Novel Algorithms for Abstract Dialectical Frameworks based on Complexity Analysis of Subclasses and SAT Solving

Thomas Linsbichler¹ Marco Maratea² <u>Andreas Niskanen³</u> Johannes P. Wallner¹ Stefan Woltran¹

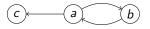
¹ Institute of Logic and Computation, TU Wien, Austria
² DIBRIS, University of Genova, Italy
³ HIIT, Department of Computer Science, University of Helsinki, Finland

July 18, 2018 @ IJCAI-ECAI 2018, Stockholm, Sweden

Motivation

Argumentation in Artificial Intelligence (AI)

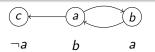
- An active area of modern AI research
- Applications in law, medicine, eGovernment, debating technologies
- Central formalism: Dung's argumentation frameworks (AFs)
 - Arguments as nodes and attacks as edges in a directed graph
 - Complexity-sensitive procedures for reasoning in AFs implemented



Motivation

Argumentation in Artificial Intelligence (AI)

- An active area of modern AI research
- Applications in law, medicine, eGovernment, debating technologies
- Central formalism: Dung's argumentation frameworks (AFs)
 - Arguments as nodes and attacks as edges in a directed graph
 - Complexity-sensitive procedures for reasoning in AFs implemented



Abstract Dialectical Frameworks (ADFs)

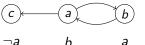
- Powerful generalization of AFs: each argument equipped with an acceptance condition (a propositional formula)
- Expressive power comes with a price: higher computational complexity

- Complexity analysis of ADF subclasses
 - Investigate two new subclasses: acyclic and concise ADFs
 - Constant distance to a subclass: k-bipolar, k-acyclic and k-concise
- Algorithms for argument acceptance problems in ADFs
 - Make use of input ADF being k-bipolar for a sufficiently low value of k
 - Based on incremental SAT solving
- Experimental evaluation of the resulting system
 - Capable of outperforming the state-of-the-art

Syntax of Abstract Dialectical Frameworks

Abstract Dialectical Framework (ADF)

- A tuple D = (A, L, C), where
 - A is a finite set of **arguments**
 - $L \subseteq A \times A$ is a set of **links**



• $C = \{\varphi_a\}_{a \in A}$ is a set of acceptance conditions

• each φ_a is a propositional formula over the parents of a

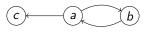
- An interpretation I maps each argument to a truth value in $\{\mathbf{t}, \mathbf{f}, \mathbf{u}\}$
- J is at least as informative as I, $I \leq_i J$, if all arguments that I maps to **t** or **f** are mapped likewise by J

а

Syntax of Abstract Dialectical Frameworks

Abstract Dialectical Framework (ADF)

- A tuple D = (A, L, C), where
 - A is a finite set of **arguments**
 - $L \subseteq A \times A$ is a set of **links**



h

٦a

• $C = \{\varphi_a\}_{a \in A}$ is a set of acceptance conditions

• each φ_a is a propositional formula over the parents of a

Interpretations

- \bullet An interpretation I maps each argument to a truth value in $\{t,f,u\}$
- J is at least as informative as I, I ≤_i J, if all arguments that I maps to t or f are mapped likewise by J

а

Semantics of Abstract Dialectical Frameworks

- Semantics σ identify interpretations that are meaningful in the context of argument acceptance
 - Map an ADF D to a set $\sigma(D)$ of σ -interpretations
- Standard AF semantics can be generalized to ADFs

Preferred semantics

Given an ADF D, an interpretation I is preferred, $I \in prf(D)$, if I is admissible and \leq_i -maximal.

Semantics of Abstract Dialectical Frameworks

- Semantics σ identify interpretations that are meaningful in the context of argument acceptance
 - Map an ADF D to a set $\sigma(D)$ of σ -interpretations
- Standard AF semantics can be generalized to ADFs

Preferred semantics

Given an ADF D, an interpretation I is preferred, $I \in prf(D)$, if I is admissible and \leq_i -maximal.

Let σ be an ADF semantics.

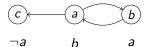
	Input	Decision
$Cred_{\sigma}$	ADF D , argument $a \in A$	$\exists I \in \sigma(D), I(a) = \mathbf{t}?$
$Skept_{\sigma}$	ADF D , argument $a \in A$	$\forall I \in \sigma(D), I(a) = \mathbf{t}?$
Exists ^{>} _{σ}	ADF D, interpretation I	$\exists J \in \sigma(D), J >_i I?$
Ver_{σ}	ADF D , interpretation I	$I \in \sigma(D)$?

Example

Now $\{a \mapsto \mathbf{t}, b \mapsto \mathbf{t}, c \mapsto \mathbf{f}\}$ and $\{a \mapsto \mathbf{f}, b \mapsto \mathbf{f}, c \mapsto \mathbf{t}\}$ are preferred in D, so a is credulously but not skeptically accepted under preferred.

Let σ be an ADF semantics.

	Input	Decision
$Cred_{\sigma}$	ADF D , argument $a \in A$	$\exists I \in \sigma(D), I(a) = \mathbf{t}?$
$Skept_{\sigma}$	ADF D , argument $a \in A$	$\forall I \in \sigma(D), I(a) = \mathbf{t}?$
Exists ^{>} _{σ}	ADF D, interpretation I	$\exists J \in \sigma(D), J >_i I?$
Ver_{σ}	ADF D , interpretation I	$I \in \sigma(D)$?



Example

Now $\{a \mapsto \mathbf{t}, b \mapsto \mathbf{t}, c \mapsto \mathbf{f}\}$ and $\{a \mapsto \mathbf{f}, b \mapsto \mathbf{f}, c \mapsto \mathbf{t}\}$ are preferred in D, so a is credulously but not skeptically accepted under preferred.

ADF Subclasses

Subclasses

An ADF D = (A, L, C) is

- bipolar, if every link $(a,b) \in L$ is attacking or supporting,
- acyclic, if the directed graph (A, L) is acyclic,
- concise for a semantics σ , if there is exactly one σ -interpretation.

Distance to Subclasses

Let $k \ge 1$. An ADF D = (A, L, C) is

- k-bipolar, if every argument has at most k non-bipolar incoming links,
- *k*-acyclic, if removing links from parents of *k* arguments results in an acyclic ADF,
- k-concise for a semantics σ , if there are at most k σ -interpretations.

ADF Subclasses

Subclasses

An ADF D = (A, L, C) is

- bipolar, if every link $(a, b) \in L$ is attacking or supporting,
- acyclic, if the directed graph (A, L) is acyclic,
- concise for a semantics σ , if there is exactly one σ -interpretation.

Distance to Subclasses

- Let $k \ge 1$. An ADF D = (A, L, C) is
 - k-bipolar, if every argument has at most k non-bipolar incoming links,
 - *k*-acyclic, if removing links from parents of *k* arguments results in an acyclic ADF,
 - k-concise for a semantics σ , if there are at most k σ -interpretations.

σ	$Cred_{\sigma}$	${\it Skept}_{\sigma}$	$Exists_{\sigma}$	Ver_{σ}
cf	NP-c	trivial	NP-c	NP-c
nai	NP-c	Π_2^{P} -c	NP-c	DP-c
adm	Σ_2^{P} -c	trivial	Σ_2^{P} -c	coNP-c
grd	coNP-c	coNP-c	coNP-c	DP-c
сот	Σ_2^{P} -c	coNP-c	Σ_2^{P} -c	DP-c
prf	Σ_2^{P} -c	П ₃ -с	$\Sigma_2^{\overline{P}}$ -c	Π_2^{P} -c

Table: Complexity of general ADFs [Strass and Wallner, 2015].

σ	$Cred_{\sigma}$	$Skept_\sigma$	$Exists_{\sigma}$	Ver_{σ}
cf	in P	trivial	in P	in P
nai	in P	coNP-c	in P	in P
adm	NP-c	trivial	NP-c	in P
grd	in P	in P	in P	in P
сот	NP-c	in P	NP-c	in P
prf	NP-c	Π_2^{P} -c	NP-c	coNP-c

Table: Complexity of bipolar ADFs [Strass and Wallner, 2015].

σ	$Cred_{\sigma}$	${\it Skept}_{\sigma}$	$Exists_{\sigma}$	Ver_{σ}
cf	in P	trivial	in P	in P
nai	in P	coNP-c	in P	in P
adm	NP-c	trivial	NP-c	in P
grd	in P	in P	in P	in P
сот	NP-c	in P	NP-c	in P
prf	NP-c	Π_2^{P} -c	NP-c	coNP-c

Table: Complexity of *k*-bipolar ADFs (this paper).

σ	$Cred_{\sigma}$	${\it Skept}_{\sigma}$	$Exists_{\sigma}$	Ver_{σ}
cf	in P	trivial	in P	in P
nai	in P	coNP-c	in P	in P
adm	NP-c	trivial	NP-c	in P
grd	in P	in P	in P	in P
сот	NP-c	in P	NP-c	in P
prf	NP-c	Π_2^{P} -c	NP-c	coNP-c

Table: Complexity of *k*-bipolar ADFs (this paper).

Complexity results for other subclasses, e.g.:

- acyclic ADFs: most decision problems tractable
- k-acyclic ADFs: no observed drops in complexity

Results on concise and k-concise and more details in paper!

Algorithms for Acceptance in ADFs

Skeptical acceptance under preferred via SAT solving

- Π_3^P -complete in general, and Π_2^P -complete for k-bipolar ADFs
- Goal: delegate suitable NP fragments to SAT solvers
- Complexity of *Exists*[>]_{adm} is NP-complete for *k*-bipolar ADFs
- Provide encoding of Exists[>]_{adm} as an instance of SAT
 - bipolar ADFs: polynomial encoding
 - k-bipolar ADFs: polynomial encoding, but exponential in k
- Complexity-sensitive: detect when input ADF is k-bipolar for low k

Skeptical Acceptance under Preferred for k-bipolar ADFs

Given an ADF D and an argument α .

- Form the encoding φ for $Exists^{>}_{adm}(D, I_{u})$.
- If φ is unsatisfiable, reject.
- While there exists a truth assignment to φ :
 - Extract the corresponding admissible interpretation *I*.
 - Iteratively search for a preferred interpretation:
 - Similarly solve the problem $E_{xists_{adm}}^{>}(D, I)$ via SAT.
 - If a solution exists, set I as the corresponding interpretation.
 - If $I(\alpha) \neq \mathbf{t}$, reject.
 - Otherwise, exclude all $J \leq_i I$ from the search space by refining φ .

• Accept.

Implementation and Empirical Evaluation

k++ADF: SAT-based system for reasoning in ADFs

- Implements the encodings and algorithms
- Includes MiniSAT 2.2.0 as the underlying SAT solver

Experimental setup

- Benchmark ADFs generated from ICCMA 2017 AFs
- 1800 second timeout for each instance
- Compare to existing systems for ADFs: QADF, YADF, goDiamond

Implementation and Empirical Evaluation

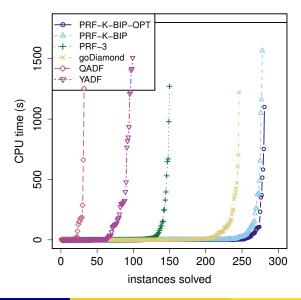
k++ADF: SAT-based system for reasoning in ADFs

- Implements the encodings and algorithms
- Includes MiniSAT 2.2.0 as the underlying SAT solver

Experimental setup

- Benchmark ADFs generated from ICCMA 2017 AFs
- 1800 second timeout for each instance
- Compare to existing systems for ADFs: QADF, YADF, goDiamond

Skeptical acceptance under preferred



Niskanen (HIIT, UH)

July 18, 2018 12 / 13

Paper Summary

Contributions

- Complexity analysis of ADF subclasses
- Algorithms for credulous and skeptical acceptance under preferred semantics based on incremental SAT solving
- Empirical evaluation of the system k++ADF, available in open source: http://www.cs.helsinki.fi/group/coreo/k++adf/
- More in paper: complexity results for further subclasses, details on encodings and algorithms, additional experiments, ...
- Future work: sharper complexity bounds, extending the system