# Strong Refinements for Hard Problems in Argumentation Dynamics

#### Andreas Niskanen Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

ECAI 2020

#### Argumentation in AI

- Active and vibrant area of modern AI research
- Central KR formalism for reasoning in abstract argumentation: argumentation frameworks (AFs) [Dung, 1995]
- Recent interest in dynamic aspects of AFs

[Doutre and Mailly, 2018]

#### Computational Problems Arising from Dynamics of AFs

Several variants and AF semantics give rise to optimization problems with complexity beyond NP [Wallner et al., 2017, Niskanen et al., 2016, Niskanen et al., 2019]

## What?

**Improve the scalability** of state-of-the-art practical algorithms for optimization problems arising from AF dynamics

- Current approaches based on declaratively employing *maximum* satisfiability (MaxSAT) solvers [Wallner et al., 2017, Niskanen et al., 2019]
- Focus on second-level complete variants of problems, algorithms based on *counterexample-guided abstraction refinement (CEGAR)*

#### How?

**Design strong refinements** using recent results on the persistence of extensions under adding and removing attacks in an AF [Rienstra et al., 2015]

- Allowing for significantly reducing the number of CEGAR iterations by ruling out larger sets of solution candidates
- Noticeable empirical runtime improvements and scalability to larger instance sizes

## Argumentation Framework (AF)

- A directed graph F = (A, R), where
  - A is the set of **arguments**
  - $R \subseteq A \times A$  is the **attack relation** 
    - a 
      ightarrow b means argument a attacks argument b

### Semantics of AFs

Define sets of jointly accepted arguments called **extensions** 

- Required to be conflict-free (independent sets)
- Additional desired properties
  - self-defense: admissible sets
  - self-defense + subset-maximality: preferred extensions

Focus: second-level complete variants of

extension enforcement [Wallner et al., 2017]
status enforcement [Niskanen et al., 2016]
argumentation framework synthesis [Niskanen et al., 2019]

Improving the scalability of state-of-the-art MaxSAT-based CEGAR algorithms by designing and applying **strong refinements** 

- Given: an AF F = (A, R), set  $T \subseteq A$
- **Task:** find an AF F' = (A, R') where T is a preferred extension while minimizing the number of changes between R and R'
- **Complexity:**  $\Sigma_2^P$ -complete

```
[Wallner et al., 2017]
```

#### Example

$$F = (a) \xrightarrow{b} (b) \xrightarrow{c} (d) \xrightarrow{e} T = \{d\}$$

Currently: unique preferred extension is  $\{a\}$ 

- Given: an AF F = (A, R), set  $T \subseteq A$
- **Task:** find an AF F' = (A, R') where T is a preferred extension while minimizing the number of changes between R and R'
- **Complexity:**  $\Sigma_2^P$ -complete

```
[Wallner et al., 2017]
```

#### Example

$$F = (a) \xrightarrow{b} (c) \xrightarrow{c} (d) \xrightarrow{e} T = \{d\}$$

Remove attack  $c \rightarrow d$ :  $\{d\}$  is admissible but not preferred

- Given: an AF F = (A, R), set  $T \subseteq A$
- **Task:** find an AF F' = (A, R') where T is a preferred extension while minimizing the number of changes between R and R'
- **Complexity:**  $\Sigma_2^P$ -complete

```
[Wallner et al., 2017]
```

#### Example

$$F = (a) (b) (c) (d) (e) (T = \{d\})$$

Add attack  $c \rightarrow c$ :  $\{d\}$  is complete but not preferred

- Given: an AF F = (A, R), set  $T \subseteq A$
- **Task:** find an AF F' = (A, R') where T is a preferred extension while minimizing the number of changes between R and R'
- **Complexity:**  $\Sigma_2^P$ -complete

```
[Wallner et al., 2017]
```

#### Example

$$F = (a) b \leftarrow c \quad d \rightarrow e \quad T = \{d\}$$

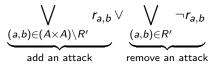
Remove attack  $a \rightarrow b$ :  $\{d\}$  is preferred

Given: F = (A, R),  $T \subseteq A$ , changes to the original attack structure R are encoded using variables  $r_{a,b}$  for each  $a, b \in A$ . Iteratively:

- Abstraction: using a MaxSAT solver call, strictly enforce *T* to be a complete extension
  - obtain candidate solution AF F' = (A, R') from the optimal truth assignment on  $r_{a,b}$  variables
- Counterexample: using a SAT solver call, check whether there is an admissible set in F' that is a superset of T
  - if none exists, T is preferred in F' which is an optimal solution
- **③** Refinement: exclude the candidate attack structure via the clause

$$\bigvee_{(a,b)\in (A\times A)\setminus R'} r_{a,b} \vee \bigvee_{(a,b)\in R'} \neg r_{a,b}$$

**Idea:** instead of excluding only the current solution AF, use the counterexample to rule out more non-solution AFs **Observation:** since the counterexample is an extension that invalidates the solution, all candidate solutions with the extension are non-solutions **Goal:** characterize changes to the attack structure that do not affect the existence of the counterexample extension for a shorter refinement clause


#### Persistence of Extensions

Given an AF F = (A, R) and  $E \in \sigma(F)$  under  $\sigma \in \{adm, stb\}$ , if we

- add an attack (a, b) to F with the source a already attacked by E, or the target b outside E,
- remove an attack (a, b) from F where the source a is not in E, or the target b is not attacked by E,
- *E* is still an extension in the AF.

[Rienstra et al., 2015, Niskanen et al., 2020]

Recall the refinement clause for a non-solution AF F' = (A, R'):

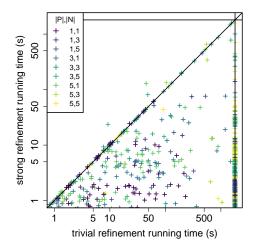


Using result on persistence of extensions, obtain a **shorter clause** by excluding literals which have no effect on counterexample extension

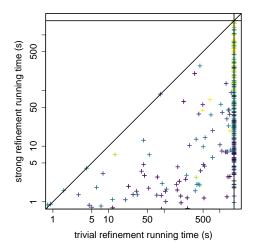
• prune search space of potential attack structures more efficiently

## Pakota and AFSynth

- State-of-the-art implementations for extension and status enforcement and AF synthesis reimplemented via PySAT [Ignatiev et al., 2018]
- Available in open source via https://bitbucket.org/andreasniskanen/{pakota|afsynth}


## Benchmark Setup

- Per-instance 1800-second time limit and 64-GB memory limit
- Benchmark instances:
  - $\bullet~>1000$  extension enforcement instances and status enforcement instances generated based on ICCMA'19 AFs
  - 400 AF synthesis instances generated using a random model


Mean running times (with timeouts as 1800 s) and number of timeouts (out of 221 instances): strict extension enforcement under preferred

|       | Refinement type |       |        |      |
|-------|-----------------|-------|--------|------|
| T / A | trivial         |       | strong |      |
| 0.025 | 1023.32         | (121) | 798.11 | (94) |
| 0.05  | 830.51          | (95)  | 666.93 | (78) |
| 0.075 | 748.53          | (87)  | 671.96 | (79) |
| 0.1   | 717.16          | (82)  | 676.62 | (81) |
| 0.2   | 463.21          | (54)  | 433.36 | (51) |
| 0.3   | 325.47          | (38)  | 301.14 | (34) |

#### Trivial vs. strong refinement: Credulous status enforcement under admissible



Trivial vs. strong refinement: AF synthesis under preferred



## Paper Summary

- **Strong refinements** for second-level MaxSAT-based CEGAR algorithms for problems arising from AF dynamics
  - Applicable to extension and status enforcement, AF synthesis
  - Based on recent theoretical results on the persistence of an extension under changes to the attack structure
- Empirical evaluation: our approach significantly scales up the current state-of-the-art approaches to the computational problems

#### Future Outlook

Strong refinements for other second-level hard problems over AFs?

• extension enforcement under semi-stable semantics? [Wallner et al., 2017]

# Doutre, S. and Mailly, J. (2018).

Constraints and changes: A survey of abstract argumentation dynamics.

Argument & Computation, 9(3):223–248.

# Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. *Artif. Intell.*, 77(2):321–358.





Niskanen, A., Neugebauer, D., Järvisalo, M., and Rothe, J. (2020). Deciding acceptance in incomplete argumentation frameworks. In *Proc. AAAI*, pages 2942–2949. AAAI Press. Niskanen, A., Wallner, J. P., and Järvisalo, M. (2016). Optimal status enforcement in abstract argumentation. In *Proc. IJCAI*, pages 1216–1222. IJCAI/AAAI Press.



Rienstra, T., Sakama, C., and van der Torre, L. W. N. (2015).
 Persistence and monotony properties of argumentation semantics.
 In *Proc. TAFA*, volume 9524 of *LNCS*, pages 211–225. Springer.



Wallner, J. P., Niskanen, A., and Järvisalo, M. (2017). Complexity results and algorithms for extension enforcement in abstract argumentation.

J. Artif. Intell. Res., 60:1-40.