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Motivation

Argumentation

An active area of modern AI research

Connections to logic, philosophy, and law

Applications: decision support, legal reasoning, medical diagnostics,
etc.

Dung’s argumentation frameworks (AFs)

Central KR formalism in abstract argumentation

Recent interest in dynamic aspects of AFs
I E.g., how to adjust a given AF in light of new knowledge?

a

b
c d

Niskanen (HIIT, UH) Pakota November 10, 2016 2 / 17



Motivation

Argumentation

An active area of modern AI research

Connections to logic, philosophy, and law

Applications: decision support, legal reasoning, medical diagnostics,
etc.

Dung’s argumentation frameworks (AFs)

Central KR formalism in abstract argumentation

Recent interest in dynamic aspects of AFs
I E.g., how to adjust a given AF in light of new knowledge?

a

b
c d

Niskanen (HIIT, UH) Pakota November 10, 2016 2 / 17



Contributions

Pakota

System for solving enforcement via employing MaxSAT and SAT solvers.

Describe the system in detail
I System architecture overview
I Features

F Supported semantics and problem variants
F MaxSAT and SAT solver interfaces

I Algorithms
F Problems in NP: direct MaxSAT encodings
F Beyond NP: MaxSAT-based CEGAR procedures

I Input format, usage and options

Provide benchmarks and generators for enforcement

Evaluate the impact of the choice of the MaxSAT solver on scalability
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Argumentation Frameworks

Syntax

An argumentation framework (AF) is a directed graph F = (A,R), where

A is the set of arguments

R ⊆ A× A is the attack relation
I a→ b means argument a attacks argument b

Semantics

Define sets of jointly accepted arguments or extensions

a function σ mapping an AF F = (A,R) to a collection σ(F ) ⊆ 2A

e.g. conflict-free: E ∈ cf (F ) if E is an independent set

Acceptability of arguments

Given an AF F = (A,R) and semantics σ, an argument a ∈ A is

credulously accepted under σ iff a is in some extension

skeptically accepted under σ iff a is in all extensions
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AF Reasoning Tasks

Static computational problems

Direct inference from a given AF—no change involved

credulous and skeptical acceptance of an argument

extension enumeration

Many system implementations available!

Dynamic computational problems

How to change a given AF to support new information?

Pakota

First system implementation in its generality for solving instances of

extension enforcement

status enforcement
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Extension Enforcement

Problem definition [Coste-Marquis et al., 2015; Wallner et al., 2016]

Input: AF F = (A,R), T ⊆ A, semantics σ

Task: Find an AF F ′ = (A,R ′) such that

I T ∈ σ(F ′) (strict extension enforcement)
I T ⊆ T ′ ∈ σ(F ′) (non-strict extension enforcement)

and the number of changes |R∆R ′| is minimized.

Example

Enforcing T = {a} strictly under the preferred semantics.

a b c

a b

c
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Status Enforcement

Credulous status enforcement [Niskanen et al., 2016]

Input: AF F = (A,R), disjoint sets P,N ⊆ A, semantics σ

Task: Find an AF F ′ = (A,R ′) such that

I all arguments in P are credulously accepted
I all arguments in N are not credulously accepted

and the number of changes |R∆R ′| is minimized.

Skeptical status enforcement [Niskanen et al., 2016]

Input: AF F = (A,R), disjoint sets P,N ⊆ A, semantics σ

Task: Find an AF F ′ = (A,R ′) such that

I all arguments in P are skeptically accepted
I all arguments in N are not skeptically accepted

and the number of changes |R∆R ′| is minimized.
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Computational Complexity of Enforcement

Table: Complexity of extension and status enforcement.
[Wallner et al., 2016; Niskanen et al., 2016]

extension enf. status enf. (N = ∅) status enf. (unrestr. case)

σ strict non-strict credulous skeptical credulous skeptical

cf in P in P in P trivial in P trivial

adm in P NP-c NP-c trivial ΣP
2 -c trivial

stb in P NP-c NP-c ΣP
2 -c ΣP

2 -c ΣP
2 -c

com NP-c NP-c NP-c NP-c ΣP
2 -c NP-c

prf ΣP
2 -c NP-c NP-c in ΣP

3 ΣP
2 -c in ΣP

3
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Pakota

Features of the system

Employs MaxSAT and SAT solvers for solving enforcement instances

Allows for optimally solving
I extension enforcement under σ ∈ {adm, com, stb, prf }
I credulous status enforcement under σ ∈ {adm, com, stb, prf }
I skeptical status enforcement under σ ∈ {adm, stb}

Offers an interface for plugging in the MaxSAT solver of choice

Output of MaxSAT encodings in standard WCNF and LP formats
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Enforcement via Maximum Satisfiability

The (partial) maximum satisfiability problem

Input: Hard clauses ϕh and soft clauses ϕs

Task: Find a truth assignment that satisfies all hard clauses
and as many soft clauses as possible

Used as a declarative language for solving optimization problems in NP.

NP-encodings

Soft clauses encode modifications to the attack structure

Hard clauses encode the properties of enforcement
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Counterexample-Guided Abstraction Refinement

Beyond NP: Counterexample-guided abstraction refinement (CEGAR)

Start with a NP-abstraction, solved using a MaxSAT solver
I Lower bound on the cost of the solution

Refine using a counterexample, provided by a SAT solver,
until no counterexample is found

I SAT check on the validity of the solution

MaxSAT Solver

on abstraction

SAT Solver

counterexample?

exclude attack structure

modified AFInput

Output
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System Architecture

APX

Input

AF + query

Pakota

Enf.
instance

Enforcement

Ext. Status

Cred. Skept.

SAT interface

MiniSAT Glucose · · ·

MaxSAT interface
OpenWBO LMHS · · ·

check refine

encode decode

AF APX

Output

Optimal
solution

AF
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Performance Overview: First Level
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Figure: MaxSAT solver comparison on NP-complete extension enforcement;
Left: strict enf. under complete; right: non-strict enf. under stable
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Performance Overview: Second Level
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Figure: MaxSAT solver comparison on ΣP
2 -complete extension enforcement;

Strict enforcement under preferred
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Paper Summary

Pakota

The first system implementation in its generality for solving problem
instances of extension and status enforcement

Utilizes MaxSAT solvers directly for the NP-complete variants and a
CEGAR procedure for the problems beyond NP

Contributions

Overview of the Pakota system:
I System architecture and features
I Details on encodings and algorithms
I More in paper!

Empirical evaluation of the impact of the choice of MaxSAT solvers

System available online under an open source licence:

http://www.cs.helsinki.fi/group/coreo/pakota/

Future: Extending the system to support further central AF semantics
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Overview of the Pakota system:
I System architecture and features
I Details on encodings and algorithms
I More in paper!

Empirical evaluation of the impact of the choice of MaxSAT solvers

System available online under an open source licence:

http://www.cs.helsinki.fi/group/coreo/pakota/
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