Algorithms for Dynamic Argumentation Frameworks: An Incremental SAT-Based Approach

Andreas Niskanen Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

ECAI 2020

Argumentation

- Active and vibrant area of modern AI research
- Central KR formalism for reasoning in abstract argumentation: argumentation frameworks (AFs)

Dynamic Argumentation Frameworks

- In addition to a fixed AF, a sequence of changes to the attack structure of the AF is provided
- "Dynamic track" in the 3rd International Competition on Computational Models of Argumentation (ICCMA'19)
 - Can we answer the same query (e.g. argument acceptance) on all AFs defined via the sequence of changes efficiently?

Contributions

What?

Design algorithms for dynamic argumentation frameworks

• Covering all tasks in the dynamic track of ICCMA'19: credulous and skeptical acceptance, single extension, and extension enumeration under complete, stable, preferred, and grounded semantics

How?

Employ incremental Boolean satisfiability (SAT) solving

- A SAT solver is instantiated only once during the run of the algorithm
- Make efficient use of the assumptions interface of the SAT solver

μ -toksia System

- Winner of every track in ICCMA'19
- Available online in open source at https://bitbucket.org/andreasniskanen/mu-toksia

Abstract Argumentation Frameworks

Argumentation Framework (AF)

A directed graph F = (A, R), where

- A is the set of **arguments**
- $R \subseteq A \times A$ is the **attack relation**
 - a
 ightarrow b means argument a attacks argument b

Semantics

Define sets of jointly accepted arguments called extensions

- Required to be **conflict-free** (independent sets)
- Additional desired properties (e.g. self-defense, subset-maximality)
 - complete, preferred, stable, ...

Acceptance of argument $a \in A$ via extensions

- credulously accepted if contained in some extension
- skeptically accepted if contained in all extensions

Dynamic Argumentation Frameworks

A dynamic AF consists of an AF F = (A, R) and a sequence of **changes**

• a change is either an addition or removal of an attack $(a, b) \in A \times A$ Defines a sequence of attack structures $R_0 = R, R_1, \dots, R_n$

- dynamic attacks are contained in some but not every R_i , i = 0, ..., n
- static attacks are contained in every R_i , $i = 0, \ldots, n$

Example

Changes -(b, c), +(c, b)

- \bullet dynamic attacks: (b, c) and (c, b)
- static attacks: every attack except (b, c) and (c, b)

Note: $\{a\}$ remains a preferred extension

 skeptical acceptance of b by checking existence of preferred extension {a} obtained from the original AF?

Dynamic Argumentation Frameworks

A dynamic AF consists of an AF F = (A, R) and a sequence of **changes**

• a change is either an addition or removal of an attack $(a, b) \in A \times A$ Defines a sequence of attack structures $R_0 = R, R_1, \dots, R_n$

- dynamic attacks are contained in some but not every R_i , i = 0, ..., n
- static attacks are contained in every R_i , $i = 0, \ldots, n$

Example

Changes -(b, c), +(c, b)

- dynamic attacks: (b, c) and (c, b)
- static attacks: every attack except (b, c) and (c, b)

Note: $\{a\}$ remains a preferred extension

 skeptical acceptance of b by checking existence of preferred extension {a} obtained from the original AF?

Dynamic Argumentation Frameworks

A dynamic AF consists of an AF F = (A, R) and a sequence of **changes**

• a change is either an addition or removal of an attack $(a, b) \in A \times A$ Defines a sequence of attack structures $R_0 = R, R_1, \dots, R_n$

- dynamic attacks are contained in some but not every R_i , i = 0, ..., n
- static attacks are contained in every R_i , $i = 0, \ldots, n$

Example

Changes -(b, c), +(c, b)

- dynamic attacks: (b, c) and (c, b)
- static attacks: every attack except (b, c) and (c, b)

Note: $\{a\}$ remains a preferred extension

 skeptical acceptance of b by checking existence of preferred extension {a} obtained from the original AF?

Boolean Variables

 $r_{a,b}$ for each dynamic attack (a, b)

• assigned true iff (a, b) occurs in the current AF

- x_a for each argument $a \in A$
 - assigned true iff $a \in E$ for some extension E of the current AF

Boolean Formulas

For semantics $\sigma \in \{cf, adm, com, stb\}$ and a dynamic AF F^{χ} , defining

$$\operatorname{ATT}(F_i) = \bigwedge_{(a,b)\in R_i} r_{a,b} \land \bigwedge_{(a,b)\notin R_i} \neg r_{a,b},$$

formula $\phi_{\sigma}(F^{\chi}) \wedge \operatorname{ATT}(F_i)$ encodes the σ -extensions of the AF F_i .

SAT-based Algorithms: Acceptance

Variables $r_{a,b}$ play a crucial role as assumptions passed to the SAT solver

Acceptance of $a \in A$ under Complete and Stable Semantics

At each iteration i = 0, ..., n, query a SAT solver with input formula $\phi_{\sigma}(F^{\chi}) \wedge q$, where

- $q = x_a$ for credulous acceptance
- $q = \neg x_a$ for skeptical acceptance

using assumptions

$$\operatorname{ATT}(F_i) = \bigwedge_{(a,b)\in R_i} r_{a,b} \wedge \bigwedge_{(a,b)\notin R_i} \neg r_{a,b}.$$

Skeptical Acceptance under Preferred Semantics

Assumptions on attacks similarly, adapting the procedure for the "static" acceptance problem implemented in the AF solver $\rm CEGARTIX$

Niskanen and Järvisalo (HIIT, UH)

Algorithms for Dynamic AFs

Positive Check

If at iteration i = 1, ..., n, argument $a \in A$ was credulously accepted in the previous AF F_{i-1} , we have a witnessing extension \rightarrow check whether it still is an extension in F_i

Negative check

If at iteration i = 1, ..., n, argument $a \in A$ was not credulously accepted in the previous AF F_{i-1} , the previous call was unsatisfiable \rightarrow check whether the literal corresponding to the *i*-th change belongs to the **unsatisfiable core** reported by the SAT solver

Skeptical acceptance dually

- Positive check if $a \in A$ was not skeptically accepted
- Negative check if $a \in A$ was skeptically accepted (not for preferred)

Algorithms for acceptance under complete and stable semantics easily adapted to extension enumeration via

- dropping the unit clause x_a (or $\neg x_a$),
- at each iteration *i*, using assumptions $\neg b_0, \neg b_1, \ldots, b_i$, calling the solver, and after each extension *E* found adding blocking clauses

$$b_i o \bigvee_{a \in E} x_a \lor \bigvee_{a \in A \setminus E} x_a$$

until unsatisfiability for that iteration.

Preferred semantics: additionally a subset-maximization procedure

μ -toksia

- $\bullet~\mathrm{GLUCOSE}$ as the underlying SAT solver
- Available online in open source at https://bitbucket.org/andreasniskanen/mu-toksia

Benchmark Setup

- Per-instance 1800-second time limit and 64-GB memory limit
- ICCMA'19 used 8 changes in the sequence of changes
 - $\bullet~$ Extend to $16, 32, \ldots, 256$ by appending more changes at random
- NP-hard acceptance tasks considered in ICCMA'19
 - credulous acceptance under complete and stable
 - skeptical acceptance under stable and preferred

Experimental Evaluation

Skeptical acceptance under preferred semantics: Left: μ -TOKSIA vs. COQUIAAS Right: impact of "positive check"

Niskanen and Järvisalo (HIIT, UH)

Paper Summary

• Provided SAT-based algorithms for reasoning over dynamic AFs

- Covering all reasoning tasks introduced in ICCMA'19
- Based on incremental SAT solving using the assumptions interface
- Empirical evaluation: state-of-the-art approach

μ -TOKSIA

- Winner of every track in ICCMA'19
- Available online in open source at https://bitbucket.org/andreasniskanen/mu-toksia