Pakota: A System for Enforcement in Abstract Argumentation

Andreas Niskanen Johannes P. Wallner Matti Järvisalo

HIIT, Department of Computer Science
University of Helsinki
Finland

November 10, 2016 @ JELIA 2016, Larnaca, Cyprus

Motivation

Argumentation

- An active area of modern AI research
- Connections to logic, philosophy, and law
- Applications: decision support, legal reasoning, medical diagnostics, etc.

Dung's argumentation frameworks (AFs)

- Central KR formalism in abstract argumentation
- Recent interest in dynamic aspects of AFs
E.g., how to adjust a given AF in light of new knowledge?

Motivation

Argumentation

- An active area of modern AI research
- Connections to logic, philosophy, and law
- Applications: decision support, legal reasoning, medical diagnostics, etc.

Dung's argumentation frameworks (AFs)

- Central KR formalism in abstract argumentation
- Recent interest in dynamic aspects of AFs
E.g., how to adjust a given AF in light of new knowledge?

Contributions

Pakota

System for solving enforcement via employing MaxSAT and SAT solvers.

- Describe the system in detail

System architecture overview
Features
Supported semantics and problem variants
MaxSAT and SAT solver interfaces
Algorithms
Problems in NP: direct MaxSAT encodings
Beyond NP: MaxSAT-based CEGAR procedures

- Input format, usage and options
- Provide benchmarks and generators for enforcement
- Evaluate the impact of the choice of the MaxSAT solver on scalability

Argumentation Frameworks

Syntax

An argumentation framework (AF) is a directed graph $F=(A, R)$, where

- A is the set of arguments
- $R \subseteq A \times A$ is the attack relation $a \rightarrow b$ means argument a attacks argument b

- credulously accepted under σ iff a is in some extension
- skeptically accepted under σ iff a is in all extensions

Argumentation Frameworks

Syntax

An argumentation framework (AF) is a directed graph $F=(A, R)$, where

- A is the set of arguments
- $R \subseteq A \times A$ is the attack relation $a \rightarrow b$ means argument a attacks argument b

Semantics

Define sets of jointly accepted arguments or extensions

- a function σ mapping an AF $F=(A, R)$ to a collection $\sigma(F) \subseteq 2^{A}$
- e.g. conflict-free: $E \in c f(F)$ if E is an independent set

- credulously accepted under σ iff a is in some extension
- skeptically accepted under σ iff a is in all extensions

Argumentation Frameworks

Syntax

An argumentation framework (AF) is a directed graph $F=(A, R)$, where

- A is the set of arguments
- $R \subseteq A \times A$ is the attack relation $a \rightarrow b$ means argument a attacks argument b

Semantics

Define sets of jointly accepted arguments or extensions

- a function σ mapping an AF $F=(A, R)$ to a collection $\sigma(F) \subseteq 2^{A}$
- e.g. conflict-free: $E \in c f(F)$ if E is an independent set

Acceptability of arguments

Given an AF $F=(A, R)$ and semantics σ, an argument $a \in A$ is

- credulously accepted under σ iff a is in some extension
- skeptically accepted under σ iff a is in all extensions

AF Reasoning Tasks

Static computational problems
Direct inference from a given AF-no change involved

- credulous and skeptical acceptance of an argument
- extension enumeration

Many system implementations available!

Dynamic computational problems
How to change a given AF to support new information?

Pakota
First system implementation in its generality for solving instances of

- extension enforcement
- status enforcement

AF Reasoning Tasks

Static computational problems
Direct inference from a given AF-no change involved

- credulous and skeptical acceptance of an argument
- extension enumeration

Many system implementations available!

Dynamic computational problems

How to change a given AF to support new information?

First system implementation in its generality for solving instances of

- extension enforcement
- status enforcement

AF Reasoning Tasks

Static computational problems
Direct inference from a given AF-no change involved

- credulous and skeptical acceptance of an argument
- extension enumeration

Many system implementations available!

Dynamic computational problems

How to change a given AF to support new information?

Pakota

First system implementation in its generality for solving instances of

- extension enforcement
- status enforcement

Extension Enforcement

Problem definition

[Coste-Marquis et al., 2015; Wallner et al., 2016]

- Input: AF $F=(A, R), T \subseteq A$, semantics σ
- Task: Find an AF $F^{\prime}=\left(A, R^{\prime}\right)$ such that
$T \in \sigma\left(F^{\prime}\right)$ (strict extension enforcement)
$T \subseteq T^{\prime} \in \sigma\left(F^{\prime}\right)$ (non-strict extension enforcement)
and the number of changes $\left|R \Delta R^{\prime}\right|$ is minimized.

Enforcing $T=\{a\}$ strictly under the preferred semantics.

Extension Enforcement

Problem definition

- Input: AF $F=(A, R), T \subseteq A$, semantics σ
- Task: Find an AF $F^{\prime}=\left(A, R^{\prime}\right)$ such that
$T \in \sigma\left(F^{\prime}\right)$ (strict extension enforcement)
$T \subseteq T^{\prime} \in \sigma\left(F^{\prime}\right)$ (non-strict extension enforcement)
and the number of changes $\left|R \Delta R^{\prime}\right|$ is minimized.

Example

Enforcing $T=\{a\}$ strictly under the preferred semantics.

Status Enforcement

Credulous status enforcement

- Input: AF $F=(A, R)$, disjoint sets $P, N \subseteq A$, semantics σ
- Task: Find an AF $F^{\prime}=\left(A, R^{\prime}\right)$ such that all arguments in P are credulously accepted all arguments in N are not credulously accepted
and the number of changes $\left|R \Delta R^{\prime}\right|$ is minimized.
- Input: AF $F=(A, R)$, disjoint sets $P, N \subseteq A$, semantics σ
- Task: Find an $A F F^{\prime}=\left(A, R^{\prime}\right)$ such that
all arguments in P are skeptically accepted
all arguments in N are not skeptically accepted
and the number of changes $\left|R \triangle R^{\prime}\right|$ is minimized

Status Enforcement

Credulous status enforcement

- Input: AF $F=(A, R)$, disjoint sets $P, N \subseteq A$, semantics σ
- Task: Find an AF $F^{\prime}=\left(A, R^{\prime}\right)$ such that all arguments in P are credulously accepted all arguments in N are not credulously accepted
and the number of changes $\left|R \Delta R^{\prime}\right|$ is minimized.

Skeptical status enforcement

- Input: AF $F=(A, R)$, disjoint sets $P, N \subseteq A$, semantics σ
- Task: Find an $\mathrm{AF} F^{\prime}=\left(A, R^{\prime}\right)$ such that
all arguments in P are skeptically accepted all arguments in N are not skeptically accepted
and the number of changes $\left|R \Delta R^{\prime}\right|$ is minimized.

Computational Complexity of Enforcement

Table: Complexity of extension and status enforcement.
[Wallner et al., 2016; Niskanen et al., 2016]

	extension enf.		status enf. ($N=\emptyset$)		status enf. (unrestr. case)	
σ	strict	non-strict	credulous	skeptical	credulous	skeptical
cf	in P	in P	in P	trivial	in P	trivial
adm	in P	NP-c	NP-c	trivial	$\Sigma_{2}^{\text {P }}$ -	trivial
stb	in P	NP-c	NP-c	$\boldsymbol{\Sigma}_{2}^{P}$-c	$\Sigma_{2}^{\text {P }}$ -	Σ_{2}^{P}-c
com	NP-c	NP-c	NP-c	NP-c	$\Sigma_{2}^{\text {P }}$ -	NP-c
prf	$\Sigma_{2}^{\text {P }}$ -	NP-c	NP-c	in \sum_{3}^{P}	$\Sigma_{2}^{\text {P }}$ -	in \sum_{3}^{P}

Pakota

Features of the system

- Employs MaxSAT and SAT solvers for solving enforcement instances
- Allows for optimally solving
extension enforcement under $\sigma \in\{a d m$, com, stb, prf $\}$
credulous status enforcement under $\sigma \in\{$ adm, com, stb, prf $\}$ skeptical status enforcement under $\sigma \in\{a d m$, stb $\}$
- Offers an interface for plugging in the MaxSAT solver of choice
- Output of MaxSAT encodings in standard WCNF and LP formats

Enforcement via Maximum Satisfiability

The (partial) maximum satisfiability problem

- Input: Hard clauses φ_{h} and soft clauses φ_{s}
- Task: Find a truth assignment that satisfies all hard clauses and as many soft clauses as possible

Used as a declarative language for solving optimization problems in NP.

- Soft clauses encode modifications to the attack structure
- Hard clauses encode the properties of enforcement

Enforcement via Maximum Satisfiability

The (partial) maximum satisfiability problem

- Input: Hard clauses φ_{h} and soft clauses φ_{s}
- Task: Find a truth assignment that satisfies all hard clauses and as many soft clauses as possible

Used as a declarative language for solving optimization problems in NP.

NP-encodings

- Soft clauses encode modifications to the attack structure
- Hard clauses encode the properties of enforcement

Counterexample-Guided Abstraction Refinement

Beyond NP: Counterexample-guided abstraction refinement (CEGAR)

- Start with a NP-abstraction, solved using a MaxSAT solver Lower bound on the cost of the solution
- Refine using a counterexample, provided by a SAT solver, until no counterexample is found

SAT check on the validity of the solution

Counterexample-Guided Abstraction Refinement

Beyond NP: Counterexample-guided abstraction refinement (CEGAR)

- Start with a NP-abstraction, solved using a MaxSAT solver

Lower bound on the cost of the solution

- Refine using a counterexample, provided by a SAT solver, until no counterexample is found

SAT check on the validity of the solution

System Architecture

Performance Overview: First Level

Figure: MaxSAT solver comparison on NP-complete extension enforcement; Left: strict enf. under complete; right: non-strict enf. under stable

Performance Overview: Second Level

Figure: MaxSAT solver comparison on Σ_{2}^{P}-complete extension enforcement; Strict enforcement under preferred

Paper Summary

Pakota

- The first system implementation in its generality for solving problem instances of extension and status enforcement
- Utilizes MaxSAT solvers directly for the NP-complete variants and a CEGAR procedure for the problems beyond NP
- Overview of the Pakota system

System architecture and features
Details on encodings and algorithms
More in paper!

- Emnirical evaluation of the impact of the choice of MaxSAT solvers
- System available online under an open source licence:
http://www.cs.helsinki.fi/group/coreo/pakota/
- Future: Extending the system to support further central AF semantics

Paper Summary

Pakota

- The first system implementation in its generality for solving problem instances of extension and status enforcement
- Utilizes MaxSAT solvers directly for the NP-complete variants and a CEGAR procedure for the problems beyond NP

Contributions

- Overview of the Pakota system:

System architecture and features
Details on encodings and algorithms
More in paper!

- Empirical evaluation of the impact of the choice of MaxSAT solvers
- System available online under an open source licence:
http://www.cs.helsinki.fi/group/coreo/pakota/
- Future: Extending the system to support further central AF semantics

References

Coste-Marquis, S., Konieczny, S., Mailly, J., and Marquis, P. (2015). Extension enforcement in abstract argumentation as an optimization problem. In Proc. IJCAI, pages 2876-2882. AAAI Press.
Niskanen, A., Wallner, J. P., and Järvisalo, M. (2016). Optimal status enforcement in abstract argumentation. In Proc. IJCAI, pages 1216-1222. IJCAI/AAAI Press.
Wallner, J. P., Niskanen, A., and Järvisalo, M. (2016). Complexity results and algorithms for extension enforcement in abstract argumentation. In Proc. AAAI, pages 1088-1094. AAAI Press.

Thank you for your attention!

