Pakota: A System for Enforcement in Abstract Argumentation

Andreas Niskanen Johannes P. Wallner Matti Järvisalo

HIIT, Department of Computer Science University of Helsinki Finland

November 10, 2016 @ JELIA 2016, Larnaca, Cyprus

Motivation

Argumentation

- An active area of modern AI research
- Connections to logic, philosophy, and law
- Applications: decision support, legal reasoning, medical diagnostics, etc.

Dung's argumentation frameworks (AFs)

- Central KR formalism in abstract argumentation
- Recent interest in dynamic aspects of AFs
 - E.g., how to adjust a given AF in light of new knowledge?

Motivation

Argumentation

- An active area of modern AI research
- Connections to logic, philosophy, and law
- Applications: decision support, legal reasoning, medical diagnostics, etc.

Dung's argumentation frameworks (AFs)

- Central KR formalism in abstract argumentation
- Recent interest in dynamic aspects of AFs
 - E.g., how to adjust a given AF in light of new knowledge?

Contributions

Pakota

System for solving enforcement via employing MaxSAT and SAT solvers.

- Describe the system in detail
 - System architecture overview
 - Features
 - Supported semantics and problem variants
 - MaxSAT and SAT solver interfaces
 - Algorithms
 - Problems in NP: direct MaxSAT encodings
 - Beyond NP: MaxSAT-based CEGAR procedures
 - Input format, usage and options
- Provide benchmarks and generators for enforcement
- Evaluate the impact of the choice of the MaxSAT solver on scalability

Argumentation Frameworks

Syntax

An argumentation framework (AF) is a directed graph F = (A, R), where

- A is the set of arguments
- $R \subseteq A \times A$ is the **attack relation**
 - ightarrow a
 ightarrow b means argument a attacks argument b

Semantics

Define sets of jointly accepted arguments or extensions

- a function σ mapping an AF F = (A, R) to a collection $\sigma(F) \subseteq 2^A$
- e.g. conflict-free: $E \in cf(F)$ if E is an independent set

Acceptability of arguments

Given an AF F = (A, R) and semantics σ , an argument $a \in A$ is

- credulously accepted under σ iff *a* is in some extension
- skeptically accepted under σ iff a is in all extensions

Argumentation Frameworks

Syntax

An argumentation framework (AF) is a directed graph F = (A, R), where

- A is the set of arguments
- $R \subseteq A \times A$ is the **attack relation**
 - ightarrow a
 ightarrow b means argument a attacks argument b

Semantics

Define sets of jointly accepted arguments or extensions

- a function σ mapping an AF F = (A, R) to a collection $\sigma(F) \subseteq 2^A$
- e.g. conflict-free: $E \in cf(F)$ if E is an independent set

Acceptability of arguments

Given an AF F = (A, R) and semantics σ , an argument $a \in A$ is

- credulously accepted under σ iff a is in some extension
- skeptically accepted under σ iff a is in all extensions

Argumentation Frameworks

Syntax

An argumentation framework (AF) is a directed graph F = (A, R), where

- A is the set of arguments
- $R \subseteq A \times A$ is the **attack relation**
 - ightarrow a
 ightarrow b means argument a attacks argument b

Semantics

Define sets of jointly accepted arguments or extensions

- a function σ mapping an AF F = (A, R) to a collection $\sigma(F) \subseteq 2^A$
- e.g. conflict-free: $E \in cf(F)$ if E is an independent set

Acceptability of arguments

Given an AF F = (A, R) and semantics σ , an argument $a \in A$ is

- credulously accepted under σ iff a is in some extension
- skeptically accepted under σ iff a is in all extensions

AF Reasoning Tasks

Static computational problems

Direct inference from a given AF—no change involved

- credulous and skeptical acceptance of an argument
- extension enumeration

Many system implementations available!

Dynamic computational problems

How to change a given AF to support new information?

Pakota

First system implementation in its generality for solving instances of

- extension enforcement
- status enforcement

AF Reasoning Tasks

Static computational problems

Direct inference from a given AF—no change involved

- credulous and skeptical acceptance of an argument
- extension enumeration

Many system implementations available!

Dynamic computational problems

How to change a given AF to support new information?

Pakota

First system implementation in its generality for solving instances of

- extension enforcement
- status enforcement

AF Reasoning Tasks

Static computational problems

Direct inference from a given AF—no change involved

- credulous and skeptical acceptance of an argument
- extension enumeration

Many system implementations available!

Dynamic computational problems

How to change a given AF to support new information?

Pakota

First system implementation in its generality for solving instances of

- extension enforcement
- status enforcement

Extension Enforcement

Problem definition

[Coste-Marquis et al., 2015; Wallner et al., 2016]

- Input: AF F = (A, R), $T \subseteq A$, semantics σ
- Task: Find an AF F' = (A, R') such that
 - $T \in \sigma(F')$ (strict extension enforcement)
 - $T \subseteq T' \in \sigma(F')$ (non-strict extension enforcement)

and the number of changes $|R\Delta R'|$ is minimized.

Example

Enforcing $T = \{a\}$ strictly under the preferred semantics.

Extension Enforcement

Problem definition

[Coste-Marquis et al., 2015; Wallner et al., 2016]

- Input: AF F = (A, R), $T \subseteq A$, semantics σ
- Task: Find an AF F' = (A, R') such that
 - *T* ∈ σ(*F'*) (strict extension enforcement)
 T ⊂ *T'* ∈ σ(*F'*) (non-strict extension enforcement)

and the number of changes $|R\Delta R'|$ is minimized.

Example

Enforcing $T = \{a\}$ strictly under the preferred semantics.

Status Enforcement

Credulous status enforcement

[Niskanen et al., 2016]

- Input: AF F = (A, R), disjoint sets $P, N \subseteq A$, semantics σ
- Task: Find an AF F' = (A, R') such that
 - all arguments in *P* are **credulously** accepted
 - all arguments in N are not credulously accepted

and the number of changes $|R\Delta R'|$ is minimized.

Skeptical status enforcement

[Niskanen et al., 2016]

- Input: AF F = (A, R), disjoint sets $P, N \subseteq A$, semantics σ
- Task: Find an AF F' = (A, R') such that
 - all arguments in *P* are **skeptically** accepted
 - all arguments in N are not **skeptically** accepted

and the number of changes $|R \Delta R'|$ is minimized.

Status Enforcement

Skeptical status enforcement

[Niskanen et al., 2016]

- Input: AF F = (A, R), disjoint sets $P, N \subseteq A$, semantics σ
- Task: Find an AF F' = (A, R') such that
 - all arguments in *P* are **skeptically** accepted
 - all arguments in N are not skeptically accepted

and the number of changes $|R\Delta R'|$ is minimized.

Computational Complexity of Enforcement

Table: Complexity of extension and status enforcement.

[Wallner et al., 2016; Niskanen et al., 2016]

	extension enf.		status enf. ($N = \emptyset$)		status enf. (unrestr. case)	
σ	strict	non-strict	credulous	skeptical	credulous	skeptical
cf	in P	in P	in P	trivial	in P	trivial
adm	in P	NP-c	NP-c	trivial	Σ ₂ ^P -c	trivial
stb	in P	NP-c	NP-c	Σ ₂ ^P -c	Σ ₂ ^P -c	Σ ₂ ^P -c
com	NP-c	NP-c	NP-c	NP-c	Σ ₂ ^P -c	NP-c
prf	Σ ₂ ^P -c	NP-c	NP-c	in Σ_3^P	Σ ₂ ^P -c	in Σ_3^P

Pakota

Features of the system

- Employs MaxSAT and SAT solvers for solving enforcement instances
- Allows for optimally solving
 - extension enforcement under $\sigma \in \{adm, com, stb, prf\}$
 - credulous status enforcement under $\sigma \in \{adm, com, stb, prf\}$
 - skeptical status enforcement under $\sigma \in \{adm, stb\}$
- Offers an interface for plugging in the MaxSAT solver of choice
- Output of MaxSAT encodings in standard WCNF and LP formats

Enforcement via Maximum Satisfiability

The (partial) maximum satisfiability problem

- Input: Hard clauses φ_h and soft clauses φ_s
- Task: Find a truth assignment that satisfies all hard clauses and as many soft clauses as possible

Used as a declarative language for solving optimization problems in NP.

NP-encodings

- Soft clauses encode modifications to the attack structure
- Hard clauses encode the properties of enforcement

Enforcement via Maximum Satisfiability

The (partial) maximum satisfiability problem

- Input: Hard clauses φ_h and soft clauses φ_s
- Task: Find a truth assignment that satisfies all hard clauses and as many soft clauses as possible

Used as a declarative language for solving optimization problems in NP.

NP-encodings

- Soft clauses encode modifications to the attack structure
- Hard clauses encode the properties of enforcement

Counterexample-Guided Abstraction Refinement

Beyond NP: Counterexample-guided abstraction refinement (CEGAR)

- Start with a NP-abstraction, solved using a MaxSAT solver
 - Lower bound on the cost of the solution
- Refine using a counterexample, provided by a SAT solver, until no counterexample is found
 - SAT check on the validity of the solution

Counterexample-Guided Abstraction Refinement

Beyond NP: Counterexample-guided abstraction refinement (CEGAR)

- Start with a NP-abstraction, solved using a MaxSAT solver
 - Lower bound on the cost of the solution
- Refine using a counterexample, provided by a SAT solver, until no counterexample is found

SAT check on the validity of the solution

System Architecture

Performance Overview: First Level

Figure: MaxSAT solver comparison on NP-complete extension enforcement; Left: strict enf. under complete; right: non-strict enf. under stable

Performance Overview: Second Level

Figure: MaxSAT solver comparison on Σ_2^P -complete extension enforcement; Strict enforcement under preferred

Paper Summary

Pakota

- The first system implementation in its generality for solving problem instances of extension and status enforcement
- Utilizes MaxSAT solvers directly for the NP-complete variants and a CEGAR procedure for the problems beyond NP

Contributions

- Overview of the Pakota system:
 - System architecture and features
 - Details on encodings and algorithms
 - More in paper!
- Empirical evaluation of the impact of the choice of MaxSAT solvers
- System available online under an open source licence:

http://www.cs.helsinki.fi/group/coreo/pakota/

• Future: Extending the system to support further central AF semantics

Paper Summary

Pakota

- The first system implementation in its generality for solving problem instances of extension and status enforcement
- Utilizes MaxSAT solvers directly for the NP-complete variants and a CEGAR procedure for the problems beyond NP

Contributions

- Overview of the Pakota system:
 - System architecture and features
 - Details on encodings and algorithms
 - More in paper!
- Empirical evaluation of the impact of the choice of MaxSAT solvers
- System available online under an open source licence:

http://www.cs.helsinki.fi/group/coreo/pakota/

• Future: Extending the system to support further central AF semantics

References

- Coste-Marquis, S., Konieczny, S., Mailly, J., and Marquis, P. (2015). Extension enforcement in abstract argumentation as an optimization problem. In *Proc. IJCAI*, pages 2876–2882. AAAI Press.
- Niskanen, A., Wallner, J. P., and Järvisalo, M. (2016). Optimal status enforcement in abstract argumentation. In *Proc. IJCAI*, pages 1216–1222. IJCAI/AAAI Press.
- Wallner, J. P., Niskanen, A., and Järvisalo, M. (2016). Complexity results and algorithms for extension enforcement in abstract argumentation. In *Proc. AAAI*, pages 1088–1094. AAAI Press.

Thank you for your attention!