Measure

Let τ3 : At → {T, F,B} be a three-valued assignment follow-
ing Priest’s three-valued logic [36], with T and F corresponding to
the classical truth values true and false, respectively, and B corre-
sponding to a third, paradoxical truth value, denoted both. Taking
into account the truth order ≺ defined via F ≺ B ≺ T , an as-
signment τ3 is extended to arbitrary formulas via (τ3(ϕ1 ∧ ϕ2) =
min≺(τ

3(ϕ1), τ
3(ϕ2)), τ3(ϕ1 ∨ ϕ2) = max≺(τ

3(ϕ1), τ
3(ϕ2)),

and τ3(¬T ) = F , τ3(¬F ) = T , τ3(¬B) = B. An assignment τ3

satisfies a formula ϕ, denoted by τ3 |=3 ϕ if either τ3(ϕ) = T or
τ3(ϕ) = B. The contension inconsistency measure [17] Ic : K →
R∞

≥0 is
Ic(K) = min{|(τ3)−1(B)| | τ3 |=3 K}.

In words, the contension inconsistency measure is the smallest num-
ber of atoms x ∈ At(K) that need to be set to B in order to render K
consistent under Priest’s three-valued logic.

Example 1. Consider K1 = {a ∧ b,¬a,¬b}. Let τ31 be a three-
valued assignment with τ31 (a) = B and τ31 (b) = B. Since both
formulas in K1 are satisfied under τ31 , it is a model of K1. Further,

(τ31 )
−1 = {a, b}. Both a and b have to be assigned B in order to

render K1 consistent under three-valued semantics. Thus there is
no model which assigns B to fewer atoms than τ31 , and Ic(K1) =
min{|(τ3)−1(B)| | τ3 |=3 K} = |(τ31 )−1| = |{a, b}| = 2.

An alternative, equivalent view to the contension measure is that
it counts the minimum number of atoms at least one occurrence of
which needs to be replaced by one of the truth constants ⊤ and ⊥ in
order to make the knowledge base consistent.

2.1.2 Forgetting-Based Measure

For a formula ϕ let ∥ϕ∥a denote the number of occurrences of the
atom a in ϕ and ϕ[a → ψ]i be the same formula as ϕ where the
ith occurrence of the atom a is replaced by ψ (if a occurs fewer
than i times we define ϕ[a → ψ]i = ϕ). The forgetting-based in-
consistency measure [5] If : K → R∞

≥0 is defined recursively as
If(K) = 0 if K is consistent and

If(K) = min
a∈At,i=1,...,∥

∧
K∥a

{If((
∧
K)[a→ ⊤]i), If((

∧
K)[a→ ⊥]i)}+ 1

in the general case. In words, If constitutes the smallest number of
atom occurrences that need to be forgotten (i.e., replaced by⊤ or⊥)
to recover consistency.

Example 2. Consider again K1 = {a ∧ b,¬a,¬b}. There is a con-
flict between the first and the second, and between the first and the
third formula. To resolve the former conflict, the a in a ∧ b, or the a
in ¬a (or both) must be forgotten. Likewise, the b in a∧ b, or the b in
¬b (or both) must be forgotten to resolve the latter conflict. Conse-
quently, at least one occurrence of a, and at least one occurrence of
b, must be forgotten. Hence, the smallest number of atom occurrences
that require forgetting is 2, and If(K1) = 2.

2.1.3 Hitting Set Measure

An H ⊆ Ω(At(K)) is a hitting set of K if for each ϕ ∈ K there is a
τ ∈ H with τ |= ϕ. The hitting set inconsistency measure [37] is the
cardinality of a smallest hitting set subtracted by 1 (so that consistent
knowledge bases have an inconsistency value of 0), i.e.,

Ihs(K) = min{|H| | H is a hitting set w.r.t. K} − 1.

If no hitting set corresponding to K exists (i.e., there is an unsatisfi-
able ϕ ∈ K), Ihs(K) =∞.

Example 3. Consider again K1 = {a ∧ b,¬a,¬b}. Let τ1 and
τ2 be truth assignments with τ1(a) = τ1(b) = 1, and τ2(a) =
τ2(b) = 0. Thus, τ1 is a model of a ∧ b, and τ2 is a model of
¬a and ¬b. Since there is no assignment that satisfies all three
formulas at once, {τ1, τ2} is a minimal hitting set w.r.t. K1, and
Ihs(K1) = |{τ1, τ2}| − 1 = 2− 1 = 1.

2.1.4 Distance-Based Measures

The Dalal distance dd is a distance function for truth assignments in
Ω(At(K)) defined as dd(τ, τ

′) = |{a ∈ At(K) | τ(a) ̸= τ ′(a)}| for
all τ, τ ′ ∈ Ω(At(K)). For a set of truth assignmentsX ⊆ Ω(At(K)),
we have dd(X, τ) = minτ ′∈X dd(τ

′, τ) (with dd(X, τ) = ∞ for



X = ∅ ). We consider the inconsistency measures Isum, Imax, and
Ihit from [18]:

Isum(K) = min{
∑
ϕ∈K

dd(Mod(ϕ), τ) | τ ∈ Ω(At(K))},

Imax(K) = min{max
ϕ∈K

dd(Mod(ϕ), τ) | τ ∈ Ω(At(K))},

Ihit(K) = min{|{ϕ ∈ K | dd(Mod(ϕ), τ) > 0}| | τ ∈ Ω(At(K))}.

Example 4. Consider again K1 = {a ∧ b,¬a,¬b}. Let the truth
assignments of At(K1) be denoted as τ1 with τ1(a) = τ1(b) = 1,
τ2 with τ2(a) = 1, τ2(b) = 0, τ3 with τ3(a) = 0, τ3(b) = 1,
and τ4 with τ4(a) = τ4(b) = 0. The models of the formulas in K1

are Mod(a ∧ b) = {τ1}, Mod(¬a) = {τ3, τ4}, and Mod(¬b) =
{τ2, τ4}. Thus, the Dalal distances between the models of each for-
mula and each truth assignment are:

dd(Mod(a ∧ b), τ1) = 0 dd(Mod(a ∧ b), τ2) = 1

dd(Mod(a ∧ b), τ3) = 1 dd(Mod(a ∧ b), τ4) = 2

dd(Mod(¬a), τ1) = 1 dd(Mod(¬a), τ2) = 1

dd(Mod(¬a), τ3) = 0 dd(Mod(¬a), τ4) = 0

dd(Mod(¬b), τ1) = 1 dd(Mod(¬b), τ2) = 0

dd(Mod(¬b), τ3) = 1 dd(Mod(¬b), τ4) = 0

For Isum, one needs to compute the sum of distances per truth as-
signment, i.e., w.r.t. τ1 we have 0 + 1 + 1 = 2, w.r.t. τ2 we have
1 + 1 + 0 = 2, etc. Thus, Isum(K1) = min{2, 2, 2, 2} = 2.
For Imax, one needs the maximum distance per truth assignment,
i.e., w.r.t. τ1 we have max{0, 1, 1} = 1, etc., giving Imax(K1) =
min{1, 1, 1, 2} = 1. Finally, for Ihit, we need to count the number
of distances> 0 per truth assignment and retrieve the minimum, i.e.,
Ihit(K1) = min{2, 2, 2, 1} = 1.

2.1.5 The η-Measure

A probability function P on Ω(At(K)) is a function P :
Ω(At(K)) → [0, 1] with

∑
τ∈Ω(At(K)) P (τ) = 1. We extend P to

assign a probability to any formula ϕ by P (ϕ) =
∑

τ |=ϕ P (τ). The
η-inconsistency measure Iη [22] is Iη(K) = 1 − max{ξ | ∃P :
∀ϕ ∈ K : P (ϕ) ≥ ξ}.

Example 5. Consider again K1 = {a ∧ b,¬a,¬b}. Let P be a
probability function with P (τa=1,b=1) = 0.5, P (τa=0,b=0) = 0.5,
P (τa=1,b=0) = P (τa=0,b=1) = 0, where τa=x,b=y stands for the
assignment τ(a) = x, τ(b) = y. Then P (a ∧ b) = P (¬a) =
P (¬b) = 0.5 achieves the greatest value and hence Iη(K1) = 0.5.

2.2 Maximum Satisfiability

For a variable1 x there are two literals, x and ¬x. A clauseC is a dis-
junction (∨) of literals. A conjunctive normal form (CNF) formula
F is a conjunction (∧) of clauses. An instance of the (unweighted)
MaxSAT problem consists of a set of hard clauses Fhard and a set
of soft clauses Fsoft. The task is to find a truth assignment τ which
satisfies Fhard and minimizes the cost c(τ) =

∑
C∈Fsoft

(1−τ(C)),
minimizing the number of soft clauses not satisfied. We denote the
optimal cost of a MaxSAT instance F = (Fhard, Fsoft) by c∗(F ).
When the hard clauses Fhard are unsatisfiable, we let c∗(F ) = +∞.

1 For clarity we use the term atom for an atom of the original signature of a
knowledge base and the term variable for atoms in the MaxSAT encodings.

In weighted MaxSAT, the input also contains a weight function
w : Fsoft → Z+. The task is to find a truth assignment τ which
satisfies Fhard and minimizes the cost c(τ) =

∑
C∈Fsoft

w(C)(1−
τ(C)), where each soft clause C not satisfied incurs cost w(C).

3 DIRECT MAXSAT ENCODINGS
As the first part of our contributions, we develop MaxSAT encod-
ings for the contension, forgetting-based, hit-distance, sum-distance,
max-distance, and hitting set measures. For these measures the prob-
lem of determining the value I(K) for a given knowledge base
K ∈ K is in FPNP[logn] [39], and hence these measure can be com-
puted via a single call to a MaxSAT solver using a polynomial-size
(w.r.t. the size of K) MaxSAT encoding. Hence, for each measure
m ∈ {c, f, hit, sum,max, hs}, we develop a MaxSAT encoding
which, for a given knowledge base K, provides a MaxSAT instance
(Fm

hard(K), Fm
soft(K)) the optimal cost of which is exactly Im(K).

We allow for knowledge bases to consist of arbitrary propositional
formulas. Towards our CNF-level MaxSAT encodings, we note that
any propositional formula ψ can be translated to a linear-sized eq-
uisatisfiable CNF formula via the standardly-applied Tseitin trans-
formation [40]. The transformation introduces an auxiliary variable
for each of the linearly-many subformulas. We denote by Cls(ψ) the
clauses resulting from the transformation and by Var(ψ) the vari-
able representing the formula ψ itself. It holds that ⟨ψ⟩ = Cls(ψ) ∧
Var(ψ) is satisfiable if and only if ψ is satisfiable, and satisfying truth
assignments coincide on the shared variables. In our encodings, we
apply Tseitin transformation to modified versions of ϕ ∈ K.

3.1 Contension and Forgetting-Based Measures

For MaxSAT encodings of the contension and forgetting-based mea-
sures, we use for each x ∈ At variables x1, . . . , xn(x), where n(x) is
the number of occurrences of x in K. Further, for each ϕ ∈ K, let ϕo

be the formula where the ith occurrence of x in K is replaced by the
variable xi. For both measures we include ϕo as hard clauses. What
then remains is to enforce that in the optimal solution, the smallest
possible number of occurrences xi take a value different from x.

For the contension measure, we declare additional variables ex for
each x ∈ At. The variable ex is false if there is an occurrence of x
which is replaced by a truth constant, i.e., if there is a variable xi
which has a different truth value from x. Now, the hard clauses

F c
hard(K) =

∧
ϕ∈K

⟨ϕo⟩ ∧
∧
x∈At

ex → n(x)∧
i=1

(x↔ xi)


ensure an equivalent condition: if ex is true, all occurrence variables
xi take the same value as x in an assignment which satisfies the mod-
ified formulas ϕo. We maximize the number of such variables via unit
soft clauses F c

soft(K) =
∧

x∈At ex.
For the forgetting-based measure, we similarly introduce variables

eix for each x ∈ At and i = 1, . . . , n(x). In this case, the variable eix
is false if the ith occurrence of x is replaced by a truth constant, i.e.,
if the variable xi has a different truth value from x. The hard clauses

F f
hard(K) =

∧
ϕ∈K

⟨ϕo⟩ ∧
∧
x∈At

n(x)∧
i=1

(
eix → (x↔ xi)

)
enforce that if eix is true, then the occurrence variable xi takes the
same value as x in a satisfying assignment to formulas ϕo. We max-
imize the number of such variables via unit soft clauses F c

soft(K) =∧
x∈At

∧n(x)
i=1 eix.



Note that if τ is a model of F c
hard(K) or F f

hard(K), then the knowl-
edge base Kτ in which, for each x, its ith occurrence is replaced by
the truth constant τ(xi), is consistent. Furthermore, (i) for F c

hard(K),
if ex is true, then each occurrence of x takes the same truth value,
namely, that value assigned to x; (ii) for F f

hard(K), if eix is true, then
the ith occurrence of x takes the same truth value as x. The cor-
rectness of the encodings then follows by noting that (i) F c

soft(K)
minimizes the number of variables for which at least one occurrence
is replaced, and (ii) F f

soft(K) minimizes the total number of occur-
rences replaced by a truth constant.

Proposition 1. Let K be a knowledge base. For m ∈ {c, f}, it holds
that Im(K) = c∗(Fm

hard(K), Fm
soft(K)).

3.2 Distance-based Measures

Intuitively, the hit-distance measure has the same “semantics” as
MaxSAT: in computing the inconsistency value, the goal is to find
an assignment which satisfies as many formulas in K as possible.
The only difference is that instead of clauses, we are working with
arbitrary formulas, which suggests the following MaxSAT encod-
ing. We include F hit

hard(K) =
∧

ϕ∈K Cls(ϕ) as hard clauses, and
F hit
soft(K) =

∧
ϕ∈K Var(ϕ) as unit soft clauses.

Recall that the sum-distance and max-distance measures consider
models for each individual formula ϕ ∈ K, and the inconsistency
value is witnessed by an assignment which minimizes the distance to
each individual assignment. We refer to the witnessing assignment as
the global assignment, which we represent by variables x ∈ At; and
to the latter assignments as the local assignments for each ϕ ∈ K.
For representing the local assignments, we declare variables xϕ for
each x ∈ At and ϕ ∈ K, and let ϕ′ = ϕ[x 7→ xϕ | x ∈ At]. In
words, ϕ′ is a copy of ϕ where each atom x ∈ At has been replaced
by the variable xϕ which is part of the representation of the local
assignment. For both sum-distance and max-distance, we include ϕ′

as hard clauses. What remains is to minimize the distance between
the different assignments.

For this, for the sum-distance measure we introduce additional
variables eϕx for each x ∈ At and ϕ ∈ K. If eϕx is true, then in
the local assignment of ϕ, the atom x takes the same truth value as in
the global assignment. The hard clauses

F sum
hard(K) =

∧
ϕ∈K

⟨ϕ′⟩ ∧
∧
ϕ∈K

∧
x∈At

(
eϕx → (x↔ xϕ)

)
ensure that each copy ϕ′ is satisfied, and that if eϕx is true, then the
variables x and xϕ take the same value. We include unit soft clauses
F sum
soft (K) =

∧
ϕ∈K

∧
x∈At e

ϕ
x to maximize the number of such vari-

ables, that is, to exactly minimize the sum-distance.
For the max-distance measure, similarly as for sum-distance, we

declare additional variables eϕx for each x ∈ At and ϕ ∈ K. In ad-
dition, we declare variables mk for each k = 0, . . . , |At|. To en-
sure that assigning mk to true implies a bound k on the maximum
distance of a local assignment to the global assignment, we make
use of cardinality constraints (which can be readily transformed into
CNF [20]). The hard clauses

Fmax
hard(K) = F sum

hard(K) ∧
|At|∧
k=0

mk →
∧
ϕ∈K

(∑
x∈At

¬eϕx ≤ k

)
ensure that if mk is true, then for each ϕ ∈ K the number of eϕx vari-
ables assigned false is at most k. This in turn means that the maxi-
mum distance of any model for ϕ ∈ K to the global assignment is at

most k.2 We minimize exactly the maximum distance by introducing
unit soft clauses Fmax

soft (K) =
∧|At|

k=0mk.
The correctness of the MaxSAT encoding for hit-distance is imme-

diate. For sum-distance and max-distance, note that if τ is a model
for F sum

hard(K) or Fmax
hard(K), then, for all ϕ ∈ K, the truth assignment

τϕ(x) = τ(xϕ) is a model of ϕ. The correctness of the sum-distance
encoding follows from the fact that F sum

soft (K) minimizes the sum
of distances of any τ ∈ Ω(At) to each τϕ. To see that the encod-
ing of max-distance is correct, note that the cardinality constraints in
Fmax
hard(K) ensure that if mk is true, then the distance of each τϕ to
τ ∈ Ω(At) is bounded by k, and Fmax

soft (K) minimizes this bound.

Proposition 2. Let K be a knowledge base. For m ∈
{hit, sum,max}, it holds that Im(K) = c∗(Fm

hard(K), Fm
soft(K)).

3.3 Hitting Set Measure

The hitting set measure is determined by finding a smallest-
cardinality set of assignments such that the set includes a model for
each individual formula in the knowledge base. Towards a MaxSAT
encoding, let U be an upper bound on the number of different as-
signments needed to satisfy each ϕ ∈ K. For a trivial upper bound,
we may set U = |K| (assuming there are no self-contradictory for-
mulas). For each x ∈ At and i = 1, . . . , U , declare variables xhsi
representing these assignments. For each ϕ ∈ K and i = 1, . . . , U ,
introduce variables eϕi . The hard clauses

F hs
hard(K, U) =

∧
ϕ∈K

⟨ϕ′⟩ ∧
∧
ϕ∈K

U∧
i=1

(
eϕi →

∧
x∈At

(xhsi ↔ xϕ)

)

∧
∧
ϕ∈K

(
U∨

i=1

eϕi

)
∧

U∧
i=1

ni →
∧
ϕ∈K

¬eϕi


enforce that (i) each copy ϕ′ is satisfied; (ii) if eϕi is true, then the
values assigned to xhsi and xϕ coincide for every x ∈ At; (iii) each
formula ϕ ∈ K has at least one eϕi assigned to true; and (iv) for each
ϕ ∈ K, if ni is true then eϕi is false. We minimize the number of
assignments needed via soft clauses F hs

soft(K, U) =
∧U

i=2 ni.
Similarly as for the sum-distance and max-distance measures, note

that a model τ for F hs
hard(K, U) defines models τϕ for each ϕ ∈ K.

In addition, F hs
hard(K, U) ensures that, for i = 1, . . . , U , if eϕi is

true, then the truth assignment τhsi (x) = τ(xhsi ) is a copy of τϕ, and
each τϕ has such a copy among the τhsi . That is, the assignments τhsi

form a hitting set of K. Finally, F hs
soft(K, U) minimizes the number

of assignments τhsi included in the hitting set.

Proposition 3. For any knowledge base K, for U = |K|, it holds
that Ihs(K) = c∗(F hs

hard(K, U), F hs
soft(K, U)).

Note that the upper bound U = |K| results in an encoding of
quadratic size. In practice, however, we compute a valid upper bound
U via a SAT-based iterative procedure. We initialize U = K and
U = 0. While U is non-empty, we query a SAT solver for a model
of
∧

ϕ∈K Cls(ϕ) ∧
∨

ϕ∈U Var(ϕ). If there is no model, we return
Ihs(K) = +∞. Otherwise, for a model τ , we increment U by one,
remove each ϕ ∈ K with τ(Var(ϕ)) = 1 from U , and continue. Evi-
dently, this results in a valid upper bound for the hitting set measure.

2 In addition, in our implementation we include mk−1 → mk as a hard
clause for each k = 1, . . . , |At|. While these constraints are redundant
from the perspective of correctness, they may be helpful in practice in terms
of solver runtimes.



Algorithm 1 MaxSAT-based column generation for the η-
inconsistency measure with knowledge base K = {ϕ1, . . . , ϕn} as
input.

1: F η
hard ←

∧n
i=1 Cls(ϕi)

2: F η
soft ←

∧n
i=1 Var(ϕi)

3: I ← INITIALCOLUMNS(K)
4: while true do
5: (ξ∗,p∗,π∗)← SOLVELP(Pη(K, I))
6: w ← {Var(ϕi) 7→ π∗

i | i = 1, . . . , n}
7: (c∗, τ∗)← MAXSAT(F η

hard, F
η
soft, w)

8: if c∗ −
∑n

i=0 π
∗
i ≤ 0 then return 1− ξ∗

9: τ ← {x 7→ τ∗(x) | x ∈ At}
10: I ← I ∪ {τ}

4 MAXSAT-BASED COLUMN GENERATION
FOR THE η-INCONSISTENCY MEASURE

For the η-inconsistency measure, the problem of determining Iη(K)
is known to be in FPNP[n] [39], and requires reasoning about the dis-
tribution of truth assignments over a given knowledge base. The latter
fact suggests a different algorithmic approach compared to the direct
MaxSAT encodings for the other measures. Let K = {ϕ1, . . . , ϕn}
be an input knowledge base. By definition, Iη(K) is the optimal
value of the following linear program (LP) Pη(K,Ω(At)).

Minimize 1− ξ

subject to
∑

τ∈Ω(At)

pτ = 1,

∑
τ |=ϕi

pτ ≥ ξ ∀i = 1, . . . , n,

pτ ≥ 0 ∀τ ∈ Ω(At).

As this LP has an exponential number of variables, instead of fully
forming the LP, we employ (delayed) column generation [12, 28]
for an iterative approach to determining Iη(K). Recall that in lin-
ear programming, a variable is associated to a column consisting of
the objective function coefficient of the variable and its constraint
coefficients. In the classical column generation approach in general,
the idea is to solve the original master problem by iteratively solv-
ing a restricted master problem and a pricing problem. The restricted
master problem is initialized with a small subset of columns from
the master problem, that is, only a subset of the variables is con-
sidered. After solving the restricted master problem, we obtain the
optimal primal and dual solutions. The goal of the pricing problem is
to determine if there is a column which improves the objective value
of the restricted master problem. This improvement is witnessed by
the so-called reduced cost of a column, which is a linear function
with coefficients corresponding to the current optimal dual solution.
If there is no such column, we return the current optimal primal solu-
tion; otherwise we add it to the restricted master problem and iterate.

Our algorithm for computing Iη(K) by column generation is pre-
sented as Algorithm 1. First consider the dual of the master problem
Pη(K,Ω(At)). This dual linear program contains variables π0 corre-
sponding to the first = constraint in the master problem, and πi for
i = 1, . . . , n corresponding to the≥ constraint involving the formula
ϕi ∈ K in the master problem. At each iteration of the column gener-
ation loop, we consider a set I ⊆ Ω(At) of truth assignments whose
corresponding variables pτ for τ ∈ I are included as columns in
the restricted master problem Pη(K, I). After solving the restricted
master problem, we obtain the optimal primal solution with ξ∗ and

p∗τ for each τ ∈ I , the latter denoted by p∗, and the optimal dual
solution π∗

i for each i = 0, . . . , n, denoted by π∗ (line 5).
The pricing problem determines whether there is a column cor-

responding to a variable pτ with τ ̸∈ I whose addition to the re-
stricted master problem improves the optimal objective value ξ∗. The
reduced cost of a variable pτ is by definition c(τ) −

∑n
i=0 π

∗
i a

(τ)
i ,

where c(τ) = 0 is the objective function coefficient of pτ , and a(τ)i is
the ith element of the column in the constraint matrix of the master
problem corresponding to pτ . Since a(τ)0 = 1 (coefficient of pτ in the
= constraint), and for i = 1, . . . , n, a(τ)i = 1 if τ |= ϕi and a(τ)i = 0
otherwise (coefficient of pτ in the = constraint corresponding to ϕi),
the reduced cost of pτ is simplified to −(π∗

0 +
∑

τ |=ϕi
π∗
i ). If there

is a column pτ with negative reduced cost, the objective value can be
improved. In particular, in the pricing problem we minimize reduced
costs, which is equivalent to maximizing

∑
τ |=ϕi

π∗
i .

A key idea here is that we can solve the pricing problem, i.e., find
an assignment τ that maximizes

∑
τ |=ϕi

π∗
i , using a MaxSAT solver

call (line 7). We construct a MaxSAT instance with hard clauses
F η
hard =

∧n
i=1 Cls(ϕi) (line 1) and weighted soft clauses F η

soft in-
cluding unit clauses (Var(ϕi)) with weight π∗

i for each i = 1, . . . , n
(lines 2 and 6). The optimal reduced cost can be determined from the
optimal cost c∗ of this MaxSAT instance via−(π∗

0 +
∑

τ |=ϕi
π∗
i ) =

c∗ −
∑n

i=0 π
∗
i . If non-negative, we return Iη(K) = 1− ξ∗ (line 8).

Otherwise, we add the column corresponding to the variable pτ
to the restricted master problem; τ is extracted from the optimal
MaxSAT solution τ∗ (lines 9–10). We note that only the weights
of this MaxSAT instance change between iterations, meaning that
a single instance of an incremental MaxSAT solver with support for
changing weights [33] can be used throughout the algorithm without
needing to start the solver from scratch.

Finally, we obtain an initial set of truth assignments I ⊆ Ω(At),
from which the initial set of columns for variables pτ for τ ∈ I
is obtained, as follows (line 3). We make use of a simple procedure
which issues iterative calls to a SAT solver. First, we check if F η

hard∧
F η
soft is satisfiable. If it is, we return Iη(K) = 0. Otherwise, while

there is a formula ϕi ∈ K for which there is no τ ∈ I with τ |= ϕi,
we query a SAT solver for a model to F η

hard∧Var(ϕi). If the formula
is unsatisfiable, we return Iη(K) = 1. Otherwise, we add τ to I ,
and continue until all formulas from K are satisfied by some truth
assignment in I .

5 EMPIRICAL EVALUATION
We overview results from an empirical evaluation of the MaxSAT
based-approaches from Sections 3–4. The experiments were run on
Intel Xeon E5-2643 v3 3.40-GHz CPUs with 192-GB RAM under a
per-instance time limit of 900 s on an Ubuntu 20.04.5 system.

5.1 Implementation and Competing Approaches

Our implementation of the MaxSAT-based approaches is available
in open source via https://bitbucket.org/coreo-group/sat4im/. For the
direct MaxSAT encodings, we used UWrMaxSat [35] (version 1.4)
as the MaxSAT solver, and compare its performance to recently pre-
sented ASP-based approaches [24], using the state-of-the-art ASP
solver Clingo [14] (version 5.5.1). For the max-distance measure, we
used PySAT [20] (version 0.1.8.dev3) to encode the cardinality con-
straints via the incremental totalizer encoding [31]. For the hitting set
and η measures, we used Glucose [2] (version 3.0) via PySAT [20] as
the SAT solver for computing initial truth assignments. The column
generation algorithm for η was implemented using the OR-Tools



(https://developers.google.com/optimization) interface for LP solv-
ing using Gurobi as the LP solver (https://www.gurobi.com/). The
incremental MaxSAT solver iMaxHS [33, 34] was used for solving
the pricing problems. We compare the performance of iMaxHS to
MaxHS [9, 11, 10, 4] (version 5.0)—the MaxSAT solver iMaxHS is
based on—to evaluate the impact of incremental MaxSAT solving on
the performance of the algorithm.

5.2 Benchmarks

As benchmarks we use datasets from earlier works on inconsistency
measurement algorithms [27, 23, 24] (more details in [24]).

SRS dataset [27, 23, 24]: 1800 knowledge bases randomly gener-
ated using SyntacticRandomSampler from TweetyProject (https:
//tweetyproject.org/). The knowledge bases’ sizes range from 5–
15 formulas with signature size 3 to 50–100 formulas with signa-
ture size 30, with average signature size 16, and 36 formulas.

ML dataset [23, 24]: 192 knowledge bases obtained from the An-
imals with Attributes dataset (http://attributes.kyb.tuebingen.mpg.
de) using the Apriori algorithm [1] to mine association rules which
were interpreted as propositional logic implications. The knowl-
edge bases contain on average 7506 formulas with 5.5 connectives
per formula and a signature size of 76.

ARG dataset [24]: 326 knowledge bases consisting of individual
CNF clauses of a standard SAT encoding [6] for finding a stable
extension of the abstract argumentation frameworks [13] used as
benchmarks in the ICCMA 2019 argumentation system competi-
tion (http://argumentationcompetition.org/2019/), with the added
constraint for each instance enforcing that a randomly selected
subset of 20% of arguments are included in the stable extension.
The knowledge bases contain on average 989 formulas with 198.3
connectives per formula and signature size 827.

5.3 Results

Figure 1 and Table 1 provide a comparison of the runtime perfor-
mance of our MaxSAT-based approaches to the recent ASP-based ap-
proaches on the various inconsistency measures. Table 1 provides for
each inconsistency measure and benchmark dataset the the number
of solved instances (#solved; the larger, the better) and, secondarily,
the cumulative runtimes over solved instances (CRT) for MaxSAT
and ASP. ASP has significantly more timeouts compared to MaxSAT
for all of the benchmark datasets. Further, the CRTs are often signif-
icantly lower for MaxSAT than ASP, with noticeable runtime im-
provements especially for the SRS and ML datasets. For the easier-
to-solve inconsistency measures on which both approaches can solve
all instances, the ASP CRTs are at times slightly lower, but not signif-
icantly so. For a complementary view to the results, Figure 1 provides
individually for each inconsistency measure the cumulative runtime
distribution (the number of instances solved (y-axis) as a function
of the per-instance time limit (x-axis)) for MaxSAT and ASP. Note
that instances from the SRS dataset are essentially trivial to solve
with MaxSAT, while ML and ARG instances result in longer run-
times for both MaxSAT and ASP. Overall, the MaxSAT-based ap-
proaches generally scale noticeably better than the ASP-based ap-
proaches, with multiple factors of difference in the runtime distribu-
tions, and MaxSAT allows for solving significantly more instances.

Table 2 provides runtime performance data (cumulative runtimes
over solved instances and the number of solved instances) of our
MaxSAT-based column generation approach to the η-inconsistency

measure. With no earlier algorithmic implementation for the mea-
sure, consider the effect using an incremental vs. non-incremental
MaxSAT solver for solving the pricing problem. While the perfor-
mance difference is negligible on the easier SRS instances, incre-
mental computations allow for solving significantly more instances
for the ARG dataset, and also significantly speed up runtimes on ML.

MaxSAT ASP
Measure #solved CRT (s) #solved CRT (s)

SR
S

(1
80

0)

Contension 1800 72.89 1800 42.94
Forgetting-based 1800 76.35 1673 19710.44
Hitting set 1800 88.27 1793 2026.28
Sum-distance 1800 76.14 1484 52069.92
Max-distance 1800 76.88 1800 3159.43
Hit-distance 1800 72.99 1800 50.01

A
R

G
(3

26
)

Contension 297 2679.13 232 20292.96
Forgetting-based 228 5993.74 136 4396.13
Hitting set 288 8280.99 198 22135.42
Sum-distance 238 5604.3 62 7830.15
Max-distance 275 5360.52 129 13930.69
Hit-distance 273 3310.19 153 725.25

M
L

(1
92

)

Contension 192 658.45 192 6314.85
Forgetting-based 192 710.89 127 6779.91
Hitting set 184 1826.12 101 9041.12
Sum-distance 192 720.22 0 –
Max-distance 192 901.41 50 18446.92
Hit-distance 192 524.67 192 5374.77

Table 1. Number of solved instances and cumulative runtime (CRT).

iMaxHS MaxHS
Dataset #KBs #solved CRT (s) #solved CRT (s)
SRS 1800 1800 360.59 1800 265.65
ARG 326 262 5352.81 213 4293.11
ML 192 189 1587.03 187 2162.61

Table 2. Incremental vs. non-incremental MaxSAT for η.

6 CONCLUSIONS
Inconsistency measurement aims at providing a quantitative assess-
ment of the level of inconsistency in knowledge bases. We developed
MaxSAT-based algorithms for inconsistency measurement, covering
a wide range of inconsistency measures. Most of the considered in-
consistency measures are captured naturally directly as MaxSAT.
Furthermore, we developed a MaxSAT-based iterative column gen-
eration approach, making use of linear programming and incremen-
tal MaxSAT solving for the η-measure which requires reasoning
about the distribution of truth assignments over a given knowledge
base. We showed through an extensive empirical evaluation that our
MaxSAT-based approaches scale well on various different datasets,
significantly outperforming a recently-proposed alternative approach
to inconsistency measurement via ASP, motivating the development
of SAT-based approaches to further inconsistency measurement [25].
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Figure 1. MaxSAT vs. ASP: cumulative runtime distributions for individual datasets and inconsistency measures.
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