

Novel Algorithms for Abstract Dialectical Frameworks based on Complexity Analysis of Subclasses and SAT Solving

Thomas Linsbichler Marco Maratea Andreas Niskanen Johannes P. Wallner Stefan Woltrar

Motivation: The study of computational aspects of argumentation is an active area of modern Al research.

Abstract dialectical frameworks are a powerful generalization of Dung's argumentation frameworks.

Expressive power comes with a price: computational complexity one level higher on the polynomial hierarchy.

Contributions:

- -Complexity analysis of ADF subclasses: k-bipolar, (k-)acyclic, and (k-)concise
- -Design of algorithms for acceptance problems based on incremental SAT solving
- -Implementation and empirical evaluation

- ABSTRACT DIALECTICAL FRAMEWORKS: DEFINITIONS -

Syntax of ADFs

A tuple D = (A, L, C), where

- *A* is a finite set of **arguments**,
- $L \subseteq A \times A$ is a set of **links**,
- $C = \{\varphi_a\}_{a \in A}$ is a set of **acceptance conditions**: each φ_a is a propositional formula over the parents of a.

Figure 1: Example ADF.

Semantics of ADFs

An interpretation I maps each argument to a truth value in $\{\mathbf{t}, \mathbf{f}, \mathbf{u}\}$. Let $I \leq_i J$ if $I(a) \in \{\mathbf{t}, \mathbf{f}\}$ implies I(a) = J(a) for all $a \in A$. I is admissible, $I \in adm(D)$, if for all $a \in A$

- $I(a) = \mathbf{t}$ implies $\varphi_a[I]$ is a tautology,
- $I(a) = \mathbf{f}$ implies $\varphi_a[I]$ is unsatisfiable,

where $\varphi_a[I]$ is the formula obtained from φ_a by replacing each argument that I assigns to \mathbf{t} or \mathbf{f} with \top and \bot . I is preferred, $I \in prf(D)$, if it is \leq_i -maximal admissible.

ADF Reasoning Tasks

Let σ be an ADF semantics.

	Input	Decision			
$Cred_{\sigma}$	$D, a \in A$	$\exists I \in \sigma(D), I(a) = \mathbf{t}$?			
$Skept_{\sigma}$	$D, a \in A$	$\forall I \in \sigma(D), I(a) = \mathbf{t}?$			
$Exists_{\sigma}^{>}$	D, I	$\exists J \in \sigma(D), J >_i I$?			
Ver_{σ}	D, I	$I \in \sigma(D)$?			

In Figure 1, argument a is not skeptically accepted under preferred, since I with $I(a) = \mathbf{f}$, $I(b) = \mathbf{f}$, $I(c) = \mathbf{t}$ is preferred.

COMPUTATIONAL COMPLEXITY OF SUBCLASSES -

An ADF is bipolar if every link is *attacking* or *supporting*.

An ADF is k-bipolar if for every $a \in A$, there are at most k links $(b, a) \in L$ that are neither attacking nor supporting.

	ADFs				k-bipolar ADFs			
σ	$Cred_{\sigma}$	$Skept_{\sigma}$	$Exists_{\sigma}^{>}$	Ver_{σ}	$Cred_{\sigma}$	$Skept_{\sigma}$	$Exists_{\sigma}^{>}$	Ver_{σ}
cf	NP-c	trivial	NP-c	NP-c	in P	trivial	in P	in P
nai	NP-c	Π_2^P -c	NP-c	DP-c	in P	coNP-c	in P	in P
adm	Σ_2^{P} -c	trivial (Σ_2^{P} -c	coNP-c	NP-c	trivial (NP-c	in P
grd	coNP-c	coNP-c	coNP-c	DP-c	in P	in P	in P	in P
com	Σ_2^{P} -c	coNP-c	Σ_2^{P} -c	DP-c	NP-c	in P	NP-c	in P
prf	$\Sigma_2^{\overline{P}}$ -c (П ₃ Р-с	$\Sigma_2^{\overline{P}}$ -c	П2Р-с	NP-c	П <mark>Р</mark> -с	NP-c	coNP-c

Complexity of general [Strass and Wallner, 2015] and k-bipolar ADFs.

- SAT-BASED ALGORITHMS FOR ACCEPTANCE IN ADFS -

- Complexity-sensitive algorithms for skeptical and credulous acceptance under preferred semantics
 - Detect whether input ADF is k-bipolar for small enough k
- Utilize SAT solvers as the main search engine
- System k+ADF implementing the algorithms available at www.cs.helsinki.fi/group/coreo/k++adf

EMPIRICAL EVALUATION

Skeptical acceptance under preferred for *k*-bipolar ADFs:

- Suitable NP fragment for a SAT solver is *Exists*[>]_{adm}
- The resulting admissible interpretation *I* can be extracted from the truth assignment
- Search for preferred interpretations by iteratively solving Exists[>]_{adm}(D, I) and setting I as the corresponding interpretation
- If the query argument is not assigned to true, we can reject it otherwise, rule out all interpretations $J \leq_i I$ from the search space and continue

REFERENCES-

Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. *Proc. KR*, 102–111, 2010.

Gerhard Brewka, Hannes Strass, Stefan Ellmauthaler, Johannes Peter Wallner, and Stefan Woltran. Abstract dialectical frameworks revisited. *Proc. IJCAI*, 803–809, 2013.

Hannes Strass and Johannes P. Wallner. Analyzing the computational complexity of abstract dialectical frameworks via approximation fixpoint theory. *Artif. Intell.*, 226:34–74, 2015.