
Preprocessing Argumentation Frameworks
via Replacement Patterns

Wolfgang Dvǒrák1 Matti Järvisalo2 Thomas Linsbichler1

Andreas Niskanen2 Stefan Woltran1

1 Institute of Logic and Computation, TU Wien, Austria
2 HIIT, Department of Computer Science, University of Helsinki, Finland

May 9th, 2019 @ JELIA 2019, Rende, Italy

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 1 / 16



Motivation

Argumentation in Artificial Intelligence (AI)

Active area of modern AI research

Applications: law, medicine, eGovernment, debating technologies

Central formalism: Dung’s argumentation frameworks (AFs)

Computational Models of Argumentation

Multiple practical AF reasoning systems (AF solvers) available

argument acceptance, extension enumeration

Biennial AF solver competition: ICCMA

Less attention on preprocessing and simplification techniques

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 2 / 16



Motivation

Argumentation in Artificial Intelligence (AI)

Active area of modern AI research

Applications: law, medicine, eGovernment, debating technologies

Central formalism: Dung’s argumentation frameworks (AFs)

Computational Models of Argumentation

Multiple practical AF reasoning systems (AF solvers) available

argument acceptance, extension enumeration

Biennial AF solver competition: ICCMA

Less attention on preprocessing and simplification techniques

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 2 / 16



Contributions

Solver-independent Preprocessing for AFs

Introduce the notion of replacement patterns
polynomial-time applicable simplification rules
preserving a general form of equivalence

Provide a suite of concrete replacement patterns

for stable, preferred, and complete semantics

Empirically evaluate the impact of preprocessing

task: extension enumeration
especially native AF solvers affected

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 3 / 16



Preprocessing

Preprocess Solve Postprocess
Input Output

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 4 / 16



Abstract Argumentation: Syntax and Semantics

Argumentation Framework (AF)

A directed graph F = (A,R), where

A is the set of arguments

R ⊆ A× A is the attack relation
a→ b means argument a attacks argument b

aa

b
c d

Semantics

Functions σ mapping an AF F = (A,R) to a set σ(F ) ⊆ 2A

Define sets of jointly accepted arguments or extensions
Required to be conflict-free (independent sets)

Example (Stable semantics)

A conflict-free set S ⊆ A is a stable extension, S ∈ stb(F ),
if S attacks every argument outside S .

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 5 / 16



Abstract Argumentation: Syntax and Semantics

Argumentation Framework (AF)

A directed graph F = (A,R), where

A is the set of arguments

R ⊆ A× A is the attack relation
a→ b means argument a attacks argument b

aa

b
c d

Semantics

Functions σ mapping an AF F = (A,R) to a set σ(F ) ⊆ 2A

Define sets of jointly accepted arguments or extensions
Required to be conflict-free (independent sets)

Example (Stable semantics)

A conflict-free set S ⊆ A is a stable extension, S ∈ stb(F ),
if S attacks every argument outside S .

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 5 / 16



Abstract Argumentation: Syntax and Semantics

Argumentation Framework (AF)

A directed graph F = (A,R), where

A is the set of arguments

R ⊆ A× A is the attack relation
a→ b means argument a attacks argument b

a

b
c d

Semantics

Functions σ mapping an AF F = (A,R) to a set σ(F ) ⊆ 2A

Define sets of jointly accepted arguments or extensions
Required to be conflict-free (independent sets)

Example (Stable semantics)

A conflict-free set S ⊆ A is a stable extension, S ∈ stb(F ),
if S attacks every argument outside S .

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 5 / 16



Notions of Equivalence in Abstract Argumentation

Let F and G be AFs and σ an AF semantics.

Standard equivalence

F ≡σ G iff σ(F ) = σ(G ).

Let U be a countably infinite domain of arguments, and C ⊆ U a core.

C -relativized equivalence [Baumann et al. 2017]

F ≡σC G iff for each AF H over U \ C , F ∪ H ≡σ G ∪ H.

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 6 / 16



Notions of Equivalence in Abstract Argumentation

Let F and G be AFs and σ an AF semantics.

Standard equivalence

F ≡σ G iff σ(F ) = σ(G ).

Let U be a countably infinite domain of arguments, and C ⊆ U a core.

C -relativized equivalence [Baumann et al. 2017]

F ≡σC G iff for each AF H over U \ C , F ∪ H ≡σ G ∪ H.

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 6 / 16



Merging and Unpacking Arguments

Goal: merge arguments S ⊆ A resulting in an argument mS .
Let Um = {mS | S ⊆ U,S is finite}.

Definition

Let F = (A,R) be an AF and a, b ∈ A.
The merge M(F , a, b) of a, b in F is the AF obtained via

a b ma,b⇒

Unpacking functions U(·) map a set of arguments
over U ∪ Um to the corresponding set of arguments in U.

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 7 / 16



Merging and Unpacking Arguments

Goal: merge arguments S ⊆ A resulting in an argument mS .
Let Um = {mS | S ⊆ U,S is finite}.

Definition

Let F = (A,R) be an AF and a, b ∈ A.
The merge M(F , a, b) of a, b in F is the AF obtained via

a b ma,b⇒

Unpacking functions U(·) map a set of arguments
over U ∪ Um to the corresponding set of arguments in U.

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 7 / 16



Merging and Unpacking Arguments

Goal: merge arguments S ⊆ A resulting in an argument mS .
Let Um = {mS | S ⊆ U,S is finite}.

Definition

Let F = (A,R) be an AF and a, b ∈ A.
The merge M(F , a, b) of a, b in F is the AF obtained via

a b ma,b⇒

Unpacking functions U(·) map a set of arguments
over U ∪ Um to the corresponding set of arguments in U.

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 7 / 16



Replacement Pattern

Definition

A replacement pattern PC for a core C ⊆ U
is a set of pairs (F ,F ′) of AFs F ,F ′ such that

AF ⊆ U,

AF ′ ⊆ U ∪ Um,

F and F ′ coincide on the arguments not in C ∪ {mS | S ⊆ C}.

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 8 / 16



Replacement Pattern

Definition

A replacement pattern PC for a core C ⊆ U
is a set of pairs (F ,F ′) of AFs F ,F ′ such that

AF ⊆ U,

AF ′ ⊆ U ∪ Um,

F and F ′ coincide on the arguments not in C ∪ {mS | S ⊆ C}.

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 8 / 16



Replacement Pattern

Definition

A replacement pattern PC for a core C ⊆ U
is a set of pairs (F ,F ′) of AFs F ,F ′ such that

AF ⊆ U,

AF ′ ⊆ U ∪ Um,

F and F ′ coincide on the arguments not in C ∪ {mS | S ⊆ C}.

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 8 / 16



Replacement Pattern

Definition

A replacement pattern PC for a core C ⊆ U
is a set of pairs (F ,F ′) of AFs F ,F ′ such that

AF ⊆ U,

AF ′ ⊆ U ∪ Um,

F and F ′ coincide on the arguments not in C ∪ {mS | S ⊆ C}.

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 8 / 16



Applying a Replacement Pattern

Example

Consider the pattern PC with C = {a, b, c} containing (F ,F ′) with

F = a

b

c

ed

F ′ = ma,c

b

ed

G

apply PC

PC [G ]

x0

x1

x5

x2

x4

x3
=⇒

x0

m{x1,x3}

x5

x2

x4

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 9 / 16



Applying a Replacement Pattern

Example

Consider the pattern PC with C = {a, b, c} containing (F ,F ′) with

F = a

b

c

ed

F ′ = ma,c

b

ed

G

apply PC

PC [G ]

x0

x1

x5

x2

x4

x3
=⇒

x0

m{x1,x3}

x5

x2

x4

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 9 / 16



Faithfulness of a Replacement Pattern

Definition

A replacement pattern PC is σ-faithful if for all AFs G over U ∪ Um

PC [G ] ≡σ G .

Theorem

For semantics σ ∈ {stb, prf, com} and replacement pattern PC

such that for each (F ,F ′) ∈ PC ,

AF ′ ∩ S = ∅ for mS ∈ AF ′ ,

S ∩ S ′ = ∅ for mS ,mS ′ ∈ AF ′ ,

we have

PC is σ-faithful ⇔ for each (F ,F ′) ∈ PC , F ≡σC U(F ′).

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 10 / 16



Faithfulness of a Replacement Pattern

Definition

A replacement pattern PC is σ-faithful if for all AFs G over U ∪ Um

PC [G ] ≡σ G .

Theorem

For semantics σ ∈ {stb, prf, com} and replacement pattern PC

such that for each (F ,F ′) ∈ PC ,

AF ′ ∩ S = ∅ for mS ∈ AF ′ ,

S ∩ S ′ = ∅ for mS ,mS ′ ∈ AF ′ ,

we have

PC is σ-faithful ⇔ for each (F ,F ′) ∈ PC , F ≡σC U(F ′).

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 10 / 16



Concrete Patterns: 3-Path

Consider the directed path a→ b → c .

If b and c are otherwise unattacked,

merge arguments a and c .

a b c ma,c b⇒

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 11 / 16



Concrete Patterns: 3-Loop

Consider the directed cycle a→ b → c → a.

If only a is attacked from the outside,

remove c and the attack (a, b),
add a self-loop to a.

a b

c

a b⇒

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 12 / 16



Overview of Faithfulness

Table: σ-faithfulness of replacement patterns.

3-path 3-loop 3-cone 2to1 4-path 4-cone 3to2

stb X X X X X X X

prf X (X) (X) X X (X) X

com X (X) × X X × X

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 13 / 16



Empirical Evaluation

Experimental Setup

Task: extension enumeration

Semantics: stable and preferred

Solvers: ArgTools, Heureka, CEGARTIX

Benchmark instances: 440 AFs generated using AFBenchGen2

Per-instance timeout: 1800 seconds

Implementation

Encode the search of a set of arguments to which a replacement
pattern is applicable using Answer Set Programming (ASP)

Iterate through all patterns one-by-one until no such set exists

5 second time limit for each ASP solver call

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 14 / 16



Empirical Evaluation

Experimental Setup

Task: extension enumeration

Semantics: stable and preferred

Solvers: ArgTools, Heureka, CEGARTIX

Benchmark instances: 440 AFs generated using AFBenchGen2

Per-instance timeout: 1800 seconds

Implementation

Encode the search of a set of arguments to which a replacement
pattern is applicable using Answer Set Programming (ASP)

Iterate through all patterns one-by-one until no such set exists

5 second time limit for each ASP solver call

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 14 / 16



Results for Stable Semantics

1 5 10 50 500

1
5

10
50

50
0

argtools

runtime without preprocessing (s)

ru
nt

im
e 

w
ith

 p
re

pr
oc

es
si

ng
 (

s)

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 15 / 16



Results for Stable Semantics

1 5 10 50 500

1
5

10
50

50
0

heureka

runtime without preprocessing (s)

ru
nt

im
e 

w
ith

 p
re

pr
oc

es
si

ng
 (

s)

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 15 / 16



Results for Stable Semantics

1 5 10 50 500

1
5

10
50

50
0

cegartix

runtime without preprocessing (s)

ru
nt

im
e 

w
ith

 p
re

pr
oc

es
si

ng
 (

s)

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 15 / 16



Paper Summary

Contributions

First steps towards solver-independent AF preprocessing

Replacement patterns for identification of local simplifications

faithful w.r.t. standard AF semantics

Suite of concrete replacement patterns

3-path, 3-loop, 3-cone, 2to1, 4-path, 4-cone, 3to2

Empirical evaluation: promising results for native AF solvers

Future Work

Preprocessing for acceptance problems

faithful w.r.t. query argument

Implementation of an optimized stand-alone AF preprocessor

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 16 / 16



Paper Summary

Contributions

First steps towards solver-independent AF preprocessing

Replacement patterns for identification of local simplifications

faithful w.r.t. standard AF semantics

Suite of concrete replacement patterns

3-path, 3-loop, 3-cone, 2to1, 4-path, 4-cone, 3to2

Empirical evaluation: promising results for native AF solvers

Future Work

Preprocessing for acceptance problems

faithful w.r.t. query argument

Implementation of an optimized stand-alone AF preprocessor

Niskanen (HIIT, UH) AF Preprocessing May 9th, 2019 16 / 16


