
Incremental Maximum Satisfiability

Andreas Niskanen Jeremias Berg Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

August 2 @ SAT 2022 @ FLoC 2022, Haifa, Israel

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 1 / 20



Maximum satisfiability (MaxSAT)

Declarative optimization paradigm based on SAT

hard constraints as propositional clauses
minimize linear objective function

Suitable declarative modelling language for various real-world
optimization problems

planning, scheduling, verification, data analysis, machine learning,
knowledge representation and reasoning, ...

State-of-the-art solvers build on the success of SAT solvers

significant progress in MaxSAT solver technology
incremental API for SAT essential in practical implementations

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 2 / 20



Incremental optimization

Various problem domains call for iterative solving procedures
where a sequence of related instances are solved

adding or removing constraints
modifying objective function

Solving each instance from scratch often too costly:
reuse information obtained during previous calls

Incremental SAT solving well-established Eén and Sörensson [2003]

extensively applied by MaxSAT solvers, QBF solvers, etc.

Currently MaxSAT solvers offer limited support for incrementality

despite potentially useful information that could be preserved across
solver invocations: state of SAT solver, cores

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 3 / 20



Incremental optimization

Various problem domains call for iterative solving procedures
where a sequence of related instances are solved

adding or removing constraints
modifying objective function

Solving each instance from scratch often too costly:
reuse information obtained during previous calls

Incremental SAT solving well-established Eén and Sörensson [2003]

extensively applied by MaxSAT solvers, QBF solvers, etc.

Currently MaxSAT solvers offer limited support for incrementality

despite potentially useful information that could be preserved across
solver invocations: state of SAT solver, cores

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 3 / 20



Incremental optimization

Various problem domains call for iterative solving procedures
where a sequence of related instances are solved

adding or removing constraints
modifying objective function

Solving each instance from scratch often too costly:
reuse information obtained during previous calls

Incremental SAT solving well-established Eén and Sörensson [2003]

extensively applied by MaxSAT solvers, QBF solvers, etc.

Currently MaxSAT solvers offer limited support for incrementality

despite potentially useful information that could be preserved across
solver invocations: state of SAT solver, cores

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 3 / 20



Incremental optimization

Various problem domains call for iterative solving procedures
where a sequence of related instances are solved

adding or removing constraints
modifying objective function

Solving each instance from scratch often too costly:
reuse information obtained during previous calls

Incremental SAT solving well-established Eén and Sörensson [2003]

extensively applied by MaxSAT solvers, QBF solvers, etc.

Currently MaxSAT solvers offer limited support for incrementality

despite potentially useful information that could be preserved across
solver invocations: state of SAT solver, cores

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 3 / 20



Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding hard clauses, soft literals, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality
solving under different sets of assumptions

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 4 / 20

https://bitbucket.org/coreo-group/incremental-maxhs


Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding hard clauses, soft literals, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality
solving under different sets of assumptions

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 4 / 20

https://bitbucket.org/coreo-group/incremental-maxhs


Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding hard clauses, soft literals, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality
solving under different sets of assumptions

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 4 / 20

https://bitbucket.org/coreo-group/incremental-maxhs


Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding hard clauses, soft literals, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality
solving under different sets of assumptions

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 4 / 20

https://bitbucket.org/coreo-group/incremental-maxhs


Contributions
Niskanen, Berg, and Järvisalo [2021, 2022]

1 Detail various forms of incrementality in MaxSAT
adding hard clauses, soft literals, assumptions

2 Propose IPAMIR: incremental API for MaxSAT
generic interface for developing incremental MaxSAT solvers and
applications making use of incremental MaxSAT
MaxSAT Evaluation 2022: incremental track

3 Develop a fully-fledged incremental MaxSAT solver
support for all functionality specified in IPAMIR
extends MaxHS: the state-of-the-art implicit hitting set based solver

4 Provide empirical evidence on benefits of incrementality
solving under different sets of assumptions

Implementation and benchmark data openly available:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 4 / 20

https://bitbucket.org/coreo-group/incremental-maxhs


iMaxHS
An extension of the IHS solver MaxHS that supports incrementality

changing objective

INC CPU time (s)

N
O

N
−

IN
C

 C
P

U
 ti

m
e 

(s
)

0.01 1 100 10000

0.
01

1
10

0
10

00
0

solving under assumptions

Incremental MaxHS CPU time (s)

M
ax

H
S

 C
P

U
 ti

m
e 

(s
)

0.01 1 100 10000
0.

01
1

10
0

10
00

0

blue points → earlier iterations

yellow points → later iterations

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 5 / 20



MaxSAT

Optimization extension of SAT

An instance consists of

a set of hard clauses FH ,
a set of soft literals S ,
a weight function w over soft literals S .

Find τ that satisfies all hard clauses and minimizes
∑

b∈S w(b) · b.

Note: definition equivalent to weighted soft clauses FS :

relax each soft clause C ∈ FS to C ∨ ¬bC ,

add C ∨ ¬bC to FH , and bC to S with weight w(bC ) = w(C ).

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 6 / 20



MaxSAT

Optimization extension of SAT

An instance consists of

a set of hard clauses FH ,
a set of soft literals S ,
a weight function w over soft literals S .

Find τ that satisfies all hard clauses and minimizes
∑

b∈S w(b) · b.

Note: definition equivalent to weighted soft clauses FS :

relax each soft clause C ∈ FS to C ∨ ¬bC ,

add C ∨ ¬bC to FH , and bC to S with weight w(bC ) = w(C ).

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 6 / 20



Incremental changes in MaxSAT

Aim for solving a sequence of related MaxSAT instances
efficiently, avoiding computation from scratch

Different scenarios call for different forms of incremental changes
adding hard clauses: MaxSAT-based CEGAR

Mangal, Zhang, Nori, and Naik [2015]; Niskanen and Järvisalo [2020]

changing weights of soft literals: AdaBoost
Hu, Siala, Hebrard, and Huguet [2020]

solving under assumptions: timetabling with disruptions
Lemos, Monteiro, and Lynce [2020]

Note: similarly as in SAT, assumptions can be used to simulate the
removal of clauses.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 7 / 20



Incremental changes in MaxSAT

Aim for solving a sequence of related MaxSAT instances
efficiently, avoiding computation from scratch

Different scenarios call for different forms of incremental changes
adding hard clauses: MaxSAT-based CEGAR

Mangal, Zhang, Nori, and Naik [2015]; Niskanen and Järvisalo [2020]

changing weights of soft literals: AdaBoost
Hu, Siala, Hebrard, and Huguet [2020]

solving under assumptions: timetabling with disruptions
Lemos, Monteiro, and Lynce [2020]

Note: similarly as in SAT, assumptions can be used to simulate the
removal of clauses.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 7 / 20



IPAMIR: Incremental API for MaxSAT

Generic interface for incremental MaxSAT

for MaxSAT solvers providing support for incrementality
for applications making use of incrementality

Builds on IPASIR: standard interface for incremental SAT

Specifies incremental changes to a MaxSAT instance

adding hard clauses
adding soft literals or changing their weights
assumptions on variables

Includes other essential declarations

constructing and releasing a solver
solving, variable assignments, objective values

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 8 / 20



IPAMIR: Incremental API for MaxSAT

Generic interface for incremental MaxSAT

for MaxSAT solvers providing support for incrementality
for applications making use of incrementality

Builds on IPASIR: standard interface for incremental SAT

Specifies incremental changes to a MaxSAT instance

adding hard clauses
adding soft literals or changing their weights
assumptions on variables

Includes other essential declarations

constructing and releasing a solver
solving, variable assignments, objective values

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 8 / 20



IPAMIR: Incremental API for MaxSAT

Generic interface for incremental MaxSAT

for MaxSAT solvers providing support for incrementality
for applications making use of incrementality

Builds on IPASIR: standard interface for incremental SAT

Specifies incremental changes to a MaxSAT instance

adding hard clauses
adding soft literals or changing their weights
assumptions on variables

Includes other essential declarations

constructing and releasing a solver
solving, variable assignments, objective values

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 8 / 20



IPAMIR: Incremental API for MaxSAT

Generic interface for incremental MaxSAT

for MaxSAT solvers providing support for incrementality
for applications making use of incrementality

Builds on IPASIR: standard interface for incremental SAT

Specifies incremental changes to a MaxSAT instance

adding hard clauses
adding soft literals or changing their weights
assumptions on variables

Includes other essential declarations

constructing and releasing a solver
solving, variable assignments, objective values

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 8 / 20



// Construct a MaxSAT solver and return a pointer to it.

void * ipamir_init ();

// Deallocate all resources of the MaxSAT solver.

void ipamir_release (void * solver );

// Add a literal to a hard clause or finalize the clause with zero.

void ipamir_add_hard (void * solver , int32_t lit_or_zero );

// Add a weighted soft literal.

void ipamir_add_soft_lit (void * solver , int32_t lit , uint64_t weight );

// Assume a literal for the next solver call.

void ipamir_assume (void * solver , int32_t lit);

// Solve the MaxSAT instance under the current assumptions .

int ipamir_solve (void * solver );

// Compute the cost of the solution.

uint64_t ipamir_val_obj (void * solver );

// Extract the truth value of a literal in the solution.

int32_t ipamir_val_lit (void * solver , int32_t lit);

// Set a callback function for terminating the solving procedure.

void ipamir_set_terminate (void * solver , void * state ,

int (* terminate )(void * state ));

Functions declared in the IPAMIR header.

In contrast to IPASIR:

ipamir add soft lit declares a soft literal b with weight w

if literal b already declared soft, changes its weight

ipamir val obj computes the cost of the current solution

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 9 / 20



// Construct a MaxSAT solver and return a pointer to it.

void * ipamir_init ();

// Deallocate all resources of the MaxSAT solver.

void ipamir_release (void * solver );

// Add a literal to a hard clause or finalize the clause with zero.

void ipamir_add_hard (void * solver , int32_t lit_or_zero );

// Add a weighted soft literal.

void ipamir_add_soft_lit (void * solver , int32_t lit , uint64_t weight );

// Assume a literal for the next solver call.

void ipamir_assume (void * solver , int32_t lit);

// Solve the MaxSAT instance under the current assumptions .

int ipamir_solve (void * solver );

// Compute the cost of the solution.

uint64_t ipamir_val_obj (void * solver );

// Extract the truth value of a literal in the solution.

int32_t ipamir_val_lit (void * solver , int32_t lit);

// Set a callback function for terminating the solving procedure.

void ipamir_set_terminate (void * solver , void * state ,

int (* terminate )(void * state ));

Functions declared in the IPAMIR header.

In contrast to IPASIR:

ipamir add soft lit declares a soft literal b with weight w

if literal b already declared soft, changes its weight

ipamir val obj computes the cost of the current solution

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 9 / 20



IPAMIR: an incremental interface for MaxSAT

INPUT SOLVING

SAT

OPTIMAL

UNSAT

ERROR

init

add
assume

solve

intr.

sol.
found

no sol.

invalid
calls

solve

solve

add
assume

add
assume

valintr.

opt. sol.
found

val

add
assume

solve

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 10 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies in a minimal way.

A core is a clause over soft literals entailed by the hard clauses.

SAT solver as core extractor

hs is a hitting set over a set of cores C if hs intersects each κ ∈ C
cost of a hitting set determined by weights of soft literals
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled:

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 11 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies in a minimal way.

A core is a clause over soft literals entailed by the hard clauses.

SAT solver as core extractor

hs is a hitting set over a set of cores C if hs intersects each κ ∈ C
cost of a hitting set determined by weights of soft literals
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled:

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 11 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies in a minimal way.

A core is a clause over soft literals entailed by the hard clauses.

SAT solver as core extractor

hs is a hitting set over a set of cores C if hs intersects each κ ∈ C
cost of a hitting set determined by weights of soft literals
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled:

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 11 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

An iterative approach: identify sources of inconsistency
and repair the inconsistencies in a minimal way.

A core is a clause over soft literals entailed by the hard clauses.

SAT solver as core extractor

hs is a hitting set over a set of cores C if hs intersects each κ ∈ C
cost of a hitting set determined by weights of soft literals
IP solver for computing minimum-cost hitting sets

Reasoning and optimization effectively decoupled:

upper bounds from assignments given by the SAT solver

lower bounds from costs of optimal hitting sets

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 11 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Implicit Hitting Set (IHS) based MaxSAT solving
Davies and Bacchus [2011, 2013]

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

IP solver
min

∑
b∈S w(b) · b∑

b∈κ b ≥ 1 ∀κ ∈ C

(FH , S ,w)

SAT solver
FH ∧ ¬(S \ hs)

Return τ

minimum-cost hs

LB = cost(hs)

model τ , core κ

UB = cost(τ)

C = C ∪ {κ}

FH ,S w

LB = UB

Note: ¬(S \ hs) passed as assumptions to the SAT solver.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 12 / 20



Incremental IHS
In theory

Observations:

If we add a new hard clause, a new soft literal, or change the weight
of a soft literal, all extracted cores are still valid

cores can be preserved between solver invocations
only objective needs to be altered in the IP solver

The SAT solver knows nothing about the weights of soft literals

add hard clauses directly to the SAT solver
no need to reinitialize

How to deal with assumptions without restarting the SAT solver?

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 13 / 20



Incremental IHS
In theory

Observations:

If we add a new hard clause, a new soft literal, or change the weight
of a soft literal, all extracted cores are still valid

cores can be preserved between solver invocations
only objective needs to be altered in the IP solver

The SAT solver knows nothing about the weights of soft literals

add hard clauses directly to the SAT solver
no need to reinitialize

How to deal with assumptions without restarting the SAT solver?

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 13 / 20



Incremental IHS for solving under assumptions
In theory

Main idea: pass user-provided assumptions A along with IHS solving
assumptions ¬(S \ hs) to the internal SAT solver

if a ∈ A ∩ S , do not include ¬a as assumption from ¬(S \ hs)

cores extracted during search may also contain literals from ¬A
How to preserve cores when solving under assumptions?

Conditional cores

Given a MaxSAT instance (FH , S ,w), a conditional core with respect to
assumptions A is a clause κa ⊂ ¬A ∪ S that is entailed by FH .
The restriction of a conditional core is κa \ ¬A.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 14 / 20



Incremental IHS for solving under assumptions
In theory

Main idea: pass user-provided assumptions A along with IHS solving
assumptions ¬(S \ hs) to the internal SAT solver

if a ∈ A ∩ S , do not include ¬a as assumption from ¬(S \ hs)

cores extracted during search may also contain literals from ¬A
How to preserve cores when solving under assumptions?

Conditional cores

Given a MaxSAT instance (FH , S ,w), a conditional core with respect to
assumptions A is a clause κa ⊂ ¬A ∪ S that is entailed by FH .
The restriction of a conditional core is κa \ ¬A.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 14 / 20



Incremental IHS for solving under assumptions
In theory

With current MaxSAT assumptions A:

Include A in the assumptions of every internal SAT solver call
(and remove conflicting soft literals)

models reported by the SAT solver will satisfy A

SAT solver extracts conditional cores κa

add κa to a set of all collected conditional cores
add the restriction κa \ ¬A to the IP solver

With next MaxSAT assumptions A′:

Reinitialize the IP solver

Check all known conditional cores κa

if κa ∩ A′ = ∅ and the restriction κa \ ¬A′ ⊆ S ,
add the restriction to the IP solver

No need to reinitialize the SAT solver, and cores are preserved.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 15 / 20



Incremental IHS for solving under assumptions
In theory

With current MaxSAT assumptions A:

Include A in the assumptions of every internal SAT solver call
(and remove conflicting soft literals)

models reported by the SAT solver will satisfy A

SAT solver extracts conditional cores κa

add κa to a set of all collected conditional cores
add the restriction κa \ ¬A to the IP solver

With next MaxSAT assumptions A′:

Reinitialize the IP solver

Check all known conditional cores κa

if κa ∩ A′ = ∅ and the restriction κa \ ¬A′ ⊆ S ,
add the restriction to the IP solver

No need to reinitialize the SAT solver, and cores are preserved.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 15 / 20



Incremental IHS for solving under assumptions
In theory

With current MaxSAT assumptions A:

Include A in the assumptions of every internal SAT solver call
(and remove conflicting soft literals)

models reported by the SAT solver will satisfy A

SAT solver extracts conditional cores κa

add κa to a set of all collected conditional cores
add the restriction κa \ ¬A to the IP solver

With next MaxSAT assumptions A′:

Reinitialize the IP solver

Check all known conditional cores κa

if κa ∩ A′ = ∅ and the restriction κa \ ¬A′ ⊆ S ,
add the restriction to the IP solver

No need to reinitialize the SAT solver, and cores are preserved.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 15 / 20



Incremental IHS
In practice

Make use of MaxHS: state-of-the-art IHS-based MaxSAT solver.
Realizing incrementality requires a non-trivial amount of engineering.

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores. To extract valid cores,
perform unit propagation under current MaxSAT assumptions.

removes redundant cores and simplifies them
still need to check that the resulting cores only contain soft literals

IPAMIR wrapper: When initialized, MaxHS performs several rounds
of simplification to the input formula.

variable mappings must be maintained
fixed literals need to be handled correctly
no pure literal elimination can be performed

Other techniques must be modified to preserve correctness
reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]

End result: iMaxHS (incremental MaxHS)
Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 16 / 20



Incremental IHS
In practice

Make use of MaxHS: state-of-the-art IHS-based MaxSAT solver.
Realizing incrementality requires a non-trivial amount of engineering.

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores. To extract valid cores,
perform unit propagation under current MaxSAT assumptions.

removes redundant cores and simplifies them
still need to check that the resulting cores only contain soft literals

IPAMIR wrapper: When initialized, MaxHS performs several rounds
of simplification to the input formula.

variable mappings must be maintained
fixed literals need to be handled correctly
no pure literal elimination can be performed

Other techniques must be modified to preserve correctness
reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]

End result: iMaxHS (incremental MaxHS)
Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 16 / 20



Incremental IHS
In practice

Make use of MaxHS: state-of-the-art IHS-based MaxSAT solver.
Realizing incrementality requires a non-trivial amount of engineering.

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores. To extract valid cores,
perform unit propagation under current MaxSAT assumptions.

removes redundant cores and simplifies them
still need to check that the resulting cores only contain soft literals

IPAMIR wrapper: When initialized, MaxHS performs several rounds
of simplification to the input formula.

variable mappings must be maintained
fixed literals need to be handled correctly
no pure literal elimination can be performed

Other techniques must be modified to preserve correctness
reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]

End result: iMaxHS (incremental MaxHS)
Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 16 / 20



Incremental IHS
In practice

Make use of MaxHS: state-of-the-art IHS-based MaxSAT solver.
Realizing incrementality requires a non-trivial amount of engineering.

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores. To extract valid cores,
perform unit propagation under current MaxSAT assumptions.

removes redundant cores and simplifies them
still need to check that the resulting cores only contain soft literals

IPAMIR wrapper: When initialized, MaxHS performs several rounds
of simplification to the input formula.

variable mappings must be maintained
fixed literals need to be handled correctly
no pure literal elimination can be performed

Other techniques must be modified to preserve correctness
reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]

End result: iMaxHS (incremental MaxHS)
Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 16 / 20



Incremental IHS
In practice

Make use of MaxHS: state-of-the-art IHS-based MaxSAT solver.
Realizing incrementality requires a non-trivial amount of engineering.

Maintaining conditional cores: use another SAT solver as a
database for storing conditional cores. To extract valid cores,
perform unit propagation under current MaxSAT assumptions.

removes redundant cores and simplifies them
still need to check that the resulting cores only contain soft literals

IPAMIR wrapper: When initialized, MaxHS performs several rounds
of simplification to the input formula.

variable mappings must be maintained
fixed literals need to be handled correctly
no pure literal elimination can be performed

Other techniques must be modified to preserve correctness
reduced cost fixing Bacchus, Hyttinen, Järvisalo, and Saikko [2017]

abstract cores Berg, Bacchus, and Poole [2020]

End result: iMaxHS (incremental MaxHS)
Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 16 / 20



Empirical evaluation
Optimizing under assumptions

Benchmark instances

All 1184 instances from complete tracks of MaxSAT Evaluation 2021

For each benchmark, create 20 different sets of assumptions by
hardening each soft clause with probability 0.01.

23680 iterations overall

Benchmark setup

iMaxHS vs. its non-incremental version in default settings

for non-incremental, add assumptions directly as hard clauses

Per-instance limits: 7200 seconds and 16 GB memory

instance: 20 MaxSAT solver calls each with different assumptions
exclude WCNF parsing times from consideration

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 17 / 20



Empirical evaluation
Optimizing under assumptions

Benchmark instances

All 1184 instances from complete tracks of MaxSAT Evaluation 2021

For each benchmark, create 20 different sets of assumptions by
hardening each soft clause with probability 0.01.

23680 iterations overall

Benchmark setup

iMaxHS vs. its non-incremental version in default settings

for non-incremental, add assumptions directly as hard clauses

Per-instance limits: 7200 seconds and 16 GB memory

instance: 20 MaxSAT solver calls each with different assumptions
exclude WCNF parsing times from consideration

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 17 / 20



Empirical evaluation
Optimizing under assumptions

Increased performance gained by preserving cores:

Incremental MaxHS CPU time (s)

M
ax

H
S

 C
P

U
 ti

m
e 

(s
)

0.01 1 100 10000

0.
01

1
10

0
10

00
0

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 18 / 20



Summary

Contributions

IPAMIR: incremental API for MaxSAT

specifies various forms of incrementality in MaxSAT
provides a standard interface to facilitate the development of solvers
and applications

iMaxHS: fully-fledged incremental MaxSAT solver

supports all IPAMIR functionality
internal SAT solver used without reinitializing
cores preserved between solver invocations

Empirical evaluation: clear benefit from incrementality

Implementation available online in open source:
https://bitbucket.org/coreo-group/incremental-maxhs

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 19 / 20

https://bitbucket.org/coreo-group/incremental-maxhs


Thank you for your attention!

Get in touch via email:
andreas.niskanen@helsinki.fi

Or come chat in person :)

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 20 / 20

andreas.niskanen@helsinki.fi


Bibliography I

Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in MaxSAT. In J. Christopher Beck,
editor, Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages
641–651. Springer, 2017. doi: 10.1007/978-3-319-66158-2 41.

Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set MaxSat solving. In Luca Pulina and
Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd International Conference,
Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277–294. Springer,
2020. doi: 10.1007/978-3-030-51825-7 20.

Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT instances. In Jimmy Ho-Man Lee,
editor, Principles and Practice of Constraint Programming - CP 2011 - 17th International Conference, CP 2011, Perugia,
Italy, September 12-16, 2011, Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225–239. Springer,
2011. doi: 10.1007/978-3-642-23786-7 19.

Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving. In Christian Schulte, editor,
Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September
16-20, 2013, Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 247–262. Springer, 2013. doi:
10.1007/978-3-642-40627-0 21.

Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Electronic Notes in Theoretical Computer
Science, 89(4):543–560, 2003. doi: 10.1016/S1571-0661(05)82542-3.

Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Learning optimal decision trees with MaxSAT and its
integration in AdaBoost. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pages 1170–1176. ijcai.org, 2020. doi: 10.24963/ijcai.2020/163.

Alexandre Lemos, Pedro T. Monteiro, and Inês Lynce. Minimal perturbation in university timetabling with maximum
satisfiability. In Emmanuel Hebrard and Nysret Musliu, editors, Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 17th International Conference, CPAIOR 2020, Vienna, Austria, September 21-24,
2020, Proceedings, volume 12296 of Lecture Notes in Computer Science, pages 317–333. Springer, 2020. doi:
10.1007/978-3-030-58942-4 21.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 21 / 20



Bibliography II

Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. Volt: A lazy grounding framework for solving very large maxsat
instances. In Marijn Heule and Sean A. Weaver, editors, Theory and Applications of Satisfiability Testing - SAT 2015 - 18th
International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings, volume 9340 of Lecture Notes in
Computer Science, pages 299–306. Springer, 2015. doi: 10.1007/978-3-319-24318-4 22.

Andreas Niskanen and Matti Järvisalo. Strong refinements for hard problems in argumentation dynamics. In Giuseppe De
Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugaŕın, and Jérôme Lang, editors, ECAI
2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain,
August 29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS
2020), volume 325 of Frontiers in Artificial Intelligence and Applications, pages 841–848. IOS Press, 2020. doi:
10.3233/FAIA200174.

Andreas Niskanen, Jeremias Berg, and Matti Järvisalo. Enabling incrementality in the implicit hitting set approach to maxsat
under changing weights. In Laurent D. Michel, editor, 27th International Conference on Principles and Practice of
Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs,
pages 44:1–44:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPIcs.CP.2021.44.

Andreas Niskanen, Jeremias Berg, and Matti Järvisalo. Incremental maximum satisfiability. In Kuldeep S. Meel and Ofer
Strichman, editors, 25th International Conference on Theory and Applications of Satisfiability Testing, SAT 2022, Haifa,
Israel, August 2-5, 2022, volume 236 of LIPIcs, pages 14:1–14:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
To appear.

Niskanen et al. (HIIT, UH) Incremental MaxSAT August 2, 2022 22 / 20


	Motivation
	Summary
	Definitions and preliminaries
	Incremental MaxSAT
	IPAMIR: Incremental API for MaxSAT
	Incremental IHS
	Empirical evaluation
	Conclusion
	References

