
Predicting the Flexibility of Dynamic Loop Scheduling Using an
Artificial Neural Network

Srishti Srivastava∗, Brandon Malone†, Nitin Sukhija∗, Ioana Banicescu∗, and Florina M. Ciorba‡

∗Department of Computer

Science and Engineering

Mississippi State University

Mississippi, USA

{ss878@,ioana@cse.,nitin@cavs.}msstate.edu

†Department of Computer Science

Helsinki Institute for Information

Technology, University of Helsinki

Helsinki, Finland

brandon.malone@cs.helsinki.fi

‡Center for Information Services

and High Performance Computing

Technische Universität Dresden

Dresden, Germany

florina.ciorba@tu-dresden.de

Abstract—In this paper, an artificial neural net-
work (ANN) model is proposed to predict the flexibil-
ity (or robustness against system load fluctuations in
heterogeneous computing systems) of dynamic loop
scheduling (DLS) methods. The multilayer percep-
tron (MLP) ANN model has been used to predict
the degree of robustness of a DLS method, given
specific values for the problem size, the system size,
and the characteristics of the system load fluctu-
ations as a compound effect of the variations in
the application’s iteration execution times and the
processor availabilities. The developed MLP ANN
model can be useful in an effective selection of the
most robust DLS technique for scheduling a certain
type of scientific application onto a given set of
non-dedicated heterogeneous processors, when their
system load is expected to fluctuate unpredictably
during the application’s runtime.

Keywords-dynamic loop scheduling; robustness;
flexibility; artificial neural networks; multilayer per-
ceptron; fluctuating system loads.

I. INTRODUCTION

Recently, it has been shown that dynamic loop

scheduling (DLS) algorithms are a powerful ap-

proach towards improving the performance of sci-

entific and engineering applications via dynamic

load balancing [1]. To guarantee a certain per-

formance level of the DLS methods, metrics are

required to measure their robustness against vari-

ous unpredictable variations of perturbation factors

in the heterogeneous computing environment, such

as processor load fluctuations, processor failures,

and others. Successful efforts have been made

to develop such metrics and a methodology for

measuring the robustness of the DLS techniques

against system load fluctuations (using the flex-

ibility metric) and processor failures (using the

resilience metric) [2][3]. Further, the robustness

metrics and the proposed methodology were used

to evaluate the robustness of the DLS methods

against variations in processor availability, where

the experiments were performed in a C simulation

environment [4]. In this paper, the focus is on

forecasting the flexibility of the DLS methods via

the use of an artificial neural network (ANN).

Throughout the paper, the terms flexibility and

robustness against system load fluctuation are used

interchangeably. The system load is defined as the

compound effect of the variations in the problem

characteristics (loop iteration execution times) and

the systemic characteristics (processor availabili-

ties). In the previous work, the robustness of the

DLS methods was only assessed with respect to

the variations in the processor availabilities for a

manageable number of test cases [4]. However,

it is of interest to investigate the robustness of

dynamic loop scheduling via an ANN analysis,

to ensure the robustness of the DLS methods

for a considerably larger number of experimental

cases resulting from considering different combi-

nations of problem sizes, number of processors,

and scheduling methods. Forecasting robustness

2013 12th International Symposium on Parallel and Distributed Computing

978-0-7695-5018-3/13 $26.00 © 2013 IEEE

DOI 10.1109/ISPDC.2013.10

3

2013 12th International Symposium on Parallel and Distributed Computing

978-0-7695-5018-3/13 $26.00 © 2013 IEEE

DOI 10.1109/ISPDC.2013.10

3

2013 IEEE 12th International Symposium on Parallel and Distributed Computing

978-0-7695-5018-3/13 $26.00 © 2013 IEEE

DOI 10.1109/ISPDC.2013.10

3

2013 IEEE 12th International Symposium on Parallel and Distributed Computing

978-0-7695-5018-3/13 $26.00 © 2013 IEEE

DOI 10.1109/ISPDC.2013.10

3

using traditional statistical specifications in the

form of tables and equations for performing a

comprehensive manual robustness analysis is a

very time consuming and tedious task. Traditional

statistical approaches often assume a linear func-

tional relation between the actual parallel execution

performance feature and the affecting perturba-

tion parameters. However, the actual performance

shows highly non-linear behavior in relation to

the perturbation parameters. A multilayered per-

ceptron (MLP) ANN model is used in this paper

to predict the flexibility of the DLS methods in the

presence of system load fluctuations, by learning

the relation among the following attributes: loop

scheduling methods, problem sizes, system sizes,

characteristics of the system load fluctuations as

a compound effect of the characteristics of the

variations in the iteration execution times and the

processor availabilities, and impact of system load

fluctuations on the parallel execution time. The

MLP ANN model generates a non-linear function

from the perturbation parameters (i.e., system load)

to the performance feature (i.e., execution time).

The ANN does not require any prior assumption

of the type of functional relation between the

above mentioned attributes. The ANN is trained

on a part of the input data set and tested with a

different subset of the input data set. The results for

generating the input dataset have been obtained in a

similar manner as described in the work presented

in [5]. Furthermore, when exposed to new data,

the MLP ANN is capable of accurately predicting

the DLS robustness. The work presented in this

paper is a proof of concept that ANNs can be

employed to predict the flexibility of DLS in the

presence of fluctuating system load. Preliminary

results obtained in [5], have been used to verify this

concept. The results obtained from the work done

in this paper provide a novel contribution towards

predicting the flexibility of scheduling in parallel

and distributed computing, considering that very

limited work has been done in this area [6][7].

In the following section, the background and

a review of relevant work are presented. The

proposed prediction methodology is described in

Section III. The results obtained from the generated

MLP ANN model are illustrated and analyzed in

Section IV. A discussion of the benefits and useful-

ness of the proposed methodology are highlighted

in Section V. The conclusions and potential future

work are summarized in Section VI.

II. BACKGROUND AND RELATED WORK

Dynamic Loop Scheduling. The fundamental

idea behind the DLS approach is to determine

the workload for each of the P processors as a

function of the loop iteration chunks (a collection

of loop iterations or tasks) to obtain balanced

processor loads. Extensive research in this area has

produced the design and development of a number

of loop scheduling algorithms. These algorithms

are further classified into the following two cat-

egories: non-adaptive and adaptive. Non-adaptive

algorithms determine workload sizes based on a
priori information and assumptions made before

the execution of the application. Examples of non-

adaptive DLS algorithms include self scheduling

(SS), guided self scheduling (GSS) [8], fixed size

chunking (FSC) [9], factoring (FAC) [10], and

weighted factoring (WF) [11]. The DLS algorithms

belonging to the adaptive category determine the

workload related information during the execution

of the current chunk of loop iterations and from

the prior execution of loop iterations. The adap-

tive DLS methods are: adaptive weighted factor-

ing (AWF) and its variants AWF-Batch (AWF-B)

and AWF-Chunk (AWF-C), and adaptive factoring

(AF). These are listed in order of their increas-

ing complexity. All DLS techniques are based on

probabilistic analyses and they schedule chunks of

loop iterations (either from a central ready queue or

using a master-worker paradigm) so that they finish

within the optimal time with high probability. For

a detailed description of these algorithms, please

refer to [1]. Some examples of real applications

that have successfully incorporated these DLS al-

gorithms include Monte-Carlo simulations, radar
signal processing, N-body simulations, computa-
tional fluid dynamics, and wave packet simulation
using quantum trajectory method [1]. The work-

load used in the simulation experiments, which

were performed to generate the parallel execution

4444

times for the calculation of the robustness of the

DLS method being used, capture the characteristics

similar to the characteristics of the aforementioned

applications.

Robustness of DLS. Due to advances in com-

puting platforms, robustness has become an emerg-

ing area of research and aims to guarantee per-

formance in the presence of uncertainties in the

computing environment. In the case of dynamic

load balancing of scientific applications (which

are large, irregular, computationally intensive, and

often contain a large number of data parallel loop

iterations) onto a set of computing resources via

DLS, robustness analysis metrics and methodolo-

gies can be useful to measure the response of a

scheduling method to possible erroneous inputs or

unpredictably varying environmental factors. The

robustness analysis of DLS enables selection of a

robust DLS method for scheduling a certain loop

of N iterations with certain loop execution charac-

teristics, onto a set of P computing processors with

unpredictably varying processor speeds. Recently,

robustness metrics were formulated to study the ro-

bustness of the DLS methods against two perturba-

tion parameters: processor load variation and pro-

cessor failures [2][3]. The robustness of the DLS

techniques against unpredictable variations in the

processor loads was mathematically represented

using a flexibility metric, whereas, the robustness

of the DLS methods against processor failures

was mathematically represented using a resilience
metric. The two metrics collectively define the

robustness or the reliability of a DLS method in the

presence of perturbations. The related work on the

formulation of the robustness metrics can be found

in [2][3], which has been motivated by the work

on analyzing the robustness of resource allocation

heuristics, in [12]. A methodology has been de-

veloped which employs the metrics from [2][3] to

measure the robustness of the DLS methods and a

STATIC straight-forward parallelization technique

against system load variations [4].

An MLP ANN. The multilayer perceptron

(MLP) is one of the most widely used ANNs for

prediction. The MLP ANN consists of an input

layer, one or more hidden layers, and an output

layer. The input parameters are provided into the

neurons in the input layer. These values are then

fed forward into the first hidden layer. Neurons in

the hidden layer then perform some calculations

based on the values they receive from the input

layer. Common operations include summing the

values and then performing a sigmoid transfor-

mation or thresholding. The neurons in the first

hidden layer pass the result of their operations to

neurons in the second hidden layer (if it exists),

which perform similar calculations. This process

continues until the neurons in the output layer

produce the final calculations [13]. An example of

a feed-forward MLP ANN can be seen in Figure 1.

A higher number of hidden layers introduces

more weight parameters into the network, which

increases the model complexity [14]. In general,

an ANN with more hidden layers can learn more

complex functions than one with fewer hidden

layers; however, complex ANNs are more prone

to overfitting and often perform worse on unseen

(testing) examples. The increase in the number of

hidden layers and/or neurons also increases the

training time [15].

In this paper, we adopt the widely used back-
propagation algorithm to learn the weights of the

edges. Backpropagation begins by randomly ini-

tializing all edge weights. The learning algorithm

consists of a number of two phase iterations. In

the first phase, a training input sample is fed into

the input layer and propagated through the layers

until output is generated. Error is calculated as

the difference between the desired (known) output

for that sample and the calculated output. In the

second phase, the error is propagated backwards,

and link weights are modified to reduce the error

between the desired and calculated output [16].

Each iteration comprises both phases for a portion

of the input training samples. For example, one

iteration may consist of using each input training

sample once. Training stops upon reaching a speci-

fied stopping criterion, such as only a small change

in the weights from one iteration to the next.

In our experiments, we use 10-fold cross-
validation. In this technique, the entire data set

is divided into 10 equal-sized smaller data sets

5555

(folds). In particular, we used stratified cross-

validation, in which each fold contains a similar

number of instances of each class, to minimize the

bias caused by the skewed class distribution in our

dataset. Among these 10 data sets, 9 are used as

the input training set for backpropagation. After

training reaches the stopping criteria, the final data

set is used as a test set.

We calculate the accuracy and balanced error
rate to evaluate the predictive performance of the

MLP ANN. We chose to collect both statistics

because we wish to investigate both how well the

MLP performs at predicting runtimes across all

instances as well as its ability to distinguish be-

tween different robustness classes. We also report

the confusion matrix of the MLP.

The learning and evaluation process is repeated

10 times, such that each of the smaller data sets

is used as the test set once. This results in 10

values for accuracy and balanced error rate. These

are further averaged to obtain the final prediction

statistics for evaluation of the proposed MLP ANN.

III. DESIGN OF THE MLP ANN MODEL

In this paper, an MLP ANN model is developed

to predict the flexibility of the loop scheduling

methods in the presence of system load fluctu-

ations. The model is generated using the MLP

classifier of the open source data mining tool,

Weka [17]. The input data set for the proposed

MLP consists of parallel execution times obtained

using a simulation toolkit as described in [5] and

using the robustness analysis methodology pro-

posed in [4] These execution time values have

been obtained for various problem sizes, system

sizes and probability distributions characterizing

the fluctuations in system load. The degree of

robustness is defined in the MLP input data set

as the range of values [1, ... 5], where 5 is the

highest degree of robustness denoting the most

robust scheduling method for a particular execution

scenario, and 1 denotes a non-robust scheduling

method. For a given number of processors, a given

number of loop iterations, and a particular proba-

bility distribution for the variations in the iteration

execution times and the processor availabilities, the

degree of robustness is calculated as follows:

• Calculate the parallel execution time for the

ideal case T ideal
PAR , for each scheduling method,

where the computing system has dedicated

processors with 100% availability, for each

scheduling method.

• Calculate the parallel execution time TPAR,

where the application has variable iteration

execution times, and the computing system

has non-dedicated processors with variable

availability.

• Set the values of the tolerance factor, τ ,

enforcing an upper limit to the impact of

fluctuating system load on TPAR, as 1, 1.25,

1.5, and 1.75.

• A scheduling method is robust if it satisfies

the condition TPAR ≤ τ · T ideal
PAR . Thus, the

degree of robustness is 5 for τ = 1, 4 for

τ = 1.25, 3 for τ = 1.5, 2 for τ = 1.75, and

1 for all values of τ > 1.75.

For the calculation of the degrees of robustness,

the values of T ideal
PAR and TPAR, were obtained

using the SimGrid simulation framework and the

approach in [5] for all possible combinations of

the values of the following parameters: scheduling-
Method = {STATIC, FSC, GSS, FAC, WF, AWF-

B, AWF-C, AF}, P = {2048, 4096, 8092}, N =
{1048576, 4194304, 16777216}, iterationDistribu-
tion = {Gaussian, Gamma, Exponential} and

availDistribution = {Uniform, Exponential-
constant, Exponential-variable}.

The final input dataset for our experiment con-

tained 1,152 samples (or instances). The input

dataset is preprocessed using the NumericToNom-
inal preprocessor in Weka, which converts all of

the numeric values, such as 8, 092 and 4, 194, 304,

into categorical values. Thus, during the ANN

learning, these values represent categories. This

step prevents the magnitude of N from dominating

all of the calculations.

We then converted each instance into a 22-

dimension binary vector with the NumericToBi-
nary preprocessor in Weka. In this step, a binary

variable is introduced for each value of each pa-

rameter. For example, there is a binary variable

corresponding to availDistribution = Gaussian.

6666

Each instance is converted to a binary vector by

setting the binary variables corresponding to the

parameter values for that instance to 1 and the

others to 0. We perform this transformation to

avoid suggesting an ordering to the parameter

values. For example, if for availDistribution,

we encoded Gaussian = 1, Gamma = 2 and

Exponential = 3, then that implies to the learning

algorithm that Gamma is “closer” to Gaussian
than Exponential. The binary encoding avoids

this implication. The degreeOfRobustness was

similarly transformed. In order to minimize any
bias in the distribution of samples, due to the

skewed nature of the collected data, during our

cross-validation evaluation, we randomized the or-

dering of the instances. Different number of iter-

ations of training were used during backpropaga-

tion. However, the results reported in this paper

have been generated with 500 iterations of training

(or epochs). This offers a good tradeoff between

the computing time required to train the MLP

and overfitting the training set. Empirically, other

numbers of iterations resulted in similar prediction

accuracy and increased or decreased the computa-

tion time linearly. The preprocessed data is then
fed as the input dataset to the MLP classifier in

Weka. We use stratified 10-fold cross-validation, as

discussed in Section II, to divide the dataset into

the respective training and testing sets. The goal

of the MLP is to predict the degree of robustness

given scheduling method, P, N, iteration distribu-

tion and availability distribution, and as such we

select degree of robustness as the class variable.

During training, we use the class variable to adjust

the edge weights. Backpropagation is then used

to train the MLP. After training for each cross-

validation fold, we use the MLP to predict the

degree of robustness for the test data set. While

testing, the class variable is treated as unknown and

predicted with the MLP. Based on the predictions,

we calculate the accuracy and balanced error rate

of the model.

IV. EXPERIMENTAL ANALYSIS AND

EVALUATION

The MLP ANN model generated using Weka

is used to predict the flexibility of the scheduling

methods as a measure of their degree of robustness

against system load fluctuations in a given exe-

cution scenario. The structure of the MLP ANN,

generated using Weka, is illustrated in Figure 1.

The MLP ANN has an input layer with 22 neurons,

one hidden layer with 13 neurons, and one output

layer with 5 neurons.

The accuracy of the MLP ANN for predicting

the degree of robustness was 0.95 on the test

dataset samples, which were not used during train-

ing. The balanced error rate of the MLP ANN was

0.58. The time taken by Weka to build and train

the MLP ANN model was 9.55 seconds, and the

time taken to test and validate the ANN model

was 0.94 seconds. These timings were recorded by

Weka on an Apple R© computer with an Intel R© Core

i5-2.3GHz processor and 4.00 GB RAM.

For comparison, we show the prediction errors

of the learned MLP ANN compared to the errors

of a simple 0-R classifier, which simply predicts

the most common value (robustness class 1, in

this case) for all samples. As expected, and con-

firmed in Figure 2, the MLP ANN outperforms the

naive 0-R classifier. Of course, the 0-R classifier

correctly predicts all of the samples for class 1,

but does not distinguish between any of the other

four robustness classes. For comparison, this gives

the 0-R classifier a seemingly impressive accuracy

of 0.90 (5% worse than the MLP ANN, though);

however, its balanced error rate was 0.8. These

results call attention to the skewed distribution of

our data and highlight the difficulty and importance

of distinguishing between robustness classes.

Qualitatively, as shown in the confusion matrices

in Figure 2, the MLP ANN only mis-classifies 10

instances (out of 62) from class 5 and correctly

identifies 8 instances (out of 31) from class 2.

These correct predictions are important for down-

stream planning because they allow a scheduler to

effectively decide which loop scheduling algorithm

will best adhere to user constraints. In contrast,

the incorrect predictions by the 0-R classifier could

lead to very poor decisions about which scheduling

algorithm to prefer. Both the MLP ANN and the

0-R classifier were unable to correctly predict any

instances from classes 3 or 4. The MLP ANN was

7777

Figure 1: Weka-generated MLP ANN with five input attributes: scheduling methods, system size, problem size,
probability distributions for iteration execution time variation, and probability distributions for varying processor
availabilities. One output class attribute: degree of robustness [1, ... 5].

unable to distinguish these classes because of the

limited number of training instances available for

them (13 and 7, respectively). A larger training

set would allow the backpropagation algorithm to

better learn the characteristics of these classes. The

use of a larger training dataset is potential future

work to the preliminary work done in this paper

for predicting the flexibility of DLS with ANNs.

A scatter plot of the predicted values of the

degree of robustness for all scheduling methods is

in Figure 3. Furthermore, the visual interface of

the output result in Weka allows a detailed view

of any coordinate point on the scatter plot in a

textual mode. This visual interface is shown in

Figure 3 as the two overlaid GUI windows (one

showing correctly predicted degree of robustness

for AF, and the other showing incorrectly predicted

degree of robustness for STATIC) on top of the

scatter plot. For a desired degree of robustness

and a particular scheduling method, this detailed

view helps in identifying the required execution

scenario. Similarly, the visual output of the ANN

model in Weka enables the identification of the

required values of all input parameters in the

execution scenario, when the output class attribute

(degree of robustness) is plotted against against any

other input attribute. For example, this can help in

selecting the most flexible scheduling method to

achieve a desired level of robustness, for a given

problem size, system size and assumed variations

in the system load characteristics.

Additionally, the MLPs learned by Weka can be

exported and used online. For a given execution

scenario, they can be used to predict the degree of

robustness of each scheduling method in real time.

Then, the scheduling method predicted to be the

most robust can be selected to run the desired job.

Figure 2: The confusion matrices of (a) the MLP ANN
and (b) the 0-R classifier. Each cell, i, j, gives the number
of instances that were actually robustness class i (rows), but
were predicted to be class j (columns). Thus, the main diagonal
represents correct predictions.

As illustrated by the areas highlighted via the

red circles in Figure 3, the STATIC, FSC and

GSS scheduling methods contribute towards the

largest number of incorrectly predicted degree of

robustness values by the MLP ANN. The statistical

results generated by Weka show that STATIC,

FSC and GSS together contribute to 79% of the

total number of incorrectly predicted values by

the proposed MLP ANN model. This indicates

that STATIC, FSC and GSS are less predictable

compared to the other scheduling methods because,

even though the MLP can model highly non-linear

functions, it was still unable to consistently predict

8888

the robustness of these three methods. All results

are in confirmation with the theoretical and the

experimental results obtained for these scheduling

techniques in related previous work [1][4][5].

V. BENEFITS OF THE MLP ANN FLEXIBILITY

PREDICTION MODEL

In previous work, a methodology to assess the

robustness of the scheduling methods has been

proposed to test their robustness against varia-

tions in processor availabilities at runtime. The

methodology proposed in [4] establishes a general

procedure to analyze the robustness of the dynamic

loop scheduling (DLS) methods when they are used

to execute scientific applications on non-dedicated

heterogeneous computing systems. The robustness

metric is used to quantify the robustness of the

DLS methods, and to compare them with respect

to their robustness values; however, the work pre-

sented in [4] is only a preliminary step towards

analyzing the robustness of the the scheduling

methods. The statistical calculations in that work

are restricted to smaller test data sets.

In this work, an MLP ANN model is used to

predict the robustness of the scheduling methods

against fluctuating system load and captures more

realistic execution scenarios. The advantages of

using an ANN model over traditional statistical

methods for predicting the flexibility of the schedul-

ing methods are: (i) a capability to handle larger

input datasets, (ii) a high real time prediction speed

(approximately 1 second) as jobs are presented to

a computing system, (iii) a capability to learn non-

linear relations among input and class attributes

(does not require any prior information related

to the functional relation among the input and

output attributes), and (iv) a capability to make

correct predictions of robustness (of DLS) on data

unexplored during training (verified by using 10-

fold cross validation technique).

The MLP ANN model developed in this paper

can be useful in the appropriate selection of the

most flexible DLS method for achieving a desired

level of robustness for a given application and exe-

cution scenario. The proposed ANN model can also

be adapted to include additional input attributes

(such as makespan, cost, power consumption, and

others) for predicting the robustness, performance

and execution cost of using a specific DLS method.

VI. CONCLUSIONS AND FUTURE WORK

An MLP ANN model for predicting the flexibil-

ity of the scheduling methods for achieving robust

dynamic load balancing has been developed in the

work presented in this paper. The MLP classifier

function of the Weka data mining tool was used to

develop the ANN model. The input data set was

generated from the experiments performed using

the SimGrid simulation framework as reported

in [5]. The test cases used to generate the data sets

were generated using a combination of problem

size, system size, DLS method, probability distri-

bution showing the variation in iteration execution

time, and probability distribution showing the vari-

ation in processor availability. The MLP ANN is

trained and tested using the input data set, with

the 10-fold cross-validation technique. The ANN

learns the relation between the degree of robustness

of the scheduling methods and the other input

parameters through the backpropagation learning

algorithm. The generated MLP ANN delivers a

prediction accuracy of 94.9%. The visual output

interface provided by Weka enables the analysis of

the required values for the input parameters (N, P,

the scheduling method, and others) for achieving a

desired degree of robustness. The obtained MLP

ANN has high computing speed. Therefore, it

can be used online to determine the best DLS

method for a job as it is submitted to a computing

system. It has the ability to handle large input

data sets, to adapt to new input data, and does

not presume any functional relation between the

input and the output attributes. This makes our

ANN model generic and applicable to a wide range

of application types and computing environments.

Further, work is required to experiment with differ-

ent values of the ANN parameters and to compare

the prediction performance of ANNs with other

learning techniques in AI. The immediate future

work includes generating larger input data sets for

achieving a higher prediction accuracy than that

of the proposed MLP ANN. Additional metrics,

9999

Figure 3: Degree of robustness predictions obtained from the MLP ANN model. The overlaid windows show: (top) correctly
predicted value of the degree of robustness for AF scheduling method and (bottom) incorrectly predicted value of the degree of
robustness for STATIC scheduling method. The areas highlighted with red circles show that STATIC, FSC and GSS contribute to
79% of the total number of incorrectly predicted values of the degree of robustness by the MLP ANN model.

such as cost and power consumption, can also be

introduced into the proposed ANN for learning

the functional relation between these attributes for

achieving a desired level of performance.

Acknowledgments: This work is in part sup-

ported by the National Science Foundation un-

der grant number NSF IIP-1034897, and by the

German Research Foundation (DFG) in the Col-

laborative Research Center 912 “Highly Adaptive

Energy-Efficient Computing”.

REFERENCES

[1] I. Banicescu and R. L. Cariño, “Addressing the stochas-
tic nature of scientific computations via dynamic loop
scheduling.” Electronic Transactions on Numerical Anal-
ysis, vol. 21, pp. 66–80, 2005.

[2] I. Banicescu, F. M. Ciorba, and R. L. Cariño, “Towards
the robustness of dynamic loop scheduling on large-
scale heterogeneous distributed systems,” International
Symposium on Parallel and Distributed Computing, 2009.

[3] S. Srivastava, I. Banicescu, and F. M. Ciorba, “Investigat-
ing the robustness of adaptive dynamic loop scheduling
on heterogeneous computing systems,” in the Proceedings
of the International Parallel and Distributed Processing
Symposium, Apr. 2010, pp. 1–8.

[4] S. Srivastava, N. Sukhija, I. Banicescu, and F. M. Ciorba,
“Analyzing the robustness of dynamic loop scheduling
for heterogeneous computing systems,” Parallel and Dis-
tributed Computing, IEEE Int. Symp., pp. 156–163, 2012.

[5] N. Sukhija, I. Banicescu, S. Srivastava, and F. M. Ciorba,
“Evaluating the flexibility of dynamic loop scheduling
on heterogeneous systems in the presence of fluctuating
load using simgrid,” in the Proceedings of the Inter-
national Parallel and Distributed Processing Symposium
(IPDPSW-PDSEC 2013), 2013.

[6] F. Xia and Y. Sun, “Neural network based feedback
scheduling of multitasking control systems,” in Proc.
KES2005, LNCS, Springer-Verlag, 2005, pp. 237–246.

[7] T. Eguchi, F. Oba, and S. Toyooka, “A robust scheduling
rule using a neural network in dynamically changing job-
shop environments.” IJMTM, vol. 14, pp. 266–288, 2008.

[8] C. D. Polychronopoulos and D. J. Kuck, “Guided Self-
Scheduling: A Practical Scheduling Scheme for Paral-
lel Supercomputers,” IEEE Transactions on Computers,
vol. 36, no. 12, pp. 1425–1439, Dec. 1987.

[9] C. P. Kruskal and A. Weiss, “Allocating Independent
Subtasks on Parallel Processors,” IEEE Transactions on
Software Engineering, vol. 11, no. 10, 1985.

[10] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring:
A method for scheduling parallel loops,” Communications
of the ACM, vol. 35, no. 8, pp. 90–101, Aug. 1992.

[11] S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein, “Load-
sharing in heterogeneous systems via weighted factoring,”
in in Proceedings of the 8th Annual ACM Symposium on
Parallel Algorithms and Architectures, 1997, pp. 318–328.

[12] S. Ali, A. A. Maciejewski, and H. J. Siegel, ”Perspectives
on robust resource allocation for heterogeneous parallel
systems”, Handbook of Parallel Computing: Models, Al-
gorithms, and Applications, S. Rajasekaran and J. Reif,
Ed. Chapman and Hall/CRC Press, 2008.

[13] E. Rich and K. Knight, Artificial Intelligence. McGraw-
Hill Science/Engineering/Math, December 1990.

[14] G. Zhang, “Neural networks for classification: a survey,”
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 30, no. 4, 2000.

[15] S. Geman, E. Bienenstock, and R. Doursat, “Neural net-
works and the bias/variance dilemma,” Neural Comput.,
vol. 4, no. 1, pp. 1–58, Jan. 1992.

[16] S. J. Russell and P. Norvig, Artificial Intelligence - A
Modern Approach, 3rd ed. Pearson Education, 2010.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. H. Witten, “The weka data mining soft-
ware: an update,” ACM SIGKDD Explorations Newsletter,
vol. 11, no. 1, pp. 10–18, Nov. 2009.

10101010

