
Pakota: A System for Enforcement
in Abstract Argumentation

Andreas Niskanen Johannes P. Wallner Matti Järvisalo

HIIT, Department of Computer Science
University of Helsinki

Finland

November 10, 2016 @ JELIA 2016, Larnaca, Cyprus

Niskanen (HIIT, UH) Pakota November 10, 2016 1 / 17

Motivation

Argumentation

An active area of modern AI research

Connections to logic, philosophy, and law

Applications: decision support, legal reasoning, medical diagnostics,
etc.

Dung’s argumentation frameworks (AFs)

Central KR formalism in abstract argumentation

Recent interest in dynamic aspects of AFs
I E.g., how to adjust a given AF in light of new knowledge?

a

b
c d

Niskanen (HIIT, UH) Pakota November 10, 2016 2 / 17

Motivation

Argumentation

An active area of modern AI research

Connections to logic, philosophy, and law

Applications: decision support, legal reasoning, medical diagnostics,
etc.

Dung’s argumentation frameworks (AFs)

Central KR formalism in abstract argumentation

Recent interest in dynamic aspects of AFs
I E.g., how to adjust a given AF in light of new knowledge?

a

b
c d

Niskanen (HIIT, UH) Pakota November 10, 2016 2 / 17

Contributions

Pakota

System for solving enforcement via employing MaxSAT and SAT solvers.

Describe the system in detail
I System architecture overview
I Features

F Supported semantics and problem variants
F MaxSAT and SAT solver interfaces

I Algorithms
F Problems in NP: direct MaxSAT encodings
F Beyond NP: MaxSAT-based CEGAR procedures

I Input format, usage and options

Provide benchmarks and generators for enforcement

Evaluate the impact of the choice of the MaxSAT solver on scalability

Niskanen (HIIT, UH) Pakota November 10, 2016 3 / 17

Argumentation Frameworks

Syntax

An argumentation framework (AF) is a directed graph F = (A,R), where

A is the set of arguments

R ⊆ A× A is the attack relation
I a→ b means argument a attacks argument b

Semantics

Define sets of jointly accepted arguments or extensions

a function σ mapping an AF F = (A,R) to a collection σ(F) ⊆ 2A

e.g. conflict-free: E ∈ cf (F) if E is an independent set

Acceptability of arguments

Given an AF F = (A,R) and semantics σ, an argument a ∈ A is

credulously accepted under σ iff a is in some extension

skeptically accepted under σ iff a is in all extensions

Niskanen (HIIT, UH) Pakota November 10, 2016 4 / 17

Argumentation Frameworks

Syntax

An argumentation framework (AF) is a directed graph F = (A,R), where

A is the set of arguments

R ⊆ A× A is the attack relation
I a→ b means argument a attacks argument b

Semantics

Define sets of jointly accepted arguments or extensions

a function σ mapping an AF F = (A,R) to a collection σ(F) ⊆ 2A

e.g. conflict-free: E ∈ cf (F) if E is an independent set

Acceptability of arguments

Given an AF F = (A,R) and semantics σ, an argument a ∈ A is

credulously accepted under σ iff a is in some extension

skeptically accepted under σ iff a is in all extensions

Niskanen (HIIT, UH) Pakota November 10, 2016 4 / 17

Argumentation Frameworks

Syntax

An argumentation framework (AF) is a directed graph F = (A,R), where

A is the set of arguments

R ⊆ A× A is the attack relation
I a→ b means argument a attacks argument b

Semantics

Define sets of jointly accepted arguments or extensions

a function σ mapping an AF F = (A,R) to a collection σ(F) ⊆ 2A

e.g. conflict-free: E ∈ cf (F) if E is an independent set

Acceptability of arguments

Given an AF F = (A,R) and semantics σ, an argument a ∈ A is

credulously accepted under σ iff a is in some extension

skeptically accepted under σ iff a is in all extensions

Niskanen (HIIT, UH) Pakota November 10, 2016 4 / 17

AF Reasoning Tasks

Static computational problems

Direct inference from a given AF—no change involved

credulous and skeptical acceptance of an argument

extension enumeration

Many system implementations available!

Dynamic computational problems

How to change a given AF to support new information?

Pakota

First system implementation in its generality for solving instances of

extension enforcement

status enforcement

Niskanen (HIIT, UH) Pakota November 10, 2016 5 / 17

AF Reasoning Tasks

Static computational problems

Direct inference from a given AF—no change involved

credulous and skeptical acceptance of an argument

extension enumeration

Many system implementations available!

Dynamic computational problems

How to change a given AF to support new information?

Pakota

First system implementation in its generality for solving instances of

extension enforcement

status enforcement

Niskanen (HIIT, UH) Pakota November 10, 2016 5 / 17

AF Reasoning Tasks

Static computational problems

Direct inference from a given AF—no change involved

credulous and skeptical acceptance of an argument

extension enumeration

Many system implementations available!

Dynamic computational problems

How to change a given AF to support new information?

Pakota

First system implementation in its generality for solving instances of

extension enforcement

status enforcement

Niskanen (HIIT, UH) Pakota November 10, 2016 5 / 17

Extension Enforcement

Problem definition [Coste-Marquis et al., 2015; Wallner et al., 2016]

Input: AF F = (A,R), T ⊆ A, semantics σ

Task: Find an AF F ′ = (A,R ′) such that

I T ∈ σ(F ′) (strict extension enforcement)
I T ⊆ T ′ ∈ σ(F ′) (non-strict extension enforcement)

and the number of changes |R∆R ′| is minimized.

Example

Enforcing T = {a} strictly under the preferred semantics.

a b c

a b

c

Niskanen (HIIT, UH) Pakota November 10, 2016 6 / 17

Extension Enforcement

Problem definition [Coste-Marquis et al., 2015; Wallner et al., 2016]

Input: AF F = (A,R), T ⊆ A, semantics σ

Task: Find an AF F ′ = (A,R ′) such that

I T ∈ σ(F ′) (strict extension enforcement)
I T ⊆ T ′ ∈ σ(F ′) (non-strict extension enforcement)

and the number of changes |R∆R ′| is minimized.

Example

Enforcing T = {a} strictly under the preferred semantics.

a b c

a b

c

Niskanen (HIIT, UH) Pakota November 10, 2016 6 / 17

Status Enforcement

Credulous status enforcement [Niskanen et al., 2016]

Input: AF F = (A,R), disjoint sets P,N ⊆ A, semantics σ

Task: Find an AF F ′ = (A,R ′) such that

I all arguments in P are credulously accepted
I all arguments in N are not credulously accepted

and the number of changes |R∆R ′| is minimized.

Skeptical status enforcement [Niskanen et al., 2016]

Input: AF F = (A,R), disjoint sets P,N ⊆ A, semantics σ

Task: Find an AF F ′ = (A,R ′) such that

I all arguments in P are skeptically accepted
I all arguments in N are not skeptically accepted

and the number of changes |R∆R ′| is minimized.

Niskanen (HIIT, UH) Pakota November 10, 2016 7 / 17

Status Enforcement

Credulous status enforcement [Niskanen et al., 2016]

Input: AF F = (A,R), disjoint sets P,N ⊆ A, semantics σ

Task: Find an AF F ′ = (A,R ′) such that

I all arguments in P are credulously accepted
I all arguments in N are not credulously accepted

and the number of changes |R∆R ′| is minimized.

Skeptical status enforcement [Niskanen et al., 2016]

Input: AF F = (A,R), disjoint sets P,N ⊆ A, semantics σ

Task: Find an AF F ′ = (A,R ′) such that

I all arguments in P are skeptically accepted
I all arguments in N are not skeptically accepted

and the number of changes |R∆R ′| is minimized.

Niskanen (HIIT, UH) Pakota November 10, 2016 7 / 17

Computational Complexity of Enforcement

Table: Complexity of extension and status enforcement.
[Wallner et al., 2016; Niskanen et al., 2016]

extension enf. status enf. (N = ∅) status enf. (unrestr. case)

σ strict non-strict credulous skeptical credulous skeptical

cf in P in P in P trivial in P trivial

adm in P NP-c NP-c trivial ΣP
2 -c trivial

stb in P NP-c NP-c ΣP
2 -c ΣP

2 -c ΣP
2 -c

com NP-c NP-c NP-c NP-c ΣP
2 -c NP-c

prf ΣP
2 -c NP-c NP-c in ΣP

3 ΣP
2 -c in ΣP

3

Niskanen (HIIT, UH) Pakota November 10, 2016 8 / 17

Pakota

Features of the system

Employs MaxSAT and SAT solvers for solving enforcement instances

Allows for optimally solving
I extension enforcement under σ ∈ {adm, com, stb, prf }
I credulous status enforcement under σ ∈ {adm, com, stb, prf }
I skeptical status enforcement under σ ∈ {adm, stb}

Offers an interface for plugging in the MaxSAT solver of choice

Output of MaxSAT encodings in standard WCNF and LP formats

Niskanen (HIIT, UH) Pakota November 10, 2016 9 / 17

Enforcement via Maximum Satisfiability

The (partial) maximum satisfiability problem

Input: Hard clauses ϕh and soft clauses ϕs

Task: Find a truth assignment that satisfies all hard clauses
and as many soft clauses as possible

Used as a declarative language for solving optimization problems in NP.

NP-encodings

Soft clauses encode modifications to the attack structure

Hard clauses encode the properties of enforcement

Niskanen (HIIT, UH) Pakota November 10, 2016 10 / 17

Enforcement via Maximum Satisfiability

The (partial) maximum satisfiability problem

Input: Hard clauses ϕh and soft clauses ϕs

Task: Find a truth assignment that satisfies all hard clauses
and as many soft clauses as possible

Used as a declarative language for solving optimization problems in NP.

NP-encodings

Soft clauses encode modifications to the attack structure

Hard clauses encode the properties of enforcement

Niskanen (HIIT, UH) Pakota November 10, 2016 10 / 17

Counterexample-Guided Abstraction Refinement

Beyond NP: Counterexample-guided abstraction refinement (CEGAR)

Start with a NP-abstraction, solved using a MaxSAT solver
I Lower bound on the cost of the solution

Refine using a counterexample, provided by a SAT solver,
until no counterexample is found

I SAT check on the validity of the solution

MaxSAT Solver

on abstraction

SAT Solver

counterexample?

exclude attack structure

modified AFInput

Output

Niskanen (HIIT, UH) Pakota November 10, 2016 11 / 17

Counterexample-Guided Abstraction Refinement

Beyond NP: Counterexample-guided abstraction refinement (CEGAR)

Start with a NP-abstraction, solved using a MaxSAT solver
I Lower bound on the cost of the solution

Refine using a counterexample, provided by a SAT solver,
until no counterexample is found

I SAT check on the validity of the solution

MaxSAT Solver

on abstraction

SAT Solver

counterexample?

exclude attack structure

modified AFInput

Output

Niskanen (HIIT, UH) Pakota November 10, 2016 11 / 17

System Architecture

APX

Input

AF + query

Pakota

Enf.
instance

Enforcement

Ext. Status

Cred. Skept.

SAT interface

MiniSAT Glucose · · ·

MaxSAT interface
OpenWBO LMHS · · ·

check refine

encode decode

AF APX

Output

Optimal
solution

AF

Niskanen (HIIT, UH) Pakota November 10, 2016 12 / 17

Performance Overview: First Level

number of arguments

m
ed

ia
n

C
P

U
 ti

m
e

50 100 150 200 250 300 350

0.
01

0.
1

1
10

10
0

10
00

●

●

●

●

●

●

●

●

CPLEX
MaxHS
MSCG
Maxino
WPM
OpenWBO

1000 1500 2000 2500
0

20
0

40
0

60
0

80
0

instances solved

C
P

U
 ti

m
e

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●
●●●●●●●
●●●●●●
●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●
●●●●
●●●●
●●●
●●●●●●●●●
●●●●●●●
●●●●
●●●●●●
●●
●●
●●●●●●
●●●●●
●●
●●
●●●●
●●
●●●●
●●●
●●●
●
●●●
●●●
●●●

●●●

●●
●
●●
●●●
●●
●
●

●

●

●●
●●
●●

●

●
●

●
●●●●●●
●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●

●

MaxHS
WPM
Maxino
MSCG
Open−WBO
CPLEX

Figure: MaxSAT solver comparison on NP-complete extension enforcement;
Left: strict enf. under complete; right: non-strict enf. under stable

Niskanen (HIIT, UH) Pakota November 10, 2016 13 / 17

Performance Overview: Second Level

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
● ●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

● ●

●
●

●
●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●● ●

●

●●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

● ●●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

number of arguments

C
P

U
 ti

m
e

(s
ec

on
ds

)

25 50 75 100 125 150 175 200

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

median

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●● ●●●

●

●

●

●

●

● ●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●●
●●
●
●

●

●

●

●

●●

●

●

●

●
●
●

●● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●
●

OpenWBO CPU time

LM
H

S
 C

P
U

 ti
m

e
●

number of arguments

200 175 150 125 100 75 50 25

0.01 0.1 1 10 100 1000
0.

01
0.

1
1

10
10

0
10

00

Figure: MaxSAT solver comparison on ΣP
2 -complete extension enforcement;

Strict enforcement under preferred

Niskanen (HIIT, UH) Pakota November 10, 2016 14 / 17

Paper Summary

Pakota

The first system implementation in its generality for solving problem
instances of extension and status enforcement

Utilizes MaxSAT solvers directly for the NP-complete variants and a
CEGAR procedure for the problems beyond NP

Contributions

Overview of the Pakota system:
I System architecture and features
I Details on encodings and algorithms
I More in paper!

Empirical evaluation of the impact of the choice of MaxSAT solvers

System available online under an open source licence:

http://www.cs.helsinki.fi/group/coreo/pakota/

Future: Extending the system to support further central AF semantics

Niskanen (HIIT, UH) Pakota November 10, 2016 15 / 17

http://www.cs.helsinki.fi/group/coreo/pakota/

Paper Summary

Pakota

The first system implementation in its generality for solving problem
instances of extension and status enforcement

Utilizes MaxSAT solvers directly for the NP-complete variants and a
CEGAR procedure for the problems beyond NP

Contributions

Overview of the Pakota system:
I System architecture and features
I Details on encodings and algorithms
I More in paper!

Empirical evaluation of the impact of the choice of MaxSAT solvers

System available online under an open source licence:

http://www.cs.helsinki.fi/group/coreo/pakota/

Future: Extending the system to support further central AF semantics

Niskanen (HIIT, UH) Pakota November 10, 2016 15 / 17

http://www.cs.helsinki.fi/group/coreo/pakota/

References

Coste-Marquis, S., Konieczny, S., Mailly, J., and Marquis, P. (2015). Extension
enforcement in abstract argumentation as an optimization problem. In
Proc. IJCAI, pages 2876–2882. AAAI Press.

Niskanen, A., Wallner, J. P., and Järvisalo, M. (2016). Optimal status
enforcement in abstract argumentation. In Proc. IJCAI, pages 1216–1222.
IJCAI/AAAI Press.

Wallner, J. P., Niskanen, A., and Järvisalo, M. (2016). Complexity results and
algorithms for extension enforcement in abstract argumentation. In
Proc. AAAI, pages 1088–1094. AAAI Press.

Niskanen (HIIT, UH) Pakota November 10, 2016 16 / 17

Thank you for your attention!

Niskanen (HIIT, UH) Pakota November 10, 2016 17 / 17

