
Incremental Maximum Satisfiability

Andreas Niskanen Jeremias Berg Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

July 6 @ EURO 2022, Espoo, Finland

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 1 / 18



Motivation

Maximum satisfiability (MaxSAT)
Bacchus, Järvisalo, and Martins [2021]

Optimization paradigm based on Boolean satisfiability (SAT)

minimize: linear objective function over 0-1 variables
subject to: constraints expressed in propositional logic

Suitable declarative modelling language for various real-world
optimization problems involving logical constraints

verification of hardware and software
planning and scheduling
interpretable machine learning
...

Significant progress in solving technology over the past 20 years

multiple different native solving algorithms
state-of-the-art solvers build on the success of SAT solvers

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 2 / 18



Motivation

Maximum satisfiability (MaxSAT)
Bacchus, Järvisalo, and Martins [2021]

Optimization paradigm based on Boolean satisfiability (SAT)

minimize: linear objective function over 0-1 variables
subject to: constraints expressed in propositional logic

Suitable declarative modelling language for various real-world
optimization problems involving logical constraints

verification of hardware and software
planning and scheduling
interpretable machine learning
...

Significant progress in solving technology over the past 20 years

multiple different native solving algorithms
state-of-the-art solvers build on the success of SAT solvers

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 2 / 18



Motivation

Maximum satisfiability (MaxSAT)
Bacchus, Järvisalo, and Martins [2021]

Optimization paradigm based on Boolean satisfiability (SAT)

minimize: linear objective function over 0-1 variables
subject to: constraints expressed in propositional logic

Suitable declarative modelling language for various real-world
optimization problems involving logical constraints

verification of hardware and software
planning and scheduling
interpretable machine learning
...

Significant progress in solving technology over the past 20 years

multiple different native solving algorithms
state-of-the-art solvers build on the success of SAT solvers

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 2 / 18



Motivation

Incremental optimization (a.k.a. reoptimization)

Various problem domains call for iterative solving procedures
where a sequence of related instances are solved

types of incremental changes applied between instances:

adding or removing constraints
modifying objective function

Solving each instance from scratch often too costly:
reuse information obtained during previous calls

Incremental SAT solving well-established Eén and Sörensson [2003]

extensively applied by MaxSAT solvers

Application scenarios for incremental MaxSAT known, but...

Currently MaxSAT solvers offer limited support for incrementality

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 3 / 18



Motivation

Incremental optimization (a.k.a. reoptimization)

Various problem domains call for iterative solving procedures
where a sequence of related instances are solved

types of incremental changes applied between instances:

adding or removing constraints
modifying objective function

Solving each instance from scratch often too costly:
reuse information obtained during previous calls

Incremental SAT solving well-established Eén and Sörensson [2003]

extensively applied by MaxSAT solvers

Application scenarios for incremental MaxSAT known, but...

Currently MaxSAT solvers offer limited support for incrementality

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 3 / 18



Motivation

Incremental optimization (a.k.a. reoptimization)

Various problem domains call for iterative solving procedures
where a sequence of related instances are solved

types of incremental changes applied between instances:

adding or removing constraints
modifying objective function

Solving each instance from scratch often too costly:
reuse information obtained during previous calls

Incremental SAT solving well-established Eén and Sörensson [2003]

extensively applied by MaxSAT solvers

Application scenarios for incremental MaxSAT known, but...

Currently MaxSAT solvers offer limited support for incrementality

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 3 / 18



Motivation

Incremental optimization (a.k.a. reoptimization)

Various problem domains call for iterative solving procedures
where a sequence of related instances are solved

types of incremental changes applied between instances:

adding or removing constraints
modifying objective function

Solving each instance from scratch often too costly:
reuse information obtained during previous calls

Incremental SAT solving well-established Eén and Sörensson [2003]

extensively applied by MaxSAT solvers

Application scenarios for incremental MaxSAT known, but...

Currently MaxSAT solvers offer limited support for incrementality

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 3 / 18



Summary

Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding constraints, changing objective, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 4 / 18

https://bitbucket.org/coreo-group/incremental-maxhs


Summary

Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding constraints, changing objective, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 4 / 18

https://bitbucket.org/coreo-group/incremental-maxhs


Summary

Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding constraints, changing objective, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 4 / 18

https://bitbucket.org/coreo-group/incremental-maxhs


Summary

Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding constraints, changing objective, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 4 / 18

https://bitbucket.org/coreo-group/incremental-maxhs


Summary

Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding constraints, changing objective, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 4 / 18

https://bitbucket.org/coreo-group/incremental-maxhs


Preliminaries

Maximum satisfiability (MaxSAT)

Optimization extension of Boolean Satisfiability (SAT)

reasoning over logical constraints: and, or, exclusive-or, if-then

Boolean (0-1) optimization paradigm

hard constraints encoded using clauses i.e. logical ORs:
specific type of at-least constraints
linear objective function

Goal: find an assignment which satisfies all hard constraints and
minimizes the objective function

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Optimal solution:
x = 1, y = 0, z = 0

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 5 / 18



Preliminaries

Maximum satisfiability (MaxSAT)

Optimization extension of Boolean Satisfiability (SAT)

reasoning over logical constraints: and, or, exclusive-or, if-then

Boolean (0-1) optimization paradigm

hard constraints encoded using clauses i.e. logical ORs:
specific type of at-least constraints
linear objective function

Goal: find an assignment which satisfies all hard constraints and
minimizes the objective function

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Optimal solution:
x = 1, y = 0, z = 0

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 5 / 18



Incremental MaxSAT

Incremental MaxSAT

Aim for solving a sequence of related MaxSAT instances efficiently,
avoiding computation from scratch

Different scenarios call for different forms of incremental changes

adding or removing hard constraints
modifying the objective function
solving under assumptions: partial assignments to variables

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 6 / 18



Incremental MaxSAT

Adding hard constraints

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Check whether it satisfies a desired property:
if not, exclude it (and other non-solutions) from consideration

Generic paradigm with various instantiations employing MaxSAT
Mangal, Zhang, Nori, and Naik [2015]; Niskanen and Järvisalo [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 7 / 18



Incremental MaxSAT

Adding hard constraints

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Check whether it satisfies a desired property:
if not, exclude it (and other non-solutions) from consideration

Generic paradigm with various instantiations employing MaxSAT
Mangal, Zhang, Nori, and Naik [2015]; Niskanen and Järvisalo [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 7 / 18



Incremental MaxSAT

Adding hard constraints

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Check whether it satisfies a desired property:
if not, exclude it (and other non-solutions) from consideration

Generic paradigm with various instantiations employing MaxSAT
Mangal, Zhang, Nori, and Naik [2015]; Niskanen and Järvisalo [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Optimal solution:
x = 1, y = 0, z = 0

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 7 / 18



Incremental MaxSAT

Adding hard constraints

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Check whether it satisfies a desired property:
if not, exclude it (and other non-solutions) from consideration

Generic paradigm with various instantiations employing MaxSAT
Mangal, Zhang, Nori, and Naik [2015]; Niskanen and Järvisalo [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

(1− x) + y + z ≥ 1

Optimal solution:
x = 1, y = 0, z = 0

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 7 / 18



Incremental MaxSAT

Adding hard constraints

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Check whether it satisfies a desired property:
if not, exclude it (and other non-solutions) from consideration

Generic paradigm with various instantiations employing MaxSAT
Mangal, Zhang, Nori, and Naik [2015]; Niskanen and Järvisalo [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

(1− x) + y + z ≥ 1

Optimal solution:
x = 0, y = 1, z = 1

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 7 / 18



Incremental MaxSAT

Changing coefficients

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Give more priority to more diverse solutions and repeat

Learning classifiers with the AdaBoost algorithm:
MaxSAT employed for decision trees Hu, Siala, Hebrard, and Huguet [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 8 / 18



Incremental MaxSAT

Changing coefficients

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Give more priority to more diverse solutions and repeat

Learning classifiers with the AdaBoost algorithm:
MaxSAT employed for decision trees Hu, Siala, Hebrard, and Huguet [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 8 / 18



Incremental MaxSAT

Changing coefficients

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Give more priority to more diverse solutions and repeat

Learning classifiers with the AdaBoost algorithm:
MaxSAT employed for decision trees Hu, Siala, Hebrard, and Huguet [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Optimal solution:
x = 1, y = 0, z = 0

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 8 / 18



Incremental MaxSAT

Changing coefficients

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Give more priority to more diverse solutions and repeat

Learning classifiers with the AdaBoost algorithm:
MaxSAT employed for decision trees Hu, Siala, Hebrard, and Huguet [2020]

minimize: 3x + y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Optimal solution:
x = 1, y = 0, z = 0

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 8 / 18



Incremental MaxSAT

Changing coefficients

Example

Consider an initial problem instance, and an iterative procedure:

Compute an optimal solution to the current instance

Give more priority to more diverse solutions and repeat

Learning classifiers with the AdaBoost algorithm:
MaxSAT employed for decision trees Hu, Siala, Hebrard, and Huguet [2020]

minimize: 3x + y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Optimal solution:
x = 0, y = 1, z = 1

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 8 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

Optimal solution:
x = 1, y = 0, z = 0

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

assuming: z = 1

Optimal solution:
x = 1, y = 0, z = 0

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

assuming: z = 1

Optimal solution:
x = 0, y = 1, z = 1

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

Optimizing under assumptions

Example

Consider an initial problem instance, and an iterative procedure:

Extract information about the current state of the world

Incorporate it to the instance and compute an optimal solution

Timetabling under disruptions: time or room slots may become unavailable
Lemos, Monteiro, and Lynce [2020]

minimize: x + 2y

subject to: x + y ≥ 1

y + (1− z) ≥ 1

assuming: z = 1

Optimal solution:
x = 0, y = 1, z = 1

Unlike hard constraints, assumptions are revertable
removal of hard constraints can be simulated with assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 9 / 18



Incremental MaxSAT

IPAMIR: Incremental API for MaxSAT

Generic interface for incremental MaxSAT

for MaxSAT solvers providing support for incrementality
for applications making use of incrementality

Builds on IPASIR: standard interfaca for incremental SAT

Specifies incremental changes to a MaxSAT instance

adding hard constraints
adding terms to or changing coefficients of the objective function
assumptions on variables

Includes other essential declarations

constructing and releasing a solver
solving, variable assignments, objective values

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 10 / 18



Incremental MaxSAT

IPAMIR: Incremental API for MaxSAT

Generic interface for incremental MaxSAT

for MaxSAT solvers providing support for incrementality
for applications making use of incrementality

Builds on IPASIR: standard interfaca for incremental SAT

Specifies incremental changes to a MaxSAT instance

adding hard constraints
adding terms to or changing coefficients of the objective function
assumptions on variables

Includes other essential declarations

constructing and releasing a solver
solving, variable assignments, objective values

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 10 / 18



Incremental MaxSAT

IPAMIR: Incremental API for MaxSAT

Generic interface for incremental MaxSAT

for MaxSAT solvers providing support for incrementality
for applications making use of incrementality

Builds on IPASIR: standard interfaca for incremental SAT

Specifies incremental changes to a MaxSAT instance

adding hard constraints
adding terms to or changing coefficients of the objective function
assumptions on variables

Includes other essential declarations

constructing and releasing a solver
solving, variable assignments, objective values

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 10 / 18



Incremental MaxSAT

IPAMIR: Incremental API for MaxSAT

Generic interface for incremental MaxSAT

for MaxSAT solvers providing support for incrementality
for applications making use of incrementality

Builds on IPASIR: standard interfaca for incremental SAT

Specifies incremental changes to a MaxSAT instance

adding hard constraints
adding terms to or changing coefficients of the objective function
assumptions on variables

Includes other essential declarations

constructing and releasing a solver
solving, variable assignments, objective values

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 10 / 18



Incremental MaxSAT

IPAMIR: Incremental API for MaxSAT

// Construct a MaxSAT solver and return a pointer to it.

void * ipamir_init ();

// Deallocate all resources of the MaxSAT solver.

void ipamir_release (void * solver );

// Add a literal to a hard clause or finalize the clause with zero.

void ipamir_add_hard (void * solver , int32_t lit_or_zero );

// Add a weighted soft literal.

void ipamir_add_soft_lit (void * solver , int32_t lit , uint64_t weight );

// Assume a literal for the next solver call.

void ipamir_assume (void * solver , int32_t lit);

// Solve the MaxSAT instance under the current assumptions .

int ipamir_solve (void * solver );

// Compute the cost of the solution.

uint64_t ipamir_val_obj (void * solver );

// Extract the truth value of a literal in the solution.

int32_t ipamir_val_lit (void * solver , int32_t lit);

// Set a callback function for terminating the solving procedure.

void ipamir_set_terminate (void * solver , void * state ,

int (* terminate )(void * state ));

Interface and example applications openly available:
https://bitbucket.org/coreo-group/ipamir

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 11 / 18

https://bitbucket.org/coreo-group/ipamir


Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies in a minimal way.

Central notion: a core is an assignment to a subset of the objective
function which cannot be extended to satisfy the hard constraints

SAT solver as core extractor

hs is a hitting set over a set of cores C if hs intersects each κ ∈ C
cost of a hitting set determined by coefficients of the objective
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled:

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 12 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies in a minimal way.

Central notion: a core is an assignment to a subset of the objective
function which cannot be extended to satisfy the hard constraints

SAT solver as core extractor

hs is a hitting set over a set of cores C if hs intersects each κ ∈ C
cost of a hitting set determined by coefficients of the objective
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled:

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 12 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies in a minimal way.

Central notion: a core is an assignment to a subset of the objective
function which cannot be extended to satisfy the hard constraints

SAT solver as core extractor

hs is a hitting set over a set of cores C if hs intersects each κ ∈ C
cost of a hitting set determined by coefficients of the objective
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled:

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 12 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies in a minimal way.

Central notion: a core is an assignment to a subset of the objective
function which cannot be extended to satisfy the hard constraints

SAT solver as core extractor

hs is a hitting set over a set of cores C if hs intersects each κ ∈ C
cost of a hitting set determined by coefficients of the objective
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled:

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 12 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Preliminaries

Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

IP solver
min

∑
C∈FS

w(C )bC∑
C∈κ bC ≥ 1 ∀κ ∈ C

(FH ,FS ,w)

SAT solver
FH ∧ (FS \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,FS
w

LB = UB

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 13 / 18



Incremental IHS-based MaxSAT solving

Incremental IHS
In theory

Observations:

If we add a new hard clause, a term to the objective function,
or change coefficients, all extracted cores are still valid

cores can be preserved between solver invocations
only objective needs to be altered in the IP solver

The SAT solver knows nothing about the objective

add hard clauses directly to the SAT solver
no need to reinitialize

Assumptions require more care: the notion of conditional cores take into
account the assumptions made during core extraction

still, no need to reset the SAT solver

however, IP solver reinitialized with restrictions of all conditional cores
that are valid under current assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 14 / 18



Incremental IHS-based MaxSAT solving

Incremental IHS
In theory

Observations:

If we add a new hard clause, a term to the objective function,
or change coefficients, all extracted cores are still valid

cores can be preserved between solver invocations
only objective needs to be altered in the IP solver

The SAT solver knows nothing about the objective

add hard clauses directly to the SAT solver
no need to reinitialize

Assumptions require more care: the notion of conditional cores take into
account the assumptions made during core extraction

still, no need to reset the SAT solver

however, IP solver reinitialized with restrictions of all conditional cores
that are valid under current assumptions

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 14 / 18



Incremental IHS-based MaxSAT solving

Incremental IHS
In practice

Make use of MaxHS: state-of-the-art IHS-based MaxSAT solver.
Realizing incrementality requires a non-trivial amount of engineering.

Simplification: when initialized, MaxHS performs several rounds of
simplification to the input MaxSAT instance

variable mappings between internal and external representations
fixed variables need to be handled correctly
...

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores

removes redundant cores and simplifies them

Other techniques: must be modified to preserve correctness

reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 15 / 18



Incremental IHS-based MaxSAT solving

Incremental IHS
In practice

Make use of MaxHS: state-of-the-art IHS-based MaxSAT solver.
Realizing incrementality requires a non-trivial amount of engineering.

Simplification: when initialized, MaxHS performs several rounds of
simplification to the input MaxSAT instance

variable mappings between internal and external representations
fixed variables need to be handled correctly
...

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores

removes redundant cores and simplifies them

Other techniques: must be modified to preserve correctness

reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 15 / 18



Incremental IHS-based MaxSAT solving

Incremental IHS
In practice

Make use of MaxHS: state-of-the-art IHS-based MaxSAT solver.
Realizing incrementality requires a non-trivial amount of engineering.

Simplification: when initialized, MaxHS performs several rounds of
simplification to the input MaxSAT instance

variable mappings between internal and external representations
fixed variables need to be handled correctly
...

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores

removes redundant cores and simplifies them

Other techniques: must be modified to preserve correctness

reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 15 / 18



Incremental IHS-based MaxSAT solving

Incremental IHS
In practice

Make use of MaxHS: state-of-the-art IHS-based MaxSAT solver.
Realizing incrementality requires a non-trivial amount of engineering.

Simplification: when initialized, MaxHS performs several rounds of
simplification to the input MaxSAT instance

variable mappings between internal and external representations
fixed variables need to be handled correctly
...

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores

removes redundant cores and simplifies them

Other techniques: must be modified to preserve correctness

reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 15 / 18



Experiments

Empirical evaluation

Increased performance gained by preserving cores:

changing objective

INC CPU time (s)

N
O

N
−

IN
C

 C
P

U
 ti

m
e 

(s
)

0.01 1 100 10000

0.
01

1
10

0
10

00
0

solving under assumptions

Incremental MaxHS CPU time (s)

M
ax

H
S

 C
P

U
 ti

m
e 

(s
)

0.01 1 100 10000

0.
01

1
10

0
10

00
0

blue points → earlier iterations
yellow points → later iterations

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 16 / 18



Conclusion

Summary

Contributions

IPAMIR: incremental API for MaxSAT

details various forms of incrementality in MaxSAT
provides a standard interface to facilitate the development of solvers
and applications

Incremental MaxHS: fully-fledged incremental MaxSAT solver

supports all IPAMIR functionality
preserves cores and does not reset SAT solver between invocations

Empirical evaluation: clear benefit from incrementality

Implementation available online in open source:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 17 / 18

https://bitbucket.org/coreo-group/incremental-maxhs


Conclusion

Thank you for your attention!

Get in touch via email:
andreas.niskanen@helsinki.fi

Or come chat in person :)

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 18 / 18

andreas.niskanen@helsinki.fi


Conclusion

Bibliography I

Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in MaxSAT. In J. Christopher Beck,
editor, Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages
641–651. Springer, 2017. doi: 10.1007/978-3-319-66158-2 41.

Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiability. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, Second Edition, volume 336 of Frontiers in Artificial Intelligence and
Applications, chapter 24, pages 929–991. IOS Press, 2021. doi: 10.3233/FAIA201008.

Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set MaxSat solving. In Luca Pulina and
Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd International Conference,
Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277–294. Springer,
2020. doi: 10.1007/978-3-030-51825-7 20.

Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT instances. In Jimmy Ho-Man Lee,
editor, Principles and Practice of Constraint Programming - CP 2011 - 17th International Conference, CP 2011, Perugia,
Italy, September 12-16, 2011, Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225–239. Springer,
2011. doi: 10.1007/978-3-642-23786-7 19.

Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving. In Christian Schulte, editor,
Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September
16-20, 2013, Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 247–262. Springer, 2013. doi:
10.1007/978-3-642-40627-0 21.

Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Electronic Notes in Theoretical Computer
Science, 89(4):543–560, 2003. doi: 10.1016/S1571-0661(05)82542-3.

Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Learning optimal decision trees with MaxSAT and its
integration in AdaBoost. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pages 1170–1176. ijcai.org, 2020. doi: 10.24963/ijcai.2020/163.

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 19 / 18



Conclusion

Bibliography II

Alexandre Lemos, Pedro T. Monteiro, and Inês Lynce. Minimal perturbation in university timetabling with maximum
satisfiability. In Emmanuel Hebrard and Nysret Musliu, editors, Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 17th International Conference, CPAIOR 2020, Vienna, Austria, September 21-24,
2020, Proceedings, volume 12296 of Lecture Notes in Computer Science, pages 317–333. Springer, 2020. doi:
10.1007/978-3-030-58942-4 21.

Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. Volt: A lazy grounding framework for solving very large maxsat
instances. In Marijn Heule and Sean A. Weaver, editors, Theory and Applications of Satisfiability Testing - SAT 2015 - 18th
International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings, volume 9340 of Lecture Notes in
Computer Science, pages 299–306. Springer, 2015. doi: 10.1007/978-3-319-24318-4 22.

Andreas Niskanen and Matti Järvisalo. Strong refinements for hard problems in argumentation dynamics. In Giuseppe De
Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugaŕın, and Jérôme Lang, editors, ECAI
2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain,
August 29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS
2020), volume 325 of Frontiers in Artificial Intelligence and Applications, pages 841–848. IOS Press, 2020. doi:
10.3233/FAIA200174.

Andreas Niskanen, Jeremias Berg, and Matti Järvisalo. Enabling incrementality in the implicit hitting set approach to maxsat
under changing weights. In Laurent D. Michel, editor, 27th International Conference on Principles and Practice of
Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs,
pages 44:1–44:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPIcs.CP.2021.44.

Andreas Niskanen, Jeremias Berg, and Matti Järvisalo. Incremental maximum satisfiability. In Kuldeep S. Meel and Ofer
Strichman, editors, 25th International Conference on Theory and Applications of Satisfiability Testing, SAT 2022, Haifa,
Israel, August 2-5, 2022, volume 236 of LIPIcs, pages 14:1–14:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
To appear.

Niskanen et al. (HIIT, UH) Incremental MaxSAT July 6, 2022 20 / 18


	Motivation
	Summary
	Preliminaries
	Incremental MaxSAT
	Preliminaries
	Incremental IHS-based MaxSAT solving
	Experiments
	Conclusion
	References

