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Motivation: Minimal Unsatisfiable Subsets (MUSes)

@ Assuming monotonicity: minimal explanations as minimal sets of
formulas S implying a consequence p

e Relation to inconsistency: S — p is satisfiable iff S A —p is unsatisfiable
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unsatisfiable subsets (MUSes) (Marques-Silva & Mencia, 2020)
e algorithms for smallest MUSes (Liffiton et al., 2009; Ignatiev et al., 2016, 2015)

e corresponding decision problem ¥5-complete (Liberatore, 2005)
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formulas S implying a consequence p

e Relation to inconsistency: S — p is satisfiable iff S A —p is unsatisfiable
@ Propositional logic: variety of algorithms for computing minimal

unsatisfiable subsets (MUSes) (Marques-Silva & Mencia, 2020)
e algorithms for smallest MUSes (Liffiton et al., 2009; Ignatiev et al., 2016, 2015)

e corresponding decision problem ¥5-complete (Liberatore, 2005)

e MUSes of quantified Boolean formulas (QBFs) (Lonsing & Egly, 2015)

Computational complexity of and practical algorithms for computing
smallest MUSes of QBFs remain unexplored.
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Motivation: Strong Explanations

@ Nonmonotonic logics: if S implies p then S’ © S might not imply p

o e.g. abstract argumentation: if a is credulously accepted in F = (A, R),
then a is rejected in (AU{d},RU{d — a}) ford ¢ A
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Motivation: Strong Explanations

@ Nonmonotonic logics: if S implies p then S’ © S might not imply p

o e.g. abstract argumentation: if a is credulously accepted in F = (A, R),

then a is rejected in (AU {d},RU{d — a}) for d ¢ A
@ Strong explanations: generalization to nonmonotonic reasoning

e based on strong inconsistency: require that S C K remains
inconsistent for each S’ with S C S’ C K (Brewka et al., 2019)

o Reiter's hitting set duality satisfied: (minimal) explanations as hitting
sets of (minimal) diagnoses and vice versa

e instantiations: answer set programming, abstract argumentation

(Brewka & Ulbricht, 2019; Mencia & Marques-Silva, 2020; Ulbricht & Wallner, 2021)
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Motivation: Abstract Argumentation

@ Strong explanations as induced subgraphs: acceptance status of
argument unchanged no matter which arguments from original
argumentation framework are added (Ulbricht & Wallner, 2021)

e subset-minimality or smallest cardinality desirable
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@ Strong explanations as induced subgraphs: acceptance status of
argument unchanged no matter which arguments from original
argumentation framework are added (Ulbricht & Wallner, 2021)

e subset-minimality or smallest cardinality desirable

o Declarative approaches to extracting smallest strong explanations
for credulous rejection: Y5-complete problem

@ answer set programming (Saribatur et al., 2020)
] prOpOSItIOna| SMUS extractors (Niskanen & Jarvisalo, 2020)

e Strong explanations for credulous acceptance under admissible
and stable semantics

o verification of a strong explanation is M5-complete  (Uibricht & Wallner, 2021)
o computing smallest explanations is (clearly) in X%

Algorithmic approaches to computing strong explanations for credulous
acceptance have not been investigated.
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Contributions

@ Encodings for computing strong explanations in abstract
argumentation

e smallest strong explanations as smallest MUSes of QBFs
o for credulous acceptance and skeptical rejection
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@ Complexity of computing smallest MUSes of QBFs
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o for k-QBFs: X} -complete (leading 3) or X}-complete (leading V)
@ Algorithm for computing smallest MUSes of QBFs

o based on the implicit hitting set (IHS) approach

e employs modern QBF solving techniques
@ Implementation of the algorithm

e generic: allows for computing smallest MUSes of QBFs in prenex CNF
e empirical evaluation: practical declarative approach for computing
strong explanations in abstract argumentation
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Contributions

@ Encodings for computing strong explanations in abstract
argumentation

e smallest strong explanations as smallest MUSes of QBFs
o for credulous acceptance and skeptical rejection

@ Complexity of computing smallest MUSes of QBFs
o for k-QBFs: X} -complete (leading 3) or X}-complete (leading V)
@ Algorithm for computing smallest MUSes of QBFs

o based on the implicit hitting set (IHS) approach
e employs modern QBF solving techniques

@ Implementation of the algorithm

e generic: allows for computing smallest MUSes of QBFs in prenex CNF
e empirical evaluation: practical declarative approach for computing
strong explanations in abstract argumentation

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/qbf-smuser
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Quantified Boolean Formulas (QBFs)

Boolean satisfiability (SAT) with quantifiers: 3, V

@ Instance: ¢ = Bk.gp

o prefix Gk = QiX; - QX
o alternating quantifiers Q; € {3,V}, Q; # Qi11
@ pairwise disjoint sets of variables X;

e matrix ¢: formula over X; U--- U Xy
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Quantified Boolean Formulas (QBFs)

Boolean satisfiability (SAT) with quantifiers: 3, V

@ Instance: ¢ = Bk.gp

o prefix Gk = QiX; - QX
o alternating quantifiers Q; € {3,V}, Q; # Qi11
@ pairwise disjoint sets of variables X;

e matrix ¢: formula over X; U--- U Xy
Semantics defined recursively in a natural way:
e JX: “there is a truth assignment 7x"

e VY: “for any truth assignment 7y"
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QBF Optimization: Smallest MUSes of QBFs

§$* C S is a core of HSBW

if 358;(. @ [S] is false.
——
=p[s—T|s€S*]
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Strong Explanations in Abstract Argumentation

@ Argumentation frameworks (AFs):
directed graphs F = (A, R) (Dung, 1995)

@ Semantics o characterize jointly acceptable sets e
of arguments o(F) called extensions

e admissible, stable, ... 9'0

@ Credulous acceptance: argument g € A e e
contained in an extension E € o(F)

o In paper: skeptical rejection
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Strong Explanations in Abstract Argumentation

@ Argumentation frameworks (AFs):
directed graphs F = (A, R) (Dung, 1995)

@ Semantics o characterize jointly acceptable sets e
of arguments o(F) called extensions

e admissible, stable, ... 9'0

@ Credulous acceptance: argument g € A e e
contained in an extension E € o(F)

o In paper: skeptical rejection

Strong explanations S C A: g € A remains credulously accepted in any
subframework F [A'] = (A, RN (A" x A")) with S C A’ C A.

(Ulbricht & Wallner, 2021)

Verification of a strong explanation hard for the second level!
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Encodings for Strong Explanations in AFs

Variables:
o Y ={y,|ac A}: “argument a exists in subframework”
o X ={x, | a€ A}: “argument a contained in extension”
— prefix YV X: “d subframework V extensions”
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o Y ={y,|ac A}: “argument a exists in subframework”
o X ={x, | a€ A}: “argument a contained in extension”
— prefix YV X: “d subframework V extensions”

Propositional formulas ¢, (F) condition standard encodings of semantics o
on the eXistence Of arguments: (Besnard & Doutre, 2004; Niskanen & Jarvisalo, 2020)
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Strong explanations as cores of 2-QBFs

Let SC A Now Y [S] ={y.|a€ S} is a core of IYVX=(p,(F) A xq)
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Variables:
o Y ={y,|ac A}: “argument a exists in subframework”
o X ={x, | a€ A}: “argument a contained in extension”
— prefix YV X: “d subframework V extensions”

Propositional formulas ¢, (F) condition standard encodings of semantics o
on the eXistence Of arguments: (Besnard & Doutre, 2004; Niskanen & Jarvisalo, 2020)

o g vun(F) = ¢er(F) A Ay (7 A %) = Vipmer(e A x6))
— matrix =(¢,(F) A xg): "q is not credulously accepted under ¢"

Strong explanations as cores of 2-QBFs

Let SC A Now Y [S] ={y.|a€ S} is a core of IYVX=(p,(F) A xq)
iff S is a strong explanation for credulously accepting g in F.

Smallest strong explanations as smallest MUSes of a 2-QBF!
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Complexity of Computing Smallest MUSes of QBFs

How hard is it to decide whether a k-QBF admits a small core?
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How hard is it to decide whether a k-QBF admits a small core?

p
k+1

o Generalizes Zg—completeness for propositional logic. (Liberatore, 2005)

Leading quantifier 3: ¥  .-complete.

@ Problem remains hard for DNF formulas when k is odd...

@ ...and for CNF formulas when k is even.
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Complexity of Computing Smallest MUSes of QBFs

How hard is it to decide whether a k-QBF admits a small core?

p
k+1

o Generalizes Zg—completeness for propositional logic. (Liberatore, 2005)

Leading quantifier 3: ¥  .-complete.

@ Problem remains hard for DNF formulas when k is odd...

@ ...and for CNF formulas when k is even.

Leading quantifier V: Zi—complete.

@ Nondeterministic guess contains both a candidate for a core and a
counterexample assignment.
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Implicit Hitting Set (IHS) Approach

Identify an increasing collection of non-solutions
and exclude them from consideration in a minimal way.

(Moreno-Centeno & Karp, 2013; Saikko et al., 2016)
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Implicit Hitting Set (IHS) Approach

Identify an increasing collection of non-solutions
and exclude them from consideration in a minimal way.

(Moreno-Centeno & Karp, 2013; Saikko et al., 2016)
@ A correction set cs C S renders 358;(@ [S\ cs] true.
e QBF solver: extract a collection of correction sets C.
@ hs is a hitting set over C if hs intersects each cs € C.
o |P solver: compute hitting sets with smallest cardinality.
Reasoning and optimization effectively decoupled:
@ upper bounds from results obtained from QBF solver calls

@ Jlower bounds from costs of optimal hitting sets
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IHS-based QBF-SMUS Solving

P 358/(.@0 R

(0P minimum-cost hs \\:S
) LB = |hs| |
! \
! \
’I / \‘r
Ad IP solver
QBBF solver min 3, s s
ER) kP [hS] cs, core K
UB = |x| YoscesS>1 Vesel

C:CU{M

Return

LB =UB
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Empirical Evaluation

Benchmark Instances

@ Strong explanations: all 326 AFs from ICCMA'19

e semantics: admissible, stable
e query arguments sampled from credulously accepted arguments

@ In paper: specific small unsatisfiable QBFLIB instances!
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Empirical Evaluation

Benchmark Instances

@ Strong explanations: all 326 AFs from ICCMA'19

e semantics: admissible, stable
e query arguments sampled from credulously accepted arguments

o In paper: specific small unsatisfiable QBFLIB instances!

Benchmark setup
o QBF solvers: RAReQS, DepQBF

@ Per-instance limits: 3600 seconds and 16 GB memory

@ In paper: various refinements of the IHS approach!
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Summary

Contributions

A first overview on the computation of smallest MUSes of QBFs:

o Computational complexity analysis
° Zf(’H—compIete for leading existential quantifier
o X-complete for leading universal quantifier
@ |IHS-based algorithm and implementation
o relies on iterative QBF and IP solver calls
e additional techniques can be incorporated
@ Application: declarative encodings for computing smallest strong
explanations in abstract argumentation
e empirical evaluation shows that the approach is viable

Implementation available online in open source:
https://bitbucket.org/coreo-group/qbf-smuser
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https://bitbucket.org/coreo-group/qbf-smuser

Thank you for your attention!

Get in touch via email:
andreas.niskanen@helsinki.fi

Or come chat in person :)
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Extra: Clausal MUSes as Cores

Let ocnr = {Gj |j=1,...,m} = A4 G be a CNF formula.

The MUSes of ®pcpr = 6k.apCNF correspond exactly to subset-minimal

cores of
m

356 A\ (5= G)

j=1

with S = {s1,...,sm}: if S* C S is a core, then Bk'/\j; ses* G is false,
and vice versa.

Same holds for smallest MUSes and smallest-cardinality cores.

Niskanen et al. (HIIT, UH) Computing SMUSes of QBFs September 8, 2022 18 /16



	Motivation
	Summary
	Preliminaries
	Smallest Strong Explanations in Abstract Argumentation
	Smallest MUSes of QBFs: Complexity and Algorithms
	Empirical evaluation
	Conclusion
	References

