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Motivation

Maximum satisfiability (MaxSAT)
Bacchus, Järvisalo, and Martins [2021]

Optimization paradigm based on Boolean satisfiability (SAT)

minimize: linear objective function over 0-1 variables
subject to: constraints expressed in propositional logic

Suitable declarative modelling language for various real-world
optimization problems involving logical constraints

verification of hardware and software
planning and scheduling
interpretable machine learning
...

Significant progress in solving technology over the past 20 years

multiple different native solving algorithms
state-of-the-art solvers build on the success of SAT solvers
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Motivation

Incremental optimization (a.k.a. reoptimization)

Various problem domains call for iterative solving procedures
where a sequence of related instances are solved

types of incremental changes applied between instances:

adding or removing constraints
modifying objective function

Solving each instance from scratch often too costly:
reuse information obtained during previous calls

Incremental SAT solving well-established Eén and Sörensson [2003]

extensively applied by MaxSAT solvers

Application scenarios for incremental MaxSAT known, but...

Currently MaxSAT solvers offer limited support for incrementality
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Summary

Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding constraints, changing objective, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs
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Preliminaries

Maximum satisfiability (MaxSAT)

Optimization extension of Boolean Satisfiability (SAT)

reasoning over logical constraints: and, or, exclusive-or, if-then

Boolean (0-1) optimization paradigm

hard constraints encoded using clauses i.e. logical ORs:
specific type of at-least constraints
linear objective function

Goal: find an assignment which satisfies all hard constraints and
minimizes the objective function

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Optimal solution:
x = 1, y = 0, z = 0
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Incremental MaxSAT

Incremental MaxSAT

Aim for solving a sequence of related MaxSAT instances efficiently,
avoiding computation from scratch

Different scenarios call for different forms of incremental changes

adding or removing hard constraints
modifying the objective function
solving under assumptions: partial assignments to variables
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Incremental MaxSAT

Adding hard constraints

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Check whether it satisfies a desired property:
if not, exclude it (and other non-solutions) from consideration

Generic paradigm with various instantiations employing MaxSAT
Mangal, Zhang, Nori, and Naik [2015]; Niskanen and Järvisalo [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1
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Incremental MaxSAT

Changing coefficients

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Give more priority to more diverse solutions and repeat

Learning classifiers with the AdaBoost algorithm:
MaxSAT employed for decision trees Hu, Siala, Hebrard, and Huguet [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1
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Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Optimal solution:
x = 1, y = 0, z = 0

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

assuming: z = 1

Optimal solution:
x = 1, y = 0, z = 0

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

assuming: z = 1

Optimal solution:
x = 0, y = 1, z = 1

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

assuming: z = 1

Optimal solution:
x = 0, y = 1, z = 1

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

IPAMIR: Incremental API for MaxSAT

Generic interface for incremental MaxSAT

for MaxSAT solvers providing support for incrementality
for applications making use of incrementality

Builds on IPASIR: standard interfaca for incremental SAT

Specifies incremental changes to a MaxSAT instance

adding hard constraints
adding terms to or changing coefficients of the objective function
assumptions on variables

Includes other essential declarations

constructing and releasing a solver
solving, variable assignments, objective values
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Incremental MaxSAT

IPAMIR: Incremental API for MaxSAT

// Construct a MaxSAT solver and return a pointer to it.

void * ipamir_init ();

// Deallocate all resources of the MaxSAT solver.

void ipamir_release (void * solver );

// Add a literal to a hard clause or finalize the clause with zero.

void ipamir_add_hard (void * solver , int32_t lit_or_zero );

// Add a weighted soft literal.

void ipamir_add_soft_lit (void * solver , int32_t lit , uint64_t weight );

// Assume a literal for the next solver call.

void ipamir_assume (void * solver , int32_t lit);

// Solve the MaxSAT instance under the current assumptions .

int ipamir_solve (void * solver );

// Compute the cost of the solution.

uint64_t ipamir_val_obj (void * solver );

// Extract the truth value of a literal in the solution.

int32_t ipamir_val_lit (void * solver , int32_t lit);

// Set a callback function for terminating the solving procedure.

void ipamir_set_terminate (void * solver , void * state ,

int (* terminate )(void * state ));

Interface and example applications openly available:
https://bitbucket.org/coreo-group/ipamir
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Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies in a minimal way.

Central notion: a core is an assignment to a subset of the objective
function which cannot be extended to satisfy the hard constraints

SAT solver as core extractor

hs is a hitting set over a set of cores C if hs intersects each κ ∈ C
cost of a hitting set determined by coefficients of the objective
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled:

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets
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Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]
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Incremental IHS-based MaxSAT solving

Incremental IHS
In theory

Observations:

If we add a new hard clause, a term to the objective function,
or change coefficients, all extracted cores are still valid

cores can be preserved between solver invocations
only objective needs to be altered in the IP solver

The SAT solver knows nothing about the objective

add hard clauses directly to the SAT solver
no need to reinitialize

Assumptions require more care: the notion of conditional cores take into
account the assumptions made during core extraction

still, no need to reset the SAT solver

however, IP solver reinitialized with restrictions of all conditional cores
that are valid under current assumptions
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Incremental IHS-based MaxSAT solving

Incremental IHS
In practice

Make use of MaxHS: state-of-the-art IHS-based MaxSAT solver.
Realizing incrementality requires a non-trivial amount of engineering.

Simplification: when initialized, MaxHS performs several rounds of
simplification to the input MaxSAT instance

variable mappings between internal and external representations
fixed variables need to be handled correctly
...

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores

removes redundant cores and simplifies them

Other techniques: must be modified to preserve correctness

reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]
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Experiments

Empirical evaluation

Increased performance gained by preserving cores:

changing objective
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Conclusion

Summary

Contributions

IPAMIR: incremental API for MaxSAT

details various forms of incrementality in MaxSAT
provides a standard interface to facilitate the development of solvers
and applications

Incremental MaxHS: fully-fledged incremental MaxSAT solver

supports all IPAMIR functionality
preserves cores and does not reset SAT solver between invocations

Empirical evaluation: clear benefit from incrementality

Implementation available online in open source:
https://bitbucket.org/coreo-group/incremental-maxhs
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Conclusion

Thank you for your attention!

Get in touch via email:
andreas.niskanen@helsinki.fi

Or come chat in person :)
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